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Abstract

Background: Discovering causal genetic variants from large genetic association studies poses many difficult
challenges. Assessing which genetic markers are involved in determining trait status is a computationally
demanding task, especially in the presence of gene-gene interactions.

Results: A non-parametric Bayesian approach in the form of a Bayesian neural network is proposed for use in
analyzing genetic association studies. Demonstrations on synthetic and real data reveal they are able to efficiently
and accurately determine which variants are involved in determining case-control status. By using graphics
processing units (GPUs) the time needed to build these models is decreased by several orders of magnitude. In
comparison with commonly used approaches for detecting interactions, Bayesian neural networks perform very
well across a broad spectrum of possible genetic relationships.

Conclusions: The proposed framework is shown to be a powerful method for detecting causal SNPs while being
computationally efficient enough to handle large datasets.
Background
The ability to rapidly collect and genotype large num-
bers of genetic variants has outpaced the ability to inter-
pret such data, leaving the genetic etiology for many
diseases incomplete. The presence of gene-gene interac-
tions, or epistasis, is believed to be a critical piece of the
“missing heritability” that is a hot topic in the field [1].
This has in turn spurred development on advanced com-
putational approaches to account for these interactions,
with varying degrees of success [2-4]. Recent work has
shown that gene-gene interactions capable of influencing
gene expression exist and are replicable [5], reinforcing
the need for methodology that can account for these
genetic interactions. The main computational challenge
comes from the vast number of markers that are present
in a typical association study. This problem is exacer-
bated when interactions between two or more markers
must be considered. For example, given an experiment
that genotypes 1,000 markers, examining all possible in-
teractions between two of the markers involves consider-
ation of nearly half a million combinations. This situation
becomes exponentially worse as higher order interactions
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are considered. Modern genome-wide association studies
(GWAS) routinely consider 1-2 million single nucleotide
polymorphisms (SNPs), which would require examining
half a trillion potential interactions. As whole genome
sequencing (WGS) methods become commonplace,
methods that cannot cope with large data sets will be of
little utility. Data on this scale will require approaches
that can find interactions without having to enumerate
all possible combinations.
Several distinct types of methods have emerged that

attempt to address this challenge. Perhaps one of the
most popular approaches from the last decade has been
Multifactor Dimensionality Reduction (MDR) [6,7], and
extensions of the method. MDR is a combinatorial search
that considers all possible interactions of a given order
and selects the best model via cross validation. Because
MDR is an exhaustive search, it suffers from the previ-
ously discussed scalability issue, though recent work using
graphics processing units has attempted to lessen this def-
icit [8]. Though MDR is a general constructive-induction
algorithm that can be paired with any stochastic search
technique, it is most often paired with a permutation
testing strategy to assess statistical significance for each
marker, so the computational burden becomes prohibitive
for large datasets. Permutation testing computes a p-value
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for a statistic of interest (such as an accuracy measure
from MDR) by randomly permuting the class labels and
calculating the statistic on the permuted dataset. This
procedure is repeated many times to compute a “null”
distribution for the statistic of interest. The percentage of
instances in the permuted null distribution that are less
than or equal to the actual statistic from the unpermuted
data is taken as the desired one-sided p-value. Unfortu-
nately, this can be extremely expensive for large datasets
when many hypotheses are simultaneously tested, leading
to a large multiple testing scenario. To get the required
resolution for a Bonferroni corrected p-value of 0.05 when
considering a set of 1,000 SNPs, one must perform 20,000
permutations. This makes permutation testing infeasible
for even moderately sized datasets.
Another popular approach is Bayesian Epistasis Asso-

ciation Mapping (BEAM) [9]. BEAM partitions markers
into groups representing individual (i.e. marginal) gen-
etic effects, interactions, and a third group representing
background markers that are uninvolved with the trait.
BEAM employs a stochastic Markov Chain Monte Carlo
(MCMC) search technique to probabilistically assign
markers to each group and uses a novel “B-statistic” based
on the MCMC simulation to assign statistical significance
to each marker. This allows BEAM to assign statistical sig-
nificance without the need to perform a costly permuta-
tion test. This method has been demonstrated successfully
on data sets with half a million markers. However, the
recommended amount of MCMC iterations needed is
quadratic in the number of SNPs considered [9], possibly
limiting its effectiveness for larger datasets.
Many popular machine-learning algorithms have also

been adopted for use in analyzing association studies.
Notable examples are decision trees (both bagged, i.e.
random forests, [10,11] and boosted [12]) support vector
machines (SVM) [10], Bayesian networks [13], and neural
networks [2]. In particular, tree-based methods such as
random forests and boosted decision trees have been
found to perform well in a variety of association study
analyses [11,12,14]. Machine learning approaches are ap-
pealing because they assume very little a priori about the
relationship between genotype and phenotype, with most
methods being flexible enough to model complex relation-
ships accurately. However, this generality is something of
a double-edged sword as many machine learning algo-
rithms function as black boxes, providing investigators
with little information on which variables may be most
important. Typically it is the goal of an association study
to determine which variables are most important, so a
black box may be of little use. Some approaches have easy
adaptations that allow them to provide such measures.
Both types of tree based methods (bagged and boosted)
can provide measures of relative variable importance
[15-17], but these indicators lack measures of uncertainty,
so they are unable to determine how likely a variable’s
relative importance score is to occur by chance without
resorting to permutation testing.
In this study, we propose the use of Bayesian neural

networks (BNNs) for association studies to directly ad-
dress some the issues with current epistasis modeling.
While BNNs have been previously developed and ap-
plied for other tasks [18-21], they have yet to see signifi-
cant usage in bioinformatics and computational biology.
Like most complex Bayesian models, BNNs require sto-
chastic sampling techniques that draw samples from the
posterior distribution, because direct or deterministic cal-
culation of the posterior distribution is often intractable.
These posterior samples are then used to make inferences
about the parameters of the model or used to make predic-
tions for new data. Standard MCMC methods that employ
a random walk such as the Metropolis-Hastings (RW-MH)
algorithm [22,23] (which is the algorithm that forms the
core of BEAM [9]) explores the posterior distribution very
slowly when the number of predictors is large. If d is the
number of parameters in a model, the number of iterations
needed to obtain a nearly independent sample is O(d2)
[24] for RW-MH. This makes the RW-MH algorithm un-
suitable for neural network models in high-dimensions, so
the Hamiltonian Monte Carlo (HMC) algorithm is instead
used to generate samples from the posterior. HMC has
more favorable scaling properties, as the number of itera-
tions needed is only O(d5/4) [24]. HMC achieves this favor-
able scaling by using information about the gradient of the
log-posterior distribution to guide the simulation to re-
gions of high posterior density. Readers familiar with
standard neural network models will notice an inherent
similarity between Bayesian neural networks sampled using
HMC and traditional feed-forward neural networks that
are trained using the well-known back-propagation algo-
rithm [25], as both take steps in the steepest direction
using gradient based information. Though HMC will in
general explore the posterior distribution in a more effi-
cient manner than RW-MH, the evaluation of the gradient
can very expensive for large data sets. Recent work has
shown that this drawback can be lessened through the use
of parallel computing techniques [26]. We demonstrate
that a graphics processing unit (GPU) computational
framework can enable the use of BNNs on large datasets.
The BNN framework outlined here has several features

designed to address many of the challenges inherent in
analyzing data from association studies. These advan-
tages are outlined below.

� Quantification of variable influence with uncertainty
measures. This allows variable influence to be
assessed relative to a null or background model
using a novel Bayesian testing framework. This
avoids reliance on a permutation testing strategy.



Table 1 Additive risk model

Genotype AA Aa aa

BB η η(1 + θ) η(1 + 2θ)

Bb η(1 + θ) η(1 + 2θ) η(1 + 3θ)

bb η(1 + 2θ) η(1 + 3θ) η(1 + 4θ)
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� Automatic modeling of arbitrarily complex genetic
relationships. Interactions are accounted for without
having to examine all possible combinations. This is
achieved from the underlying neural network model.

� An efficient sampling algorithm. HMC scales much
better than other MCMC methods, such as the
RW-MH algorithm, in high-dimensions.

� Computational expediency through the use of
GPUs. The time needed to build the model is greatly
reduced using the massive parallel processing
offered by GPUs.

We offer evidence for these claims using several sim-
ulated scenarios and a demonstration on a real dataset.
In addition, we compare the proposed approach to
several popular methods so that relative performance
can be assessed.

Results and discussion
Existing methods used for comparison
We selected several methods to serve as baselines for
evaluation of the BNN’s performance. As previously men-
tioned BEAM and MDR are widely used methods and so
were included in our evaluation. We used a custom com-
piled 64-bit version of BEAM using the source provided
on the website [27] of the authors of [9]. The java-based
MDR package was downloaded from the MDR source-
forge repository (http://sourceforge.net/projects/mdr/) and
called from within a Python script. To evaluate the ef-
fectiveness of tree-based methods, we used an approach
nearly identical to that in [12], which was based on
boosted decision trees. The boosted decision tree model
provides a measure of relative influence for each vari-
able that indicates how important a given variable is,
relative to the others in the model. To fit the boosted
tree model we used the gbm package in R. Finally, we
also included the standard 2 degrees-of-freedom chi-
square test of marginal effects.
As discussed, some approaches such as MDR and GBM

require a permutation testing strategy to assess statistical
significance. This makes assessing their performance on
large datasets difficult, due to the amount time required
to perform the permutation test. During our pilot investi-
gations on a dataset containing 1,000 SNPs, each individ-
ual run of MDR was found to take roughly 1 minute to
complete. The time needed to complete the required
20,000 permutations would be roughly 2 weeks. If we wish
to evaluate a method’s effectiveness on hundreds or thou-
sands of such datasets, this run time becomes prohibitive.
As such, we divided our primary analysis into two sec-
tions. In the first section, we evaluated methods that do
not rely on permutation testing on datasets containing
1,000 SNPs each. However, since we wish to compare the
results of the BNN to that of MDR and GBM, we
performed a second set of analyses on smaller datasets
that only contained 50 SNPs each, for which permutation
testing is feasible. This two-pronged strategy allowed us to
evaluate a wide range of popular approaches in a reason-
able amount of time, while serving to underscore the need
for methods that do not rely on permutation testing.

Parametric models of multi-locus relationships
In this section we performed an analysis of three biallelic
models of genotypic relationships. These models have
been used previously [9,12] and are meant to reflect the-
oretical and empirical evidence for genetic relationships
involving multiple loci [28]. Tables 1, 2, and 3 contain the
relative risk of disease for each genotype combination.
Capital and lower case letters represent the major and
minor alleles, respectively.
The symbols η and θ in the tables represent the base-

line risk and effect size, respectively. We simulated ge-
notypes for the disease SNPs for a range of minor allele
frequencies (MAFs) and simulated the disease status for
1,000 cases and 1,000 controls using the risks given in
Tables 1, 2, and 3. We embedded the causal SNPs in a
background of 998 non-causal SNPs, for a total of 1,000
SNPs to be considered. For each combination of effect
size, θ ∈ {0.5, 1.0, 1.5, 2.0}, MAF ∈ {0.1, 0.2 , 0.3, 0.4, 0.5},
and model type (Additive, Threshold and Epistasis) we
generated 100 datasets. This yielded a total of 6,000 data-
sets for evaluation. All datasets in this section were cre-
ated using the R statistical programming language [29].
We ran BNN, BEAM, and the χ2 test on each dataset

and recorded whether or not both disease SNPs were
declared as significant by each method. We took the
fraction of datasets where both disease SNPs were cor-
rectly identified as an estimate of statistical power. For
BEAM and the χ2 test, we used the canonical Bonferroni
corrected significance threshold of p <0.05. We used the
recommended parameter settings for BEAM [9] and per-
formed 1e6 sampling iterations for each dataset. For the
BNN approach, we used a network with 1 hidden layer
and 5 logistic units and a softmax output layer with 2
units. The network parameters in the hidden layer are
given ARD priors, while the network parameters in the
output are given a common Gaussian prior. The hyper
parameters for the Inverse-Gamma prior for the ARD
parameters were α0 = 5, β0 = 2 while the hyper parame-
ters for the Gaussian priors were α0 = 0.1, β0 = 0.1. The
parameters for the HMC algorithm were ε = 5e-2, L = 15,

http://sourceforge.net/projects/mdr/


Table 2 Threshold risk model

Genotype AA Aa aa

BB η η η

Bb η η(1 + θ) η(1 + θ)

bb η η(1 + θ) η(1 + θ)
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α = 0.75, and T = 5e3. The cutoff value for the novel
Bayesian ARD testing framework was 0.6. We discarded
the first 25 samples as burn-in and kept 100 samples to
be used for inference. Processing of each dataset by the
BNN took approximately 3 minutes. The results are shown
below in Figures 1, 2 and 3.
BNNs were found to be uniformly more powerful than

both BEAM and the χ2 test for the additive model.
BNNs show excellent power, even for small effect sizes
and achieve 100% power for second smallest effect size
across all tested MAFs. In contrast, BEAM showed rela-
tively little power for the smallest effect size and never
achieves 100% for all MAFs, even at the highest level of
effect size. The threshold model tells a similar story. For
all but 3 combinations of MAF and effect size, the BNN
model is again uniformly more powerful than both
BEAM and the χ2 test. The picture from the epistatic
model is slightly more mixed. BEAM appeared to do a
better job at the smallest effect size, while performing
equally well as BNNs on the remaining three effect size
levels. All three methods had almost no power to detect
the causal SNPs for a MAF of 0.5. These results suggest
that BNN is uniformly more powerful the χ2 test for
these genetic models, and may be more powerful than
BEAM in most instances.

Simulated epistatic relationships without marginal effects
In this section, we evaluated the performance of all the
methods examined in the previous section (BNN, BEAM,
and the χ2) as well as GBM and MDR. Since MDR and
GBM rely on permutation testing, we reduced the size of
the dataset to accommodate this strategy. To generate test
datasets, we used the GAMETES software package [30].
This package allows users to specify the proportion of
variance for case/control status that is due to genetic vari-
ants (i.e. broad-sense heritability) as well as how many loci
are involved in determining trait status. These relation-
ships are generated such that there are minimal marginal
effects, resulting in relationships that are nearly purely
epistatic. Relationships without marginal effects are in
Table 3 Epistatic risk model

Genotype AA Aa aa

BB η η η(1 + 4θ)

Bb η η(1 + 2θ) η

bb η(1 + 4θ) η η
some sense “harder” than those with marginal effects,
because the causal SNPs contribute to trait status only
through their interaction. Preliminary analysis on the
reduced SNP datasets indicated that if the same models
were used as in the previous section, most methods
would have nearly 100% power for all simulated scenar-
ios, which would provide little useful feedback for dis-
cerning which approaches were working best. This was
the primary motivation for using the “harder”, purely
epistatic relationships instead of the parametric models
we used previously.
Using GAMETES, we analyzed two levels of heritabil-

ity (5% and 10%) across a range of MAF (0.05, 0.1, 0.2,
0.3, 0.4, 0.5). Power was measured as in the previous
section using 100 instances for each heritability/MAF
combination for a total of 1200 data sets used in evalu-
ation. The results are shown below in Figures 4 and 5.
BNN outperformed all methods from the previous

section (BEAM and χ2 test) by a very wide margin. This
suggests that BEAM may be less robust to detect causal
SNPs in the absence of marginal effects than previously
thought, as it never achieves 25% power in any of the
scenarios tested. Again, we find these results encour-
aging as they indicate that BNNs are indeed powerful
relative to existing approaches. Additionally, BNN out-
performed the GBM method in all but 2 scenarios, indi-
cating that BNN maybe be more adept at detecting
purely epistatic signals across a broad array of MAFs
and effect sizes. MDR performs well across every param-
eter combination tested, but as mentioned previously it
is incapable of performing this analysis on a GWAS scale
due to the exhaustive search technique and the need to
perform permutation testing to assess statistical signifi-
cance. To conclude this section, we note that BNN was
the only method that did well across a variety of genetic
models, number of SNPs, and MAFs while being capable
of scaling to GWAS-sized data. This provides evidence
that BNN framework is deserving of further investigation
as an analysis technique for association studies.

Sensitivity and specificity analysis of the ARD test
The cutoff value used for the ARD test has an obvious
impact on the method’s performance. In the extreme
case, a cutoff of 0 would result in nothing being signifi-
cant while a cutoff value of 1 would result in everything
being declared as such. The cutoff value controls the
tradeoff between sensitivity (i.e. the true positive rate)
and specificity (i.e. the true negative rate, which is equiva-
lent to 1 – the false positive rate). Evaluation of the false
positive rate for the cutoff value of 0.6 used in the previ-
ous experiments indicates that the BNN method properly
controls the amount of false positives. We observed an
average false positive rate (FPR) of roughly 0.005 and 0.06
for the parametric models and the purely epistatic models,



Figure 1 Additive model. Estimated power to detect both disease SNPs using Bayesian neural networks (BNN), BEAM, and χ2 test (CHI) with 2 d.
f. Effect sizes of {0.5, 1.0, 1.5, 2.0} are shown in order from left to right, top to bottom. Within each pane results are stratified by minor allele
frequency (MAF).
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respectively (see Additional file 1). To examine the trade
off between the true positive rate (TPR) and FPR as the
cutoff value is changed, we modulated the cutoff from 0
to 1 in increments of 0.01 and recorded the true positive
and false positive rate for each data set in the two previous
sections. In Figure 6, we averaged the TPR and FPR over
effect size and MAF to produce a receiver-operator char-
acteristic (ROC) curve for each of the 4 genetic models.
The legend displays the area under the curve (AUC) for
each model.
These results show that BNN-ARD test for variable im-

portance is able to achieve a high true positive rate, while
maintaining a low false positive rate, indicating the
method is performing well and as expected.

Analysis of genome-wide tuberculosis data
To demonstrate the performance of Bayesian neural net-
works on a real dataset, we analyzed a GWAS designed
to find genetic markers associated with tuberculosis (TB)
disease progression. The dataset described in detail in
[31], contains information on roughly 60,000 SNPS and
105 subjects, which we realize is a small sample size. For
our study, each subject was classified as currently infected
with any form of tuberculosis (i.e. extrapulmonary or pul-
monary) or having a latent form of TB confirmed through
a positive tuberculin skin test (purified protein derivative
positive). Quality control was performed and SNPs with
missing values were excluded, as were SNPs that were
found to be out of Hardy-Weinberg equilibrium at the
0.05 level. After QC, there were 16,925 SNPs available for
analysis and 104 subjects. Based on evidence of subpopu-
lations in this data [31], subjects were assigned to one of
three clusters created using the top two principal compo-
nents and cluster membership was included as a covariate
in the model. Sampling of the Bayesian neural network
was conducted as outlined in the previous section, with
ARD hyper-parameters of α0 = 3, β0 = 1. We performed
100 burn-in iterations followed by 1,000 sampling itera-
tions, which took approximately 20 hours. The top five
SNPs based on posterior ARD probabilities are shown



Figure 2 Threshold model. Estimated power to detect both disease SNPs using Bayesian neural networks (BNN), BEAM, and χ2 test (CHI) with 2
d.f. Effect sizes of {0.5, 1.0, 1.5, 2.0} are shown in order from left to right, top to bottom. Within each pane results are stratified by minor allele
frequency (MAF).
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below in Table 4. The time needed to perform the simula-
tion is dependent upon both the dataset size and the
desired number of simulations. Using this dataset as an
example, the sampler completed one full HMC update ap-
proximately every minute, thus on a datasets of 500,000
and 1 million SNPs we would expect a sample every 30 mi-
nutes and every hour, respectively. We provide these num-
bers as rough estimates of the needed computational time
per sample of data sets with larger numbers of SNPs.
The SNP reported as the 2nd most significant in [31]

(rs10490266) appeared in our analysis as the 31st most
significant SNP. Only one of the SNPs in Table 1 is cur-
rently known to be located within a gene (rs1378124 -
MATN2) according to dbSNP. Every SNP reported in
Table 4 is located on the same chromosome and within
10-50 MB of loci previously reported as having a statisti-
cally significant association with pulmonary tuberculosis
susceptibility [32]. The loci reported in [32] were unfor-
tunately either not part of the original SNP library or
removed during the QC process in this study. Due to
the small sample size of this dataset, it is hard to say
conclusively which of the SNPs reported here and in
[31] are most likely to replicate in a larger study.
However, we present this analysis to demonstrate that
the BNN framework is capable of analyzing data sets
containing a high number of SNPs in a relatively short
time.
Here we explore the types of interactions between the

top 5 SNPs from the real data analysis using an entropy
web. The purpose of the interaction web is to visually
display the nature of the interactions (redundant, addi-
tive, or synergistic) amongst the 5 SNPs. The colors
used comprise a spectrum of colors representing a con-
tinuum from Synergy to Redundancy. The colors range
from red representing a high degree of synergy (positive
information gain), orange a lesser degree, and gold
representing the midway point between synergy and
redundancy. On the redundancy end of the spectrum,



Figure 3 Epistatic model. Estimated power to detect both disease SNPs using Bayesian neural networks (BNN), BEAM, and χ2 test (CHI) with
2 d.f. Effect sizes of {0.5, 1.0, 1.5, 2.0} are shown in order from left to right, top to bottom. Within each pane results are stratified by minor allele
frequency (MAF).
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the highest degree is represented by the blue color
(negative information gain) with a lesser degree repre-
sented by green. The numbers indicate the entropy
explained by each of the variables or variable combina-
tions, with the weight of connections proportional to
the strength of the signal. Positive numbers indicate
synergy between variables, while negative number indicate
redundancy. This information is displayed in Figure 7.
The figure indicates that several of the SNPs are indeed
weakly interacting with one another (rs9327930 with
rs1378124 and rs9327930 with rs966414), giving confi-
dence that the method is capable of detecting relevant
SNPs in the presence of interactions.
Conclusions
In this study we have proposed the use of Bayesian
neural networks for association studies. This approach
was shown to be powerful across a broad spectrum of
different genetic architectures, effect sizes, and MAFs.
Of the approaches that do not rely on permutation test-
ing, BNN was uniformly more powerful than the stand-
ard χ2 test and almost uniformly more powerful than the
popular BEAM method in the scenarios considered.
BNN again showed a near uniformly better performance
than the GBM method. MDR was very competitive with
BNN in our evaluations, however MDR is incapable of
scaling to larger datasets due to both its exhaustive
search technique and reliance on permutation testing. In
conclusion, we have demonstrated that BNNs are a
powerful technique for association studies while having
the capability of scaling to large GWAS sized datasets.
Availability of code
The code implementing the GPU-based Bayesian neural
network framework outlined in this paper is available at
https://github.com/beamandrew/BNN.

https://github.com/beamandrew/BNN


Figure 4 Purely epistatic model with 5% heritability. Estimated power to detect both disease SNPs of Bayesian neural networks (BNN), BEAM,
χ2 test (CHI) with 2 d.f., gradient boosted trees (GBM), and MDR. The results are stratified by minor allele frequency (MAF).

Figure 5 Purely epistatic model with 10% heritability. Estimated power to detect both disease SNPs of Bayesian neural networks (BNN),
BEAM, χ2 test (CHI) with 2 d.f., gradient boosted trees (GBM), and MDR. The results are stratified by minor allele frequency (MAF).
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Figure 6 Receiver-Operator Characteristic (ROC) curve for BNNs. Each line represents the ROC curve for a different genetic model, averaged
over effect size and MAF. The area under the curve (AUC) for each model is shown in the legend.
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Methods
Bayesian neural networks
Neural networks are a set of popular methods in
machine learning that have enjoyed a flurry of renewed
activity spurred on by advances in training so-called
“deep” networks [33]. In the most basic sense, neural
nets represent a class of non-parametric methods for
regression and classification. They are non-parametric in
the sense that they are capable of modeling any smooth
function on a compact domain to an arbitrary degree of
precision without the need to specify the exact relation-
ship between input and output. This is often succinctly
stated as “neural nets are universal function approxima-
tors” [34]. This property makes them appealing for many
tasks, including modeling the relationship between
genotype and phenotype, because a sufficiently complex
Table 4 Top 5 SNPs based on posterior ARD probabilities
(a larger probability indicates a SNP is more likely to be
involved)

SNP CHR Pr(μj > μnull)

rs966414 2 0.524

rs1378124 8 0.515

rs9327930 5 0.509

rs4721214 7 0.502

rs10512384 9 0.498
network will be capable of automatically representing
the underlying function.
Some drawbacks of classical neural nets are natural

consequences of their strengths.
Due to their flexibility, neural nets are highly prone to

“over-fitting” to data used to train them. Over-fitting oc-
curs when the network starts to represent the training
data exactly, including noise that may be present, which
reduces its ability to generalize to new data. Many
methods exist to address this issue, but popular methods
such as weight decay are well known to be approximations
to a fully Bayesian procedure [20,35]. Another issue with
standard neural nets is they are often regarded as “black
boxes” in that they do not provide much information
beyond a predicted value for each input. Little intuition or
knowledge can be gleaned as to which inputs are most im-
portant in determining the response, so nothing coherent
can be said as to what drives the network’s predictions.
Discussions of the advantages and disadvantages of NN
for gene mapping have been reviewed in [36]. First we de-
scribe the base neural network model, and then describe
how this can be incorporated into a Bayesian framework.
The network is defined in terms of a directed, acyclic

graph (DAG) where inputs are feed into a layer of hid-
den units. The output of the hidden units are then fed in
turn to the output layer which transforms a linear com-
bination of the hidden unit outputs into a probability of
class membership. Specifically consider a network with p



Figure 7 Entropy network for the Top 5 SNPs selected by the BNN.

Beam et al. BMC Bioinformatics 2014, 15:368 Page 10 of 12
http://www.biomedcentral.com/1471-2105/15/368
input variables, h hidden units, and 2 output units to be
used to predict whether an observation belongs to class
1 or class 2. Let xi = < xi1,…, xip > be the input vector of
p variables and yi = < yi1, yi2 > be the response vector,
where yi1 = 1 if observation i belongs to class 1 and 0 if
not, with yi2 is defined in the same way for class 2. Hid-
den unit k first takes a linear combination of each input
vector followed by a nonlinear transformation, using the
following form:

hk xið Þ ¼ ϕ bk þ
Xp
j¼1

wkj
� xij

 !
ð1Þ

where ϕ (.) is a nonlinear function. For the purposes of
this study, consider the logistic transformation, given as:

ϕ zð Þ ¼ 1
1þ e−z

Several other activation functions such as the hyperbolic
tangent, linear rectifier, and the radial basis/Gaussian
functions are often used in practice. An output unit takes
a linear combination of each hk followed by another non-
linear transformation. Let f1(xi) be the output unit that is
associated with class 1:

f 1 xið Þ ¼ ψ B1 þ
Xh

k¼1
Wk1

� hk xið Þ
� �

ð2Þ

Note we have used upper case letters to denote param-
eters in the output layer and lowercase letters to indicate
parameters belonging to the hidden layer. The ψ(.)
function is the softmax transformation of element z1
from the vector z:

ψ z1ð Þ ¼ exp z1ð ÞX
i
exp zið Þ

f1(xi) represents the estimated conditional probability
that yi belongs to class 1, given the input vector xi. A
similar definition is made for output unit 2, f2(xi). Note
that for the case of only 2 classes, f2(xi) = 1 − f1(xi)
because the softmax transformation forces the outputs
to sum to 1.
Having described the formulation for standard neural

networks we next describe how this can be extended
using the Bayesian formulation. Bayesian methods define
a probability distribution over possible parameter values,
and thus over possible neural networks. To simplify no-
tation, let θ = {B,W, b,w} represent all of the network
weights and biases shown in equations (1), (2). The pos-
terior distribution for θ given the data xi and yi, is given
according to Bayes’ rule:

p θjxi; yið Þ ¼ L θjxi; yið Þ⋅π θð Þ
m xð Þ ð3Þ

where m(x) = ∫L(θ|xi, yi) ⋅ π(θ)dθ is the marginal density
of the data. L(θ|xi, yi) is the likelihood of θ given the data
and π(θ) is the prior distribution for the network parame-
ters. However, in practice we only need to be able to
evaluate the numerator of (3) up to a constant because we
will be relying on MCMC sampling techniques that draw
from the correct posterior without having to evaluate
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m(x), which may be intractable in high dimensions. In
practice, it is often better to work with the log-likelihood l
(θ|xi, yi) = log(L(θ|xi, yi)), because the raw likelihood can
suffer from numerical overflow or underflow. In this study
we assume the log-likelihood for a neural network with 2
output units is binomial:

l θ xi; yiÞ ¼ yi1⋅ log f 1 xið Þð Þ þ yi2⋅ log 1−f 1 xið Þð Þjð ð4Þ
Next every parameter in the model must be given a

prior distribution. The prior distribution codifies beliefs
about the values each parameter is likely to take before
seeing the data. This type of formulation is extremely
useful in high-dimensional settings such as genomics,
because it enables statements such as “most of the vari-
ables are likely to be unrelated to this response” to be
quantified and incorporated into the prior. In this study,
we adopt a specific prior structure known as the Auto-
matic Relevance Determination (ARD) prior. This prior
was originally introduced in some of the foundational
work on Bayesian neural nets [20,37] and later used in
other types of models [38].
The ARD prior groups network weights in the hidden

layer together in a meaningful and interpretable way. All
of the weights in the hidden layer that are associated
with the same input variable are considered part of the
same group. Each weight in a group is given a normal
prior distribution with mean zero and a common variance
parameter. This shared group-level variance parameter
controls how large the weights in a group are allowed to
become and performs shrinkage by pooling information
from several hidden units, which helps to prevent overfit-
ting [37,39]. Each of the group-level variance parameters
is itself given a prior distribution, typically an Inverse-
Gamma distribution with some shape parameter α0 and
some scale parameter β0. These parameters often referred
to as hyper parameters, can themselves be subject to an-
other layer of prior distributions, but for the purposes of
this study, we will leave them fixed as user specified
values. Specifically, for a network with h hidden units, the
weights in the hidden layer for input variable j will have
the following prior specification:

wj1;…;wjp e N 0; σ2
j

� �
σ2j e IG α0; β0

� �
This structure allows the network to automatically de-

termine which of the inputs are most relevant. If variable
j is not very useful in determining whether an observa-
tion is a case or a control, then the posterior distribution
for σj

2 will be concentrated around small values. Like-
wise, if variable j is useful in determining the response
status, most of the posterior mass for σj

2 will be centered
on larger values.
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