640 research outputs found

    Diffusion and magnetotransport in ferrofluids containing chain-shaped aggregates

    Full text link
    The effect of chain structures on particle diffusion in nanodisperse ferrofluids subjected to external magnetic fields is studied. It is shown that the chain formation imparts very strong anisotropy to the diffusion properties of ferrofluids: the diffusion coefficient along a field appears to be approximately two orders of magnitude higher than that in the transverse direction. The presence of the chains changes the particle magnetophoresis coefficient significantly. © 2013 Pleiades Publishing, Ltd

    Non-equilibrium statistical mechanics of classical nuclei interacting with the quantum electron gas

    Full text link
    Kinetic equations governing time evolution of positions and momenta of atoms in extended systems are derived using quantum-classical ensembles within the Non-Equilibrium Statistical Operator Method (NESOM). Ions are treated classically, while their electrons quantum mechanically; however, the statistical operator is not factorised in any way and no simplifying assumptions are made concerning the electronic subsystem. Using this method, we derive kinetic equations of motion for the classical degrees of freedom (atoms) which account fully for the interaction and energy exchange with the quantum variables (electrons). Our equations, alongside the usual Newtonian-like terms normally associated with the Ehrenfest dynamics, contain additional terms, proportional to the atoms velocities, which can be associated with the electronic friction. Possible ways of calculating the friction forces which are shown to be given via complicated non-equilibrium correlation functions, are discussed. In particular, we demonstrate that the correlation functions are directly related to the thermodynamic Matsubara Green's functions, and this relationship allows for the diagrammatic methods to be used in treating electron-electron interaction perturbatively when calculating the correlation functions. This work also generalises previous attempts, mostly based on model systems, of introducing the electronic friction into Molecular Dynamics equations of atoms.Comment: 18 page

    Magnetorheological properties of ferrofluids containing clustered particles

    Full text link
    A theoretical model is proposed to describe experimental data on the magnetorheological properties of magnetic fluids containing clustered particles consisting of single-domain ferromagnetic nanoparticles distributed in a polymeric shell 80-100 nm in diameter. These fluids combine the sedimentation stability typical of nanodisperse ferrofluids with the high sensitivity of rheological parameters to magnetic fields. The developed model explains the experimentally found long-term rheological relaxation and residual stress that is retained after the medium ceases to flow. © 2013 Pleiades Publishing, Ltd

    On the theory of structuring magnetic suspensions

    Full text link
    The results of the three-dimensional computer and analytical simulation are presented for the kinetics of chain-shaped aggregate growth in suspensions of magnetizable non-Brownian particles. The results of the computer experiment show that, when the volume fraction of particles is no larger than 2-3%, chain-shaped aggregates are formed in the suspensions under the action of a field. The dependence of average number <n> of particles in a chain on time t is adequately described by the power law <n> = Ct k . The experiment indicates that, in contract to the common power approximations, in which exponent k is considered to be a universal constant parameter, it depends on the concentration of particles and their interactions with walls bounding a suspension. At concentrations noticeably exceeding 2-3%, dense bulk aggregates are formed in suspensions. The kinetics of their growth depends on the sizes of a suspension-containing vessel. © 2013 Pleiades Publishing, Ltd

    Patterns in soft and biological matters

    Full text link
    The issue is devoted to theoretical, computer and experimental studies of internal heterogeneous patterns, their morphology and evolution in various soft physical systems-organic and inorganic materials (e.g. alloys, polymers, cell cultures, biological tissues as well as metastable and composite materials). The importance of these studies is determined by the significant role of internal structures on the macroscopic properties and behaviour of natural and manufactured tissues and materials. Modern methods of computer modelling, statistical physics, heat and mass transfer, statistical hydrodynamics, nonlinear dynamics and experimental methods are presented and discussed. Non-equilibrium patterns which appear during macroscopic transport and hydrodynamic flow, chemical reactions, external physical fields (magnetic, electrical, thermal and hydrodynamic) and the impact of external noise on pattern evolution are the foci of this issue. Special attention is paid to pattern formation in biological systems (such as drug transport, hydrodynamic patterns in blood and pattern dynamics in protein and insulin crystals) and to the development of a scientific background for progressive methods of cancer and insult therapy (magnetic hyperthermia for cancer therapy; magnetically induced drug delivery in thrombosed blood vessels). The present issue includes works on pattern growth and their evolution in systems with complex internal structures, including stochastic dynamics, and the influence of internal structures on the external static, dynamic magnetic and mechanical properties of these systems. © 2020 The Author(s) Published by the Royal Society. All rights reserved.Russian Science Foundation, RSF: 18-19-00008Data accessibility. This article has no additional data. Authors’ contributions. All authors contributed equally to the present paper. Competing interests. The authors declare that they have no competing interests. Funding. This work was supported by the Russian Science Foundation (project no. 18-19-00008)

    Local orientational order in the Stockmayer liquid

    Full text link
    Phase behaviour of the Stockmayer fluid is studied with a method similar to the Monte-Carlo annealing scheme. We introduce a novel order parameter which is sensitive to the local co-orientation of the dipoles of particles in the fluid. We exhibit a phase diagram based on the behaviour of the order parameter in the density region 0.1 \leq {\rho}\ast \leq 0.32. Specifically, we observe and analyse a second order locally disordered fluid \rightarrow locally oriented fluid phase transition.Comment: 13 pages, 7 figure

    Effect of internal chain-like structures on magnetic hyperthermia in non-liquid media

    Full text link
    This paper deals with a theoretical study of the effect of chain-like aggregates on magnetic hyperthermia in systems of single-domain ferromagnetic particles immobilized in a non-magnetic medium. We assume that the particles form linear chain-like aggregates and the characteristic time of the Néel remagnetization is much longer than the time of medium heating (time of process observation). This is applicable to magnetite particles when the particle diameter exceeds 20- 25 nm. Our results show that the appearance of the chains significantly decreases the intensity of heat production. This article is part of the theme issue 'Heterogeneous materials: Metastable and non-ergodic internal structures'. ©2019 The Author(s)Published by the Royal Society

    Anomalous Hall effect for the phonon heat conductivity in paramagnetic dielectric

    Full text link
    The theory of anomalous Hall effect for the heat transfer in a paramagnetic dielectric, discovered experimentally in [1], is developed. The appearance of the phonon heat flux normal to both the temperature gradient and the magnetic field is connected with the interaction of magnetic ions with the crystal field oscillations. In crystals with an arbitrary phonon spectrum this interaction creates the elliptical polarization of phonons. The kinetics related to phonon scattering induced by the spin-phonon interaction determines an origin of the off-diagonal phonon density matrix. The combination of the both factors is decisive for the phenomenon under consideration.Comment: 5 pages; typos and abstract correcte

    Growth and crystallization of molybdenum layers on amorphous silicon

    Get PDF
    The structure of molybdenum layers deposited by direct current magnetron sputtering onto the amorphous silicon (a-Si) layers as function of nominal layer thickness was studied by methods of transmission electron microscopy. Molybdenum layers with nominal thickness 1.5btMo nomb1.9 nm consist of clusters which should be considered as a transient state between strongly disordered (amorphous) state and crystal one. A transition from clusters to polycrystals takes place within the thickness range of 1.9btMo nomb2.5 nm. Resulting Mo crystallites have an inequiaxial form with dimensions of (3–4)×(15–30)nm2 and consist of blocks. The lateral axis of inequiaxial crystallites is parallel to 110 direction. As the metal layer thickness increases Mocrystallites take the more regular form at the expense of recrystallization
    corecore