11 research outputs found

    Analysis of gene expression data from non-small celllung carcinoma cell lines reveals distinct sub-classesfrom those identified at the phenotype level

    Get PDF
    Microarray data from cell lines of Non-Small Cell Lung Carcinoma (NSCLC) can be used to look for differences in gene expression between the cell lines derived from different tumour samples, and to investigate if these differences can be used to cluster the cell lines into distinct groups. Dividing the cell lines into classes can help to improve diagnosis and the development of screens for new drug candidates. The micro-array data is first subjected to quality control analysis and then subsequently normalised using three alternate methods to reduce the chances of differences being artefacts resulting from the normalisation process. The final clustering into sub-classes was carried out in a conservative manner such that subclasses were consistent across all three normalisation methods. If there is structure in the cell line population it was expected that this would agree with histological classifications, but this was not found to be the case. To check the biological consistency of the sub-classes the set of most strongly differentially expressed genes was be identified for each pair of clusters to check if the genes that most strongly define sub-classes have biological functions consistent with NSCLC

    The Pathway Coexpression Network: Revealing pathway relationships.

    Get PDF
    A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer's Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/

    A user's guide to the Encyclopedia of DNA elements (ENCODE)

    Get PDF
    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome

    Dispersion and Probability Density Function for Focal Mechanism Tensors

    No full text

    Diverse type 2 diabetes genetic risk factors functionally converge in a phenotype-focused gene network

    Get PDF
    Type 2 Diabetes (T2D) constitutes a global health burden. Efforts to uncover predisposing genetic variation have been considerable, yet detailed knowledge of the underlying pathogenesis remains poor. Here, we constructed a T2D phenotypic-linkage network (T2D-PLN), by integrating diverse gene functional information that highlight genes, which when disrupted in mice, elicit similar T2D-relevant phenotypes. Sensitising the network to T2D-relevant phenotypes enabled significant functional convergence to be detected between genes implicated in monogenic or syndromic diabetes and genes lying within genomic regions associated with T2D common risk. We extended these analyses to a recent multiethnic T2D case-control exome of 12,940 individuals that found no evidence of T2D risk association for rare frequency variants outside of previously known T2D risk loci. Examining associations involving protein-truncating variants (PTV), most at low population frequencies, the T2D-PLN was able to identify a convergent set of biological pathways that were perturbed within four of five independent T2D case/control ethnic sets of 2000 to 5000 exomes each. These same pathways were found to be over-represented among both known monogenic or syndromic diabetes genes and genes within T2D-associated common risk loci. Our study demonstrates convergent biology amongst variants representing different classes of T2D genetic risk. Although convergence was observed at the pathway level, few of the contributing genes were found in common between different cohorts or variant classes, most notably between the exome variant sets which suggests that future rare variant studies may be better focusing their power onto a single population of recent common ancestry
    corecore