7,055 research outputs found

    A biophysical model of prokaryotic diversity in geothermal hot springs

    Full text link
    Recent field investigations of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems, with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than the expected single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution field data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. Further, we present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed diversity of different strains of the photosynthetic bacteria. It also reproduces the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms

    Influence of Ti doping on the incommensurate charge density wave in 1T-TaS2

    Get PDF
    We report temperature-dependent transport and x-ray diffraction measurements of the influence of Ti hole doping on the charge density wave (CDW) in 1T-Ta(1-x)Ti(x)S(2). Confirming past studies, we find that even trace impurities eliminate the low-temperature commensurate (C) phase in this system. Surprisingly, the magnitude of the in-plane component of the CDW wave vector in the nearly commensurate (NC) phase does not change significantly with Ti concentration, as might be expected from a changing Fermi surface volume. Instead, the angle of the CDW in the basal plane rotates, from 11.9 deg at x=0 to 16.4 deg at x=0.12. Ti substitution also leads to an extended region of coexistence between incommensurate (IC) and NC phases, indicating heterogeneous nucleation near the transition. Finally, we explain a resistive anomaly originally observed by DiSalvo [F. J. DiSalvo, et al., Phys. Rev. B {\bf 12}, 2220 (1975)] as arising from pinning of the CDW on the crystal lattice. Our study highlights the importance of commensuration effects in the NC phase, particularly at x ~ 0.08

    Parton Distributions Working Group

    Get PDF
    The main focus of this working group was to investigate the different issues associated with the development of quantitative tools to estimate parton distribution functions uncertainties. In the conclusion, we introduce a "Manifesto" that describes an optimal method for reporting data.Comment: Report of the Parton Distributions Working Group of the 'QCD and Weak Boson Physics workshop in preparation for Run II at the Fermilab Tevatron'. Co-Conveners: L. de Barbaro, S.A. Keller, S. Kuhlmann, H. Schellman, and W.-K. Tun

    Field Theory And Second Renormalization Group For Multifractals In Percolation

    Full text link
    The field-theory for multifractals in percolation is reformulated in such a way that multifractal exponents clearly appear as eigenvalues of a second renormalization group. The first renormalization group describes geometrical properties of percolation clusters, while the second-one describes electrical properties, including noise cumulants. In this context, multifractal exponents are associated with symmetry-breaking fields in replica space. This provides an explanation for their observability. It is suggested that multifractal exponents are ''dominant'' instead of ''relevant'' since there exists an arbitrary scale factor which can change their sign from positive to negative without changing the Physics of the problem.Comment: RevTex, 10 page

    Impact-parameter dependent nuclear parton distribution functions: EPS09s and EKS98s and their applications in nuclear hard processes

    Get PDF
    We determine the spatial (impact parameter) dependence of nuclear parton distribution functions (nPDFs) using the AA-dependence of the spatially independent (averaged) global fits EPS09 and EKS98. We work under the assumption that the spatial dependence can be formulated as a power series of the nuclear thickness functions TAT_A. To reproduce the AA-dependence over the entire xx range we need terms up to [TA]4[T_A]^4. As an outcome, we release two sets, EPS09s (LO, NLO, error sets) and EKS98s, of spatially dependent nPDFs for public use. We also discuss the implementation of these into the existing calculations. With our results, the centrality dependence of nuclear hard-process observables can be studied consistently with the globally fitted nPDFs for the first time. As an application, we first calculate the LO nuclear modification factor RAA1jetR^{1jet}_{AA} for primary partonic-jet production in different centrality classes in Au+Au collisions at RHIC and Pb+Pb collisions at LHC. Also the corresponding central-to-peripheral ratios RCP1jetR_{CP}^{1jet} are studied. We also calculate the LO and NLO nuclear modification factors for single inclusive neutral pion production, RdAuπ0R_{dAu}^{\pi^0}, at mid- and forward rapidities in different centrality classes in d+Au collisions at RHIC. In particular, we show that our results are compatible with the PHENIX mid-rapidity data within the overall normalization uncertainties given by the experiment. Finally, we show our predictions for the corresponding modifications RpPbπ0R_{pPb}^{\pi^0} in the forthcoming p+Pb collisions at LHC.Comment: 36 page

    Evidence for Parton kT Effects in High pT Particle Production

    Full text link
    Inclusive pizero and direct-photon cross sections in the kinematic range 3.5 < pT < 12 GeV/c with central rapidities are presented for 530 and 800 GeV/c proton beams and a 515 GeV/c pi- beam incident on beryllium targets. Current Next-to-Leading-Order perturbative QCD calculations fail to adequately describe the data for conventional choices of scales. Kinematic distributions from these hard scattering events provide evidence that the interacting partons carry significant initial-state parton transverse momentum (kT). Incorporating these kT effects phenomenologically greatly improves the agreement between calculations and the measured cross sections.Comment: 11 pages including 6 pages of figures with caption

    Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)

    Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada

    Get PDF
    The NOAA WP-3 aircraft intercepted aged forest fire plumes from Alaska and western Canada during several flights of the NEAQS-ITCT 2k4 mission in 2004. Measurements of acetonitrile (CH3CN) indicated that the air masses had been influenced by biomass burning. The locations of the plume intercepts were well described using emissions estimates and calculations with the transport model FLEXPART. The best description of the data was generally obtained when FLEXPART injected the forest fire emissions to high altitudes in the model. The observed plumes were generally drier than the surrounding air masses at the same altitude, suggesting that the fire plumes had been processed by clouds and that moisture had been removed by precipitation. Different degrees of photochemical processing of the plumes were determined from the measurements of aromatic VOCs. The removal of aromatic VOCs was slow considering the transport times estimated from the FLEXPART model. This suggests that the average OH levels were low during the transport, which may be explained by the low humidity and high concentrations of carbon monoxide and other pollutants. In contrast with previous work, no strong secondary production of acetone, methanol and acetic acid is inferred from the measurements. A clear case of removal of submicron particle volume and acetic acid due to precipitation scavenging was observed. Copyright 2006 by the American Geophysical Union
    corecore