81 research outputs found

    Progress in multiloop calculations

    Get PDF
    I briefly summarize the talks on calculation of multiloop Feynman diagrams presented at ACAT'2002 (Moscow University).Comment: Section summary talk at ACAT'2002 (Moscow

    HQET chromomagnetic interaction at two loops

    Full text link
    We present the coefficient of the chromomagnetic interaction operator, the only unknown coefficient in the Heavy Quark Effective Theory (HQET) lagrangian up to the 1/m1/m level, with the two-loop accuracy by matching scattering amplitudes of an on-shell heavy quark in an external field in full QCD and HQET, and obtain the two-loop anomalous dimension of this operator in HQET.Comment: 10 pages, LaTeX2e, 2 eps figures included. Revised discussion of (n_f-1)-flavour HQET include

    Three-Loop Chromomagnetic Interaction in HQET

    Full text link
    We compute the three-loop QCD corrections to the quark chromomagnetic moment and thus obtain the matching coefficient and the anomalous dimension of the chromomagnetic interaction in HQET. As a byproduct we obtain the three-loop corrections to the quark anomalous magnetic moment.Comment: 22 page

    First hint of non-standard CP violation from B --> Phi K_S decay

    Full text link
    We comment on the implications of the recently measured CP asymmetry in B --> Phi K_S decay. The data disfavor the Standard Model at 2.7 sigma and -if the trend persists in the future with higher statistics - require the existence of CP violation beyond that in the CKM matrix. In particular, the b --> s bar{s} s decay amplitude would require new contributions of comparable size to the Standard Model ones with an order one phase. While not every model can deliver such a large amount of CP and flavor violation, those with substantial FCNC couplings to the Z can reproduce the experimental findings.Comment: references added and minor text changes; conclusions unchanged; PRD version; 5 pages, 2 figures, uses espcrc2.st

    BϕπB\to \phi \pi and B0ϕϕB^0 \to \phi\phi in the Standard Model and new bounds on R parity violation

    Full text link
    We study the pure penguin decays BϕπB \to \phi\pi and B0ϕϕB^0 \to \phi\phi. Using QCD factorization, we find B(B±ϕπ±)=2.00.1+0.3×108{\cal B}(B^\pm \to\phi\pi^{\pm} )=2.0^{+0.3}_{-0.1}\times 10^{-8}. For the pure penguin annihilation process B0ϕϕB^0 \to \phi\phi, analyzed here for the first time, B(B0ϕϕ)=2.10.3+1.6×109{\cal B}(B^0 \to\phi\phi)=2.1^{+1.6}_{-0.3}\times 10^{-9}. The smallness of these decays in the Standard Model makes them sensitive probes for new physics. From the upper limit of BϕπB\to \phi\pi,we find constraints on R parity violating couplings, λi23λi21<6×105| \lambda{''}_{i23}\lambda{''}_{i21}|<6\times10^{-5}, λi23λi21<4×104| \lambda'_{i23}\lambda'_{i21}|<4\times10^{-4} and λi32λi12<4×104| \lambda'_{i32}\lambda'_{i12}|<4\times10^{-4} for i=1,2,3i=1,2,3. Our new bounds on λi23λi21|\lambda{''}_{i23}\lambda{''}_{i21}| are one order of magnitude stronger than before. Within the available upper bounds for λi23λi21| \lambda{''}_{i23}\lambda{''}_{i21}|, λi23λi21|\lambda'_{i23}\lambda'_{i21}| and λi32λi12|\lambda'_{i32}\lambda'_{i12}|, we find that B(Bϕϕ){\cal B}(B\to\phi\phi) could be enhanced to 10810710^{-8}\sim 10^{-7}. Experimental searches for these decays are strongly urged.Comment: 5 pages, 3 figures embede

    B --> Phi K_S and Supersymmetry

    Full text link
    The rare decay B --> Phi K_S is a well-known probe of physics beyond the Standard Model because it arises only through loop effects yet has the same time-dependent CP asymmetry as B --> Psi K_S. Motivated by recent data suggesting new physics in B --> Phi K_S, we look to supersymmetry for possible explanations, including contributions mediated by gluino loops and by Higgs bosons. Chirality-preserving LL and RR gluino contributions are generically small, unless gluinos and squarks masses are close to the current lower bounds. Higgs contributions are also too small to explain a large asymmetry if we impose the current upper limit on B(B_s --> mu mu). On the other hand, chirality-flipping LR and RL gluino contributions can provide sizable effects and while remaining consistent with related results in B --> Psi K_S, Delta M_s, B --> X_s gamma and other processes. We discuss how the LR and RL insertions can be distinguished using other observables, and we provide a string-based model and other estimates to show that the needed sizes of mass insertions are reasonable.Comment: 33 pages, 32 figures, Updated version for PRD. Includes discussions of other recent works on this topic. Added discussions & plots for gluino mass dependence and effects of theoretical uncertaintie

    Alterations to nuclear architecture and genome behavior in senescent cells.

    Get PDF
    The organization of the genome within interphase nuclei, and how it interacts with nuclear structures is important for the regulation of nuclear functions. Many of the studies researching the importance of genome organization and nuclear structure are performed in young, proliferating, and often transformed cells. These studies do not reveal anything about the nucleus or genome in nonproliferating cells, which may be relevant for the regulation of both proliferation and replicative senescence. Here, we provide an overview of what is known about the genome and nuclear structure in senescent cells. We review the evidence that nuclear structures, such as the nuclear lamina, nucleoli, the nuclear matrix, nuclear bodies (such as promyelocytic leukemia bodies), and nuclear morphology all become altered within growth-arrested or senescent cells. Specific alterations to the genome in senescent cells, as compared to young proliferating cells, are described, including aneuploidy, chromatin modifications, chromosome positioning, relocation of heterochromatin, and changes to telomeres

    Exploring flavor structure of supersymmetry breaking from rare B decays and unitarity triangle

    Full text link
    We study effects of supersymmetric particles in various rare B decay processes as well as in the unitarity triangle analysis. We consider three different supersymmetric models, the minimal supergravity, SU(5) SUSY GUT with right-handed neutrinos, and the minimal supersymmetric standard model with U(2) flavor symmetry. In the SU(5) SUSY GUT with right-handed neutrinos, we consider two cases of the mass matrix of the right-handed neutrinos. We calculate direct and mixing-induced CP asymmetries in the b to s gamma decay and CP asymmetry in B_d to phi K_S as well as the B_s--anti-B_s mixing amplitude for the unitarity triangle analysis in these models. We show that large deviations are possible for the SU(5) SUSY GUT and the U(2) model. The pattern and correlations of deviations from the standard model will be useful to discriminate the different SUSY models in future B experiments.Comment: revtex4, 36 pages, 10 figure

    B decays and models for CP violation

    Get PDF
    The decay modes BB to ππ\pi\pi, ψKS\psi K_S, KDK^- D, πK\pi K and ηK\eta K are promising channels to study the unitarity triangle of the CP violating CKM matrix. In this paper I study the consequences of these measurements in the Weinberg model. I show that using the same set of measurements, the following different mechanisms for CP violation can be distinguished: 1) CP is violated in the CKM sector only; 2) CP is violated spontaneously in the Higgs sector only; And 3) CP is violated in both the CKM and Higgs sectors.Comment: 18 pagers, Revtex, Four compressed figures. Some typos in the figure captions are correcte

    ATP synthase: from single molecule to human bioenergetics

    Get PDF
    ATP synthase (FoF1) consists of an ATP-driven motor (F1) and a H+-driven motor (Fo), which rotate in opposite directions. FoF1 reconstituted into a lipid membrane is capable of ATP synthesis driven by H+ flux. As the basic structures of F1 (α3β3γδε) and Fo (ab2c10) are ubiquitous, stable thermophilic FoF1 (TFoF1) has been used to elucidate molecular mechanisms, while human F1Fo (HF1Fo) has been used to study biomedical significance. Among F1s, only thermophilic F1 (TF1) can be analyzed simultaneously by reconstitution, crystallography, mutagenesis and nanotechnology for torque-driven ATP synthesis using elastic coupling mechanisms. In contrast to the single operon of TFoF1, HFoF1 is encoded by both nuclear DNA with introns and mitochondrial DNA. The regulatory mechanism, tissue specificity and physiopathology of HFoF1 were elucidated by proteomics, RNA interference, cytoplasts and transgenic mice. The ATP synthesized daily by HFoF1 is in the order of tens of kilograms, and is primarily controlled by the brain in response to fluctuations in activity
    corecore