162 research outputs found
Hanbury Brown-Twiss interferometry and second-order correlations of inflaton quanta
The quantum theory of optical coherence is applied to the scrutiny of the
statistical properties of the relic inflaton quanta. After adapting the
description of the quantized scalar and tensor modes of the geometry to the
analysis of intensity correlations, the normalized degrees of first-order and
second-order coherence are computed in the concordance paradigm and are shown
to encode faithfully the statistical properties of the initial quantum state.
The strongly bunched curvature phonons are not only super-Poissonian but also
super-chaotic. Testable inequalities are derived in the limit of large angular
scales and can be physically interpreted in the light of the tenets of Hanbury
Brown-Twiss interferometry. The quantum mechanical results are compared and
contrasted with different situations including the one where intensity
correlations are the result of a classical stochastic process. The survival of
second-order correlations (not necessarily related to the purity of the initial
quantum state) is addressed by defining a generalized ensemble where
super-Poissonian statistics is an intrinsic property of the density matrix and
turns out to be associated with finite volume effects which are expected to
vanish in the thermodynamic limit.Comment: 42 pages, 3 included figures; corrected typos; to appear in Physical
Review
Cosmological Constraints on Dissipative Models of Inflation
(Abridged) We study dissipative inflation in the regime where the dissipative
term takes a specific form, \Gamma=\Gamma(\phi), analyzing two models in the
weak and strong dissipative regimes with a SUSY breaking potential. After
developing intuition about the predictions from these models through analytic
approximations, we compute the predicted cosmological observables through full
numerical evolution of the equations of motion, relating the mass scale and
scale of dissipation to the characteristic amplitude and shape of the
primordial power spectrum. We then use Markov Chain Monte Carlo techniques to
constrain a subset of the models with cosmological data from the cosmic
microwave background (WMAP three-year data) and large scale structure (SDSS
Luminous Red Galaxy power spectrum). We find that the posterior distributions
of the dissipative parameters are highly non-Gaussian and their allowed ranges
agree well with the expectations obtained using analytic approximations. In the
weak regime, only the mass scale is tightly constrained; conversely, in the
strong regime, only the dissipative coefficient is tightly constrained. A lower
limit is seen on the inflation scale: a sub-Planckian inflaton is disfavoured
by the data. In both weak and strong regimes, we reconstruct the limits on the
primordial power spectrum and show that these models prefer a {\it red}
spectrum, with no significant running of the index. We calculate the reheat
temperature and show that the gravitino problem can be overcome with large
dissipation, which in turn leads to large levels of non-Gaussianity: if
dissipative inflation is to evade the gravitino problem, the predicted level of
non-Gaussianity might be seen by the Planck satellite.Comment: 14 pages, 9 figures, Accepted by JCAP without text changes,
References adde
Review of scientific topics for Millimetron space observatory
This paper describes outstanding issues in astrophysics and cosmology that
can be solved by astronomical observations in a broad spectral range from far
infrared to millimeter wavelengths. The discussed problems related to the
formation of stars and planets, galaxies and the interstellar medium, studies
of black holes and the development of the cosmological model can be addressed
by the planned space observatory Millimetron (the "Spectr-M" project) equipped
with a cooled 10-m mirror. Millimetron can operate both as a single-dish
telescope and as a part of a space-ground interferometer with very long
baseline.Comment: The translation of the original article in Physics Uspekhi
http://ufn.ru/ru/articles/2014/12/c
Acoustics of early universe. I. Flat versus open universe models
A simple perturbation description unique for all signs of curvature, and
based on the gauge-invariant formalisms is proposed to demonstrate that:
(1) The density perturbations propagate in the flat radiation-dominated
universe in exactly the same way as electromagnetic or gravitational waves
propagate in the epoch of the matter domination.
(2) In the open universe, sounds are dispersed by curvature. The space
curvature defines the minimal frequency below which the
propagation of perturbations is forbidden.
Gaussian acoustic fields are considered and the curvature imprint in the
perturbations spectrum is discussed.Comment: The new version extended by 2 sections. Changes in notation. Some
important comments adde
Dynamics of spatially homogeneous solutions of the Einstein-Vlasov equations which are locally rotationally symmetric
The dynamics of a class of cosmological models with collisionless matter and
four Killing vectors is studied in detail and compared with that of
corresponding perfect fluid models. In many cases it is possible to identify
asymptotic states of the spacetimes near the singularity or in a phase of
unlimited expansion. Bianchi type II models show oscillatory behaviour near the
initial singularity which is, however, simpler than that of the mixmaster
model.Comment: 27 pages, 3 figures, LaTe
Fluid phonons and inflaton quanta at the protoinflationary transition
Quantum and thermal fluctuations of an irrotational fluid are studied across
the transition regime connecting a protoinflationary phase of decelerated
expansion to an accelerated epoch driven by a single inflaton field. The
protoinflationary inhomogeneities are suppressed when the transition to the
slow roll phase occurs sharply over space-like hypersurfaces of constant energy
density. If the transition is delayed, the interaction of the quasi-normal
modes related, asymptotically, to fluid phonons and inflaton quanta leads to an
enhancement of curvature perturbations. It is shown that the dynamics of the
fluctuations across the protoinflationary boundaries is determined by the
monotonicity properties of the pump fields controlling the energy transfer
between the background geometry and the quasi-normal modes of the fluctuations.
After corroborating the analytical arguments with explicit numerical examples,
general lessons are drawn on the classification of the protoinflationary
transition.Comment: 30 pages, 3 figure
Generalized Brans-Dicke theories
In Brans-Dicke theory a non-linear self interaction of a scalar field allows
a possibility of realizing the late-time cosmic acceleration, while recovering
the General Relativistic behavior at early cosmological epochs. We extend this
to more general modified gravitational theories in which a de Sitter solution
for dark energy exists without using a field potential. We derive a condition
for the stability of the de Sitter point and study the background cosmological
dynamics of such theories. We also restrict the allowed region of model
parameters from the demand for the avoidance of ghosts and instabilities. A
peculiar evolution of the field propagation speed allows us to distinguish
those theories from the LCDM model.Comment: 14 pages, 4 figures, version to appear in JCA
Cosmological Perturbations with Multiple Fluids and Fields
We consider the evolution of perturbed cosmological spacetime with multiple
fluids and fields in Einstein gravity. Equations are presented in gauge-ready
forms, and are presented in various forms using the curvature (\Phi or
\phi_\chi) and isocurvature (S_{(ij)} or \delta \phi_{(ij)}) perturbation
variables in the general background with K and \Lambda. We clarify the
conditions for conserved curvature and isocurvature perturbations in the
large-scale limit. Evolutions of curvature perturbations in many different
gauge conditions are analysed extensively. In the multi-field system we present
a general solution to the linear order in slow-roll parameters.Comment: 19 pages, 6 figures, revised thoroughly; published version in Class.
Quant. Gra
- …