2,263 research outputs found
Dynamical gluon mass corrections in heavy quarkonia decays
Using the expression of the dynamical gluon mass obtained through the
operator product expansion we discuss the relevance of gluon mass effects in
the decays V -> hadrons (V = J/Psi, Upsilon). Relativistic and radiative
corrections are also introduced to calculate alpha_s(m_c) and alpha_s(m_b)
comparing them with other values available in the literature. The effects of
dynamical gluon masses are negligible for Upsilon decay but important for J/Psi
decay.Comment: 10 page
Numerical Study of the Ghost-Ghost-Gluon Vertex on the Lattice
It is well known that, in Landau gauge, the renormalization function of the
ghost-ghost-gluon vertex \widetilde{Z}_1(p^2) is finite and constant, at least
to all orders of perturbation theory. On the other hand, a direct
non-perturbative verification of this result using numerical simulations of
lattice QCD is still missing. Here we present a preliminary numerical study of
the ghost-ghost-gluon vertex and of its corresponding renormalization function
using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained
in 4 dimensions for lattice couplings beta = 2.2, 2.3, 2.4 and lattice sides N
= 4, 8, 16.Comment: 3 pages, 1 figure, presented by A. Mihara at the IX Hadron Physics
and VII Relativistic Aspects of Nuclear Physics Workshops, Angra dos Reis,
Rio de Janeiro, Brazil (March 28--April 3, 2004
Phenomenological tests for the freezing of the QCD running coupling constant
We discuss phenomenological tests for the frozen infrared behavior of the
running coupling constant and gluon propagators found in some solutions of
Schwinger-Dyson equations of the gluonic sector of QCD. We verify that several
observables can be used in order to select the different expressions of alpha_s
found in the literature. We test the effect of the nonperturbative coupling in
the tau-lepton decay rate into nonstrange hadrons, in the rho vector meson
helicity density matrix that are produced in the chi_{c2} --> rho rho decay, in
the photon to pion transition form factor, and compute the cross sections for
elastic proton-proton scattering and exclusive rho production in deep inelastic
scattering. These quantities depend on the infrared behavior of the coupling
constant at different levels, we discuss the reasons for this dependence and
argue that the existent and future data can be used to test the approximations
performed to solve the Schwinger-Dyson equations and they already seems to
select one specific infrared behavior of the coupling.Comment: 15 pages, 8 figure
Completing the puzzle of the 2004-2005 outburst in V0332+53: the brightening phase included
Analysis of the data obtained with the RXTE observatory during a powerful
outburst of the X-ray pulsar V0332+53 in 2004-2005 is presented. Observational
data covering the outburst brightening phase are analysed in detail for the
first time. A comparison of source parameters and their evolution during the
brightening and fading phases shows no evidence for any hysteresis behaviour.
It is found that the dependences of the energy of the cyclotron absorption line
on the luminosity during the brightening and fading phases are almost
identical. The complete data sequence including the outburst brightening and
fading phases makes it possible to impose the more stringent constraints on the
magnetic field in the source. The pulse profile and pulsed fraction are studied
as functions of the luminosity and photon energy.Comment: 9 pages, 10 figures, accepted for publication in MNRA
Quantitative Estimates of Environmental Effects on the Star Formation Rate of Disk Galaxies in Clusters of Galaxies
A simple model is constructed to evaluate the change of star formation rate
of a disk galaxy due to environmental effects in clusters of galaxies. Three
effects, (1) tidal force from the potential well of the cluster, (2) increase
of external pressure when the galaxy plows into the intracluster medium, (3)
high-speed encounters between galaxies, are investigated. General analysis
indicates that the star formation rate increases significantly when the
pressure of molecular clouds rises above in yr. The tidal force from the potential well of the cluster increases
pressures of molecular clouds in a disk galaxy infalling towards the cluster
center. Before the galaxy reaches the cluster center, the star formation rate
reaches a maximum. The peak is three to four times larger than the initial
value. If this is the main mechanism of the Butcher-Oemler effect, blue
galaxies are expected to be located within kpc from the center of
the cluster. However this prediction is inconsistent with the recent
observations. The increase of external pressure when the galaxy plows into the
intracluster medium does not change star formation rate of a disk galaxy
significantly. The velocity perturbation induced by a single high-speed
encounter between galaxies is too small to affect star formation rate of a disk
galaxy, while successive high-speed encounters (galaxy harassment) trigger star
formation activity because of the accumulation of gas in the galaxy center.
Therefore, the galaxy harassment remains as the candidate for a mechanism of
the Butcher-Oemler effect.Comment: 12 pages, 13 figures. To be published in Ap
Warm absorber, reflection and Fe K line in the X-ray spectrum of IC 4329A
Results from the X-ray spectral analysis of the ASCA PV phase observation of
the Seyfert 1 galaxy IC 4329A are presented. We find that the 0.4 - 10 keV
spectrum of IC 4329A is best described by the sum of a steep () power-law spectrum passing through a warm absorber plus a strong
reflection component and associated Fe K line, confirming recent results
(Madejski et al. 1995, Mushotsky et al. 1995). Further cold absorption in
excess of the Galactic value and covering the entire source is also required by
the data, consistent with the edge-on galactic disk and previous X-ray
measurements. The effect of the warm absorber at soft X-ray energies is best
parameterized by two absorption edges, one consistent with OVI, OVII or NVII,
the other consistent with OVIII. A description of the soft excess in terms of
blackbody emission, as observed in some other Seyfert 1 galaxies, is ruled out
by the data. A large amount of reflection is detected in both the GIS and SIS
detectors, at similar intensities. We find a strong correlation between the
amount of reflection and the photon index, but argue that the best solution
with the present data is that given by the best statistical fit. The model
dependence of the Fe K line parameters is also discussed. Our best fit gives a
slightly broad ( keV) and redshifted (E keV) Fe K line, with equivalent width 89 33 eV.
The presence of a weak Fe K line with a strong reflection can be reconciled if
one assumes iron underabundances or ionized reflection. We also have modeled
the line with a theoretical line profile produced by an accretion disk. This
yields results in better agreement with the constraints obtained from the
reflection component.Comment: Accepted for publication in The Astrophysical Journal, 10th February
1996 issue; 24 pages and 8 figures + 1 table tared, compressed and uuencoded
(with uufiles
Probing the stellar wind environment of Vela X-1 with MAXI
Vela X-1 is among the best studied and most luminous accreting X-ray pulsars.
The supergiant optical companion produces a strong radiatively-driven stellar
wind, which is accreted onto the neutron star producing highly variable X-ray
emission. A complex phenomenology, due to both gravitational and radiative
effects, needs to be taken into account in order to reproduce orbital spectral
variations. We have investigated the spectral and light curve properties of the
X-ray emission from Vela X-1 along the binary orbit. These studies allow to
constrain the stellar wind properties and its perturbations induced by the
compact object. We took advantage of the All Sky Monitor MAXI/GSC data to
analyze Vela X-1 spectra and light curves. By studying the orbital profiles in
the and keV energy bands, we extracted a sample of orbital light
curves (% of the total) showing a dip around the inferior
conjunction, i.e., a double-peaked shape. We analyzed orbital phase-averaged
and phase-resolved spectra of both the double-peaked and the standard sample.
The dip in the double-peaked sample needs cm to
be explained by absorption solely, which is not observed in our analysis. We
show how Thomson scattering from an extended and ionized accretion wake can
contribute to the observed dip. Fitted by a cutoff power-law model, the two
analyzed samples show orbital modulation of the photon index, hardening by
around the inferior conjunction, compared to earlier and later
phases, hinting a likely inadequacy of this model. On the contrary, including a
partial covering component at certain orbital phase bins allows a constant
photon index along the orbital phases, indicating a highly inhomogeneous
environment. We discuss our results in the framework of possible scenarios.Comment: 10 pages, 9 figures, accepted for publication in A&
Footprints in the wind of Vela X-1 traced with MAXI
The stellar wind around the compact object in luminous wind-accreting high
mass X-ray binaries is expected to be strongly ionized with the X-rays coming
from the compact object. The stellar wind of hot stars is mostly driven by
light absorption in lines of heavier elements, and X-ray photo-ionization
significantly reduces the radiative force within the so-called Stroemgren
region leading to wind stagnation around the compact object. In close binaries
like Vela X-1 this effect might alter the wind structure throughout the system.
Using the spectral data from Monitor of All-sky X-ray Image (MAXI), we study
the observed dependence of the photoelectric absorption as function of orbital
phase in Vela X-1, and find that it is inconsistent with expectations for a
spherically-symmetric smooth wind. Taking into account previous investigations
we develop a simple model for wind structure with a stream-like photoionization
wake region of slower and denser wind trailing the neutron star responsible for
the observed absorption curve.Comment: 5 pages, 3 figures, accepted in A&
The Variation of Gas Mass Distribution in Galaxy Clusters: Effects of Preheating and Shocks
We investigate the origin of the variation of the gas mass fraction in the
core of galaxy clusters, which was indicated by our work on the X-ray
fundamental plane. The adopted model supposes that the gas distribution
characterized by the slope parameter is related to the preheated temperature.
Comparison with observations of relatively hot (~> 3 keV) and low redshift
clusters suggests that the preheated temperature is about 0.5-2 keV, which is
higher than expected from the conventional galactic wind model and possibly
suggests the need for additional heating such as quasars or gravitational
heating on the largest scales at high redshift. The dispersion of the preheated
temperature may be attributed to the gravitational heating in subclusters. We
calculate the central gas fraction of a cluster from the gas distribution,
assuming that the global gas mass fraction is constant within a virial radius
at the time of the cluster collapse. We find that the central gas density thus
calculated is in good agreement with the observed one, which suggests that the
variation of gas mass fraction in cluster cores appears to be explained by
breaking the self-similarity in clusters due to preheated gas. We also find
that this model does not change major conclusions on the fundamental plane and
its cosmological implications obtained in previous papers, which strongly
suggests that not only for the dark halo but also for the intracluster gas the
core structure preserves information about the cluster formation.Comment: 17 pages, to be published in Ap
- âŠ