194 research outputs found

    Drosophila Cajal bodies: accessories not included

    Get PDF
    Cajal bodies are nuclear sites of small ribonucleoprotein (RNP) remodeling and maturation. A recent study describes the discovery of the Drosophila Cajal body, revealing some interesting insights into the subnuclear organization of RNA processing machineries among different species

    UV-induced fragmentation of Cajal bodies

    Get PDF
    The morphology and composition of subnuclear organelles, such as Cajal bodies (CBs), nucleoli, and other nuclear bodies, is dynamic and can change in response to a variety of cell stimuli, including stress. We show that UV-C irradiation disrupts CBs and alters the distribution of a specific subset of CB components. The effect of UV-C on CBs differs from previously reported effects of transcription inhibitors. We demonstrate that the mechanism underlying the response of CBs to UV-C is mediated, at least in part, by PA28γ (proteasome activator subunit γ). The presence of PA28γ in coilin-containing complexes is increased by UV-C. Overexpression of PA28γ, in the absence of UV-C treatment, provokes a similar redistribution of the same subset of CB components that respond to UV-C. RNA interference–mediated knockdown of PA28γ attenuates the nuclear disruption caused by UV-C. These data demonstrate that CBs are specific nuclear targets of cellular stress-response pathways and identify PA28γ as a novel regulator of CB integrity

    RNA-mediated interaction of Cajal bodies and U2 snRNA genes

    Get PDF
    Cajal bodies (CBs) are nuclear structures involved in RNA metabolism that accumulate high concentrations of small nuclear ribonucleoproteins (snRNPs). Notably, CBs preferentially associate with specific genomic loci in interphase human cells, including several snRNA and histone gene clusters. To uncover functional elements involved in the interaction of genes and CBs, we analyzed the expression and subcellular localization of stably transfected artificial arrays of U2 snRNA genes. Although promoter substitution arrays colocalized with CBs, constructs containing intragenic deletions did not. Additional experiments identified factors within CBs that are important for association with the native U2 genes. Inhibition of nuclear export or targeted degradation of U2 snRNPs caused a marked decrease in the levels of U2 snRNA in CBs and strongly disrupted the interaction with U2 genes. Together, the results illustrate a specific requirement for both the snRNA transcripts as well as the presence of snRNPs (or snRNP proteins) within CBs. Our data thus provide significant insight into the mechanism of CB interaction with snRNA loci, strengthening the putative role for this nuclear suborganelle in snRNP biogenesis

    SMN - A chaperone for nuclear RNP social occasions?

    Get PDF
    Survival Motor Neuron (SMN) protein localizes to both the nucleus and the cytoplasm. Cytoplasmic SMN is diffusely localized in large oligomeric complexes with core member proteins, called Gemins. Biochemical and cell biological studies have demonstrated that the SMN complex is required for the cytoplasmic assembly and nuclear transport of Sm-class ribonucleoproteins (RNPs). Nuclear SMN accumulates with spliceosomal small nuclear (sn)RNPs in Cajal bodies, sub-domains involved in multiple facets of snRNP maturation. Thus, the SMN complex forms stable associations with both nuclear and cytoplasmic snRNPs, and plays a critical role in their biogenesis. In this review, we focus on potential functions of the nuclear SMN complex, with particular emphasis on its role within the Cajal body

    Developmental Analysis of Spliceosomal snRNA Isoform Expression

    Get PDF
    Pre-mRNA splicing is a critical step in eukaryotic gene expression that contributes to proteomic, cellular, and developmental complexity. Small nuclear (sn)RNAs are core spliceosomal components; however, the extent to which differential expression of snRNA isoforms regulates splicing is completely unknown. This is partly due to difficulties in the accurate analysis of the spatial and temporal expression patterns of snRNAs. Here, we use high-throughput RNA-sequencing (RNA-seq) data to profile expression of four major snRNAs throughout Drosophila development. This analysis shows that individual isoforms of each snRNA have distinct expression patterns in the embryo, larva, and pharate adult stages. Expression of these isoforms is more heterogeneous during embryogenesis; as development progresses, a single isoform from each snRNA subtype gradually dominates expression. Despite the lack of stable snRNA orthologous groups during evolution, this developmental switching of snRNA isoforms also occurs in distantly related vertebrate species, such as Xenopus, mouse, and human. Our results indicate that expression of snRNA isoforms is regulated and lays the foundation for functional studies of individual snRNA isoforms

    Vicinal: a method for the determination of ncRNA ends using chimeric reads from RNA-seq experiments

    Get PDF
    Non-coding (nc)RNAs are important structural and regulatory molecules. Accurate determination of the primary sequence and secondary structure of ncRNAs is important for understanding their functions. During cDNA synthesis, RNA 3′ end stem-loops can self-prime reverse transcription, creating RNA–cDNA chimeras. We found that chimeric RNA–cDNA fragments can also be detected at 5′ end stem-loops, although at much lower frequency. Using the Gubler–Hoffman method, both types of chimeric fragments can be converted to cDNA during library construction, and they are readily detectable in high-throughput RNA sequencing (RNA-seq) experiments. Here, we show that these chimeric reads contain valuable information about the boundaries of ncRNAs. We developed a bioinformatic method, called Vicinal, to precisely map the ends of numerous fruitfly, mouse and human ncRNAs. Using this method, we analyzed chimeric reads from over 100 RNA-seq datasets, the results of which we make available for users to find RNAs of interest. In summary, we show that Vicinal is a useful tool for determination of the precise boundaries of uncharacterized ncRNAs, facilitating further structure/function studies

    A day in the life of the spliceosome

    Get PDF
    One of the most amazing findings in molecular biology was the discovery that eukaryotic genes are discontinuous, interrupted by stretches of non-coding sequence. The subsequent realization that the intervening regions are removed from pre-mRNA transcripts via the activity of a common set of small nuclear RNAs (snRNAs), which assemble together with associated proteins into a spliceosome, was equally surprising. How do cells orchestrate the assembly of this molecular machine? And how does the spliceosome accurately recognize exons and introns to carry out the splicing reaction? Insights into these questions have been gained by studying the life cycle of spliceosomal snRNAs from their transcription, nuclear export and reimport, all the way through to their dynamic assembly into the spliceosome. This assembly process can also affect the regulation of alternative splicing and has implications for human disease

    Transcriptomic comparison of Drosophila snRNP biogenesis mutants reveals mutant-specific changes in pre-mRNA processing: implications for spinal muscular atrophy

    Get PDF
    Survival motor neuron (SMN) functions in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) that catalyze pre-mRNA splicing. Here, we used disruptions in Smn and two additional snRNP biogenesis genes, Phax and Ars2, to classify RNA processing differences as snRNP-dependent or gene-specific in Drosophila. Phax and Smn mutants exhibited comparable reductions in snRNAs, and comparison of their transcriptomes uncovered shared sets of RNA processing changes. In contrast, Ars2 mutants displayed only small decreases in snRNA levels, and RNA processing changes in these mutants were generally distinct from those identified in Phax and Smn animals. Instead, RNA processing changes in Ars2 mutants support the known interaction of Ars2 protein with the cap-binding complex, as splicing changes showed a clear bias toward the first intron. Bypassing disruptions in snRNP biogenesis, direct knockdown of spliceosomal proteins caused similar changes in the splicing of snRNP-dependent events. However, these snRNP-dependent events were largely unaltered in three Smn mutants expressing missense mutations that were originally identified in human spinal muscular atrophy (SMA) patients. Hence, findings here clarify the contributions of Phax, Smn, and Ars2 to snRNP biogenesis in Drosophila, and loss-of-function mutants for these proteins reveal differences that help disentangle cause and effect in SMA model flies

    Identification and characterization of Drosophila Snurportin reveals a role for the import receptor Moleskin/importin-7 in snRNP biogenesis

    Get PDF
    Previous work established Importin-β and Snurportin1 as the vertebrate snRNP import receptor and adaptor proteins, respectively. This study identifies Drosophila Snurportin and shows that it uses an alternative import receptor, Importin7/Moleskin. Moleskin is required for the stability of other snRNP biogenesis factors.Nuclear import is an essential step in small nuclear ribonucleoprotein (snRNP) biogenesis. Snurportin1 (SPN1), the import adaptor, binds to trimethylguanosine (TMG) caps on spliceosomal small nuclear RNAs. Previous studies indicated that vertebrate snRNP import requires importin-β, the transport receptor that binds directly to SPN1. We identify CG42303/snup as the Drosophila orthologue of human snurportin1 (SNUPN). Of interest, the importin-β binding (IBB) domain of SPN1, which is essential for TMG cap–mediated snRNP import in humans, is not well conserved in flies. Consistent with its lack of an IBB domain, we find that Drosophila SNUP (dSNUP) does not interact with Ketel/importin-β. Fruit fly snRNPs also fail to bind Ketel; however, the importin-7 orthologue Moleskin (Msk) physically associates with both dSNUP and spliceosomal snRNPs and localizes to nuclear Cajal bodies. Strikingly, we find that msk-null mutants are depleted of the snRNP assembly factor, survival motor neuron, and the Cajal body marker, coilin. Consistent with a loss of snRNP import function, long-lived msk larvae show an accumulation of TMG cap signal in the cytoplasm. These data indicate that Ketel/importin-β does not play a significant role in Drosophila snRNP import and demonstrate a crucial function for Msk in snRNP biogenesis

    Association of snRNA genes with coiled bodies is mediated by nascent snRNA transcripts

    Get PDF
    AbstractBackground: Coiled bodies are nuclear organelles that are highly enriched in small nuclear ribonucleoproteins (snRNPs) and certain basal transcription factors. Surprisingly, coiled bodies not only contain mature U snRNPs but also associate with specific chromosomal loci, including gene clusters that encode U snRNAs and histone messenger RNAs. The mechanism(s) by which coiled bodies associate with these genes is completely unknown.Results: Using stable cell lines, we show that artificial tandem arrays of human U1 and U2 snRNA genes colocalize with coiled bodies and that the frequency of the colocalization depends directly on the transcriptional activity of the array. Association of the genes with coiled bodies was abolished when the artificial U2 arrays contained promoter mutations that prevent transcription or when RNA polymerase II transcription was globally inhibited by α-amanitin. Remarkably, the association was also abolished when the U2 snRNA coding regions were replaced by heterologous sequences.Conclusions: The requirement for the U2 snRNA coding region indicates that association of snRNA genes with coiled bodies is mediated by the nascent U2 RNA itself, not by DNA or DNA-bound proteins. Our data provide the first evidence that association of genes with a nuclear organelle can be directed by an RNA and suggest an autogenous feedback regulation model
    • …
    corecore