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SMN - A chaperone for nuclear RNP social occasions?
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ABSTRACT
Survival Motor Neuron (SMN) protein localizes to both the nucleus and the cytoplasm. Cytoplasmic SMN is
diffusely localized in large oligomeric complexes with core member proteins, called Gemins. Biochemical
and cell biological studies have demonstrated that the SMN complex is required for the cytoplasmic
assembly and nuclear transport of Sm-class ribonucleoproteins (RNPs). Nuclear SMN accumulates with
spliceosomal small nuclear (sn)RNPs in Cajal bodies, sub-domains involved in multiple facets of snRNP
maturation. Thus, the SMN complex forms stable associations with both nuclear and cytoplasmic snRNPs,
and plays a critical role in their biogenesis. In this review, we focus on potential functions of the nuclear
SMN complex, with particular emphasis on its role within the Cajal body.

Background

Cajal bodies and their components

Cajal bodies were first discovered over one hundred years ago
by Santiago Ramon y Cajal.1,2 He adapted Golgi’s silver staining
technique to identify a variety of structures within mammalian
nuclei, one of which he termed the nucleolar “accessory body.”
These structures were ‘rediscovered’ over the ensuing decades
as they were studied in increasing detail using more advanced
microscopy techniques.3 However, it was not until the 1990s
that a molecular characterization of Cajal bodies began.4-7 Since
that time, the number of known cellular components that are
enriched in the Cajal body has been growing.3,8-10 These com-
ponents include factors important for the maturation and func-
tion of Sm-class small nuclear ribonucleoproteins (snRNPs),
core particles of the spliceosome. The colocalization of Cajal
bodies with relevant small nuclear RNA (snRNA) gene clusters,
RNAs that guide post-transcriptional modification of snRNPs,
and snRNP specific proteins provide important clues regarding
the functions of Cajal bodies.11-14 Additional studies in mouse
embryonic fibroblasts revealed that a primary protein constitu-
ent of these structures, called coilin, was responsible for recruit-
ment of another important component, the survival motor
neuron (SMN) protein.15,16

SMN and spinal muscular atrophy (SMA)

Reduced levels of SMN protein cause SMA,17 whereas complete
loss of Smn expression is embryonic lethal.18 SMA is a common
neuromuscular disorder, recognized as the most prevalent genetic

cause of early childhoodmortality.19 Clinically, SMA patients show
progressivemuscle weakness of proximalmuscle groups, ultimately
leading to paralysis; death is typically caused by progressive and
restrictive respiratory failure. Patients with the most severe (and
most common) form of SMA become symptomatic in the first
6months of life and rarely live past 2 y.20-24

SMA typically results from homozygous deletion of survival
motor neuron 1 (SMN1) gene; however, a small fraction of SMA
patients have lost one copy of SMN1 and the remaining copy con-
tains a point mutation.25 Decreased levels of the SMN protein cor-
relate with the phenotypic severity of SMA. Since the onset of
symptoms and their severity can vary, SMA has been historically
classified into 3 subtypes. More recently, clinicians have recog-
nized that SMA is better characterized as a continuous spectrum
disorder, ranging from severe (prenatal onset) to nearly asymp-
tomatic.20 While the genetic etiology of the disease is well-estab-
lished, the molecular role of SMN in the disease is largely
unknown and is the topic of many reviews.25-34

SMN and cytoplasmic snRNP assembly

The best-characterized function for the SMN protein, which is
expressed in all tissues of metazoan organisms, is in the cyto-
plasmic assembly of Sm-class snRNPs, core particles of the spli-
ceosome.34-37 The Sm-class snRNPs consist of uridine-rich
snRNAs (e.g. U1, U2, U4, U5), several specific proteins that are
unique to each snRNA, and a set of 7 common Sm proteins (B/
B’, D1, D2, D3, E, F, and G). Sm-class snRNAs are transcribed
by RNA polymerase II as precursors that contain additional
nucleotides at the 30 end and a monomethylated m7GpppG

CONTACT A. Gregory Matera matera@unc.edu Integrative Program for Biological and Genome Sciences, Campus Box 7100, University of North Carolina,
Chapel Hill, NC 27599, USA
*These authors contributed equally to this work.
© 2017 Taylor & Francis Group, LLC

RNA BIOLOGY
2017, VOL. 14, NO. 6, 701–711
https://doi.org/10.1080/15476286.2016.1236168

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/304666582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://crossmark.crossref.org/dialog/?doi=10.1080/15476286.2016.1236168&domain=pdf&date_stamp=2017-06-17
https://doi.org/10.1080/15476286.2016.1236168


(m7G) cap structure at the 50 end. The pre-snRNA transcripts
are then exported from the nucleus by a distinct set of factors
that includes the cap-binding complex (CBP80 and CBP20),
the snRNA-specific export adaptor phosphorylated adaptor
RNA export (PHAX), and arsenite resistance 2 (ARS2).38 These
proteins form a link between the 50 cap and the export receptor
chromosome region maintenance 1 (CRM1/Exportin1), which
interacts with nuclear pore proteins to promote export.39 Vari-
ous reviews focus on this function of SMN.34,36,37

Once the pre-snRNAs translocate to the cytoplasm, the
snRNA nuclear export complex dissociates.40,41 The SMN com-
plex, which includes SMN and several tightly associated pro-
teins, collectively called Gemins binds newly exported
snRNAs.42-46 The SMN protein complex regulates the entire
cytoplasmic phase of the snRNP cycle including Sm core
assembly, trimethylguanosine (TMG) cap formation, and snur-
portin1 binding to the TMG cap structure.

The SMN complex combines newly exported snRNAs with a
set of Sm proteins to form a 7-membered ring around a binding
site that is present within each of the Sm-class snRNAs.47,48 The
Sm proteins are delivered to the SMN complex via the activity
of the PRMT5 complex, which methylates C-terminal arginine
residues within SmB, SmD1, and SmD342,49 and then chaper-
ones delivery of partially assembled Sm subcomplexes.50,51

Gemin5, a component of the SMN complex, is thought to be
the factor responsible for recognition of Sm-class snRNAs.52

Thus, the SMN complex is thought to provide specificity, to
avoid assembly of Sm cores onto non-target RNAs,43,52 and to
accelerate formation of the final product from kinetically
trapped intermediates.51 Assembly of the Sm core not only sta-
bilizes the snRNA by protecting it from nucleases, but also is
required for the downstream RNA-processing steps.

Following Sm-core assembly, an RNA methyltransferase
called trimethylguanosine synthase (Tgs1) is recruited to the
m7G cap, whereupon the RNA is hypermethylated to form a
2,2,7-trimethylguanosine (TMG) cap structure.53 A properly
assembled Sm core is required for cap hypermethylation and 30-
end maturation.54-56 Tgs1 directly interacts with SMN both in
vivo and in vitro.46 Furthermore, the SMN complex does not
immediately dissociate from the RNA after Sm-core assembly,
suggesting that SMN may even recruit Tgs1 to the complex. Sub-
sequently, the RNP is imported back into the nucleus by specific
snRNP import factors.57 Once in the nucleus the RNPs undergo
additional assembly and maturation steps. Fig. 1A provides a
summary of the major events in U snRNP biogenesis.

The SMN complex as a nuclear import adaptor

Nuclear transport of snRNPs involves the use of a bipartite
nuclear localization signal (NLS), comprised of the TMG cap
and the Sm core.58-60 In vitro, these NLS pathways are indepen-
dent, enlisting discrete import adapters61,62 but sharing a com-
mon import receptor, importin b.63 In vivo, the situation likely
involves the synergistic use of both pathways, although addi-
tional studies are required in order to clarify this issue. In any
event, the adaptor for the TMG cap is called snurportin1
(SPN1); this protein binds directly to the TMG cap and signifi-
cantly improves the kinetics of snRNP import.61,64,65 At the
time, relatively little was known about the factor that mediates

the interaction between the Sm core and importin b. Previous
studies had indicated that the Sm core adaptor is a cytosolic
factor that binds to Sm proteins and importin b.63 Subse-
quently, SMN was shown to directly interact with these pro-
teins.45,66-68 Furthermore, co-fractionation studies with HeLa
cytosolic extracts demonstrated that SMN, SPN1 and importin
b were present in a novel, pre-import RNP complex.45,62 Along
with several other hints in the literature,32,44,69 these findings
suggested that SMN functions to bridge the gap between the
Sm core and the import machinery.

Functional studies of this pre-import RNP complex were car-
ried out using digitonin-permeabilised HeLa cells. The results
demonstrated that import of SMN and splicing snRNPs are cou-
pled in somatic cells.62,65 Two lines of evidence substantiated this
conclusion. First, purified SMN complex was required for in
vitro snRNP import and vice versa. Second, an excess of snRNPs
significantly improved SMN import kinetics; the converse also
held true. Notably, the SMN complex (but not SMN alone) was
sufficient to restore snRNP import defects caused by depletion of
SMN from the reconstituted cytosol. Furthermore, mutations in
the YG Box self-oligomerization domain of SMN disrupted
nuclear import,62 suggesting the importance of oligomeric SMN
in the active import complex. Collectively, these data indicated
that additional SMN complex members (e.g., Gemins) are
required for cap-independent snRNP import.62

SMN import regulation

A model of the putative U snRNP import complex is shown in
Fig. 1B. The precise composition of the Gemin proteins and the
overall stoichiometry of importin b within this complex is
completely unknown. Given the independence of the 2 import
pathways in vitro,61,62,65 the question remains whether the Sm-
core and TMG cap import adaptors act synergistically in vivo.
Moreover, the SMN complex might only play a role in import
of newly-assembled snRNPs. In such a scenario, post-mitotic
snRNPs would strictly utilize the TMG cap-dependent pathway.
Future studies will be needed to clarify this important issue.

Of the various factors that control SMN and U snRNP
nuclear import, very little is known. However, a zinc finger pro-
tein called ZPR1 was reported to participate in this process.70

ZPR1 is an essential, highly-conserved protein in eukar-
yotes.71,72 The protein was originally identified as a factor that
binds to the cytoplasmic tyrosine kinase domains of epidermal
growth factor (EGF)-like receptors in the absence of mito-
gens.73 Ligand binding and autophosphorylation of the recep-
tor causes ZPR1 to be released from the receptor and
subsequently accumulate in the nucleus.74

The C-terminal tail of ZPR1 interacts indirectly with SMN,
forming cytoplasmic snRNP-containing complexes.70 Given that
ZPR1, SMN and SPN can be detected in a pre-import RNP
complex,45 and that anti-ZPR1 antibodies co-deplete Sm proteins
from cytoplasmic lysates,62 it appears that ZPR1 is involved in
snRNP biogenesis. Although ZPR1 forms complexes with U
snRNPs, it is not directly required for SMN nuclear transport in
vitro.62 However, these complexes are disrupted when there are
low levels of SMN, and both ZPR1 and SMN fail to accumulate
in nuclear bodies. Moreover, depletion of ZPR1 results in disrup-
tion of Cajal bodies and defective nuclear localization of SMN.75
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Overexpression of ZPR1 in SMA patient fibroblasts restores the
subnuclear accumulation of SMN and increases overall levels of
SMN protein.76 Because ZPR1 also interacts with EGF-type
receptor proteins that regulate cellular proliferation, the most
likely scenario places ZPR1 in a signaling cascade upstream of
SMN and U snRNP nuclear import.

Nuclear functions of the SMN complex

Following import and localization of newly assembled snRNPs
to the Cajal body, coilin may function to disrupt the SMN-
snRNP complex and facilitate higher-order snRNP forma-
tion.16,45,77,78 SMN is thought to dissociate from snRNPs soon

after their import, as the protein does not co-purify with
mature snRNP mono-particles.79,80 Once released from the
SMN complex, the newly assembled snRNP is then free to dif-
fuse throughout the interchromatin space. The fate of the SMN
complex following snRNP release in the Cajal body is mostly
unknown. In most cell types, the nuclear fraction of the SMN
complex localizes primarily within Cajal bodies. However, a
small fraction of nuclear SMN protein has been found to co-
immunoprecipitate with spliceosomal subcomplexes.81,82 SMN
also accumulates in distinct nuclear substructures called Gem-
ini bodies, or Gems.83 Cajal bodies contain a plethora of RNAs
and their associated proteins, but components of Gems have
thus far been limited to constituents of the SMN complex.9,83 A

Figure 1. (A) Sm-class snRNAs are transcribed by RNA polymerase II as precursors that contain additional nucleotides at the 30 end and a monomethylated m7GpppG
(m7G) cap structure at the 50 end. The pre-snRNA transcripts are then exported from the nucleus, often passing through the Cajal body. Once the pre-snRNAs translocate
to the cytoplasm, the snRNA nuclear export complex dissociates. The SMN complex combines newly exported snRNAs with a set of Sm in a process known as Sm core
assembly. Then, the snRNA is hypermethylated to form a 2,2,7-trimethylguanosine (TMG) cap structure in the pre-import complex. Finally, the RNP is imported back into
the nucleus by specific snRNP import factors shown in B. Once in the nucleus, the partially assembled RNPs can transit through Cajal bodies where they undergo addi-
tional assembly and maturation steps. (B) The adaptor for the TMG cap is called snurportin1 (SPN1); this protein binds directly to the TMG cap and significantly improves
the kinetics of snRNP import. SMN interacts with both SPN1 and Importin b. SMN functions to bridge the gap between the Sm core and the import machinery. These pro-
teins, together with the snRNA and associated snRNP proteins, constitute the pre-import RNP complex.
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U1 snRNP component, U1-70K, also localizes to gems, but its
interaction with SMN is thought to be snRNP-independent.84

Given its recently described role in human U1 snRNP assem-
bly, U1-70K protein might be considered as an auxiliary mem-
ber of the SMN complex.85 Notably, a decrease in SMN protein
levels (and thus an increase in SMA severity) is correlated with
the loss of SMN nuclear foci.24,86 Thus, the nuclear functions of
SMN may well turn out to be important for understanding dis-
ease etiology.

Inter- and intra-molecular interactions within the Cajal
body

Photobleaching studies in living cells have shown that there are
distinct kinetic groups of Cajal body components.87,88 The pro-
teins with the longest Cajal body residence times are coilin,
SMN, Gemin3 and Tgs1. These factors typically reside in Cajal
bodies on the order of minutes, whereas other groups of proteins
have much shorter residence times.87 However, despite the direct
physical interaction of coilin and SMN, Cajal bodies and Gems
are kinetically autonomous compartments.87 The basis for this
kinetic autonomy is likely due to the ability of SMN and coilin
to maintain homo-typic interactions (coilin-coilin and SMN-
SMN) within the separated nuclear bodies (Fig. 2A). Hetero-
typic interactions are therefore likely to regulate overall composi-
tion of a given nuclear body.89 Indeed, fluorescence resonance
energy transfer (FRET) by acceptor photobleaching experiments
in living nuclei showed that coilin and SMN interact with them-
selves and with each other inside the Cajal body.87

Cajal body homeostasis requires ongoing snRNP biogenesis,
as perturbation of SMN or SPN1 function results in disassembly
of Cajal bodies and relocalization of coilin to nucleoli.90 Similarly,
depletion of other factors involved in small RNP biogenesis, such
as Tgs1, WDR79/WRAP53, PHAX, INTS4 and USPL1 also
cause Cajal bodies to disassemble.91-95 In addition to overall pro-
tein levels, post-translational modifications (PTMs) of resident
proteins, including SMN and coilin, are almost certainly impor-
tant for establishing and maintaining inter- and intra-molecular
interactions within Cajal bodies.96-100 Disruption of these PTMs
can result in mislocalization of SMN and alterations in Cajal
body integrity. These and other factors will need to be addressed
by future studies.

Oligomeric properties of SMN complexes

X-ray crystallographic studies of the SMN C-terminal region
show that the YG box forms a helical structure whose dimeriza-
tion is driven by a network of hydrophobic interactions similar
to those found in glycine zipper domains of certain transmem-
brane channel proteins.101,102 The core of this helical domain
contains a highly conserved YxxxYxxxY motif.101 Notably, phy-
logenetic analysis reveals that this motif can be extended on
both ends to form a longer LxxxLxxxYxxxYxxxYxxxL helix (A.
G.M., unpublished observations). Structural analysis of the
SMN Tudor domain has also been carried out,35,103 revealing
the existence of an “aromatic cage” of b-sheets that mediates
recognition of dimethylarginine residues present on Sm pro-
teins. Future studies will be required to determine how these 2
regions, as well as the a-helical Gemin2 (Gem2) binding

domain at the N-terminus50,104 all fit together in space to carry
out SMN’s various functions.105

The functional importance of the SMN C-terminal domain
has been well-documented. More than half of the known SMA
patient missense mutations cluster within the YG box.25,106,107

Furthermore, mutations that completely disrupt SMN’s ability
to self-oligomerize display severe phenotypes in human SMA
patients as well as in animal models.86,108-113 Despite this strong
correlation, the composition and stoichiometry of the various
complexes formed by SMN are not well understood. In vitro,
SMN-Gem2 exists as a stable heterodimer that, for purposes of
discussing higher order oligomerization, can be considered as a
single structural unit.66,114 As the concentration increases, this
unit exists in an equilibrium mixture containing dimers, tet-
ramers and octamers of SMN-Gem2.102 Importantly, the SMN-
Gem2 complex does not multimerize by forming symmetric
bundles.102 Instead, SMN tetramers are formed by a dimer of
dimers (Fig. 2B). In the fission yeast system, dimers and tet-
ramers are the only species observed.102 Human SMN-Gem2
forms dimers to octamers and possibly even larger complexes
(Fig. 2B). Octamers appear to form via self-association of tet-
ramers, although the existence of a hexameric SMN complex
cannot be ruled out.102 In vivo, human SMN-Gem2 cosedi-
ments with Gemins3–8,115 however, the relative stoichiometries
of these proteins are completely unknown.

Studies in fission yeast suggest that the SMN dimer [i.e.
(SMN-Gem2)2] is the basal functional unit. Using in vivo esti-
mates of SMN protein concentration,116 Van Duyne and col-
leagues calculated that the concentration of the dimer
(»15 nM) lies far, far below the dissociation constant of SMN
tetramers (»1 uM).102 Immunofluorescence studies showed
that yeast SMN is diffusely distributed throughout the nucleus
and cytoplasm, with no discernible foci.117 Thus, the SMN
dimer is the most abundant species in vivo, and is presumed to
be functionally active in snRNP biogenesis.102

Although changes in the composition and organization of
the SMN complex are likely to be regulated by various PTMs,
the studies of yeast SMN have important consequences for met-
azoans, particularly when it comes to the oligomerization status
of the protein. For example, the concentration of SMN within
nuclear Cajal bodies or cytoplasmic stress granules is signifi-
cantly greater than that of the surrounding nucleoplasm or
cytosol, respectively. Hence, if there are unique functions of
SMN that can only be performed by higher-order oligomers,
then it is therefore likely that such functions are being carried
out in specific cellular locales that contain high concentrations
of the SMN complex (Fig. 2C).

SMN and Cajal Body structure

As mentioned above, loss of SMN is detrimental to Cajal body
integrity.90,91,95,100 Cajal bodies consistently associate with spe-
cific loci on multiple chromosomes, many of which include
snRNA gene arrays, snoRNAs, as well as other small U RNA
and histone gene clusters.11,12,118-120 Following siRNA knock-
down of essential Cajal body components, WDR79/WRAP53
or USPL1, these chromosomal regions were no longer clus-
tered, and the expression of many of the associated small U
RNA loci were significantly reduced. Thus, disruption of Cajal
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bodies leads to a loss of genome conformation and this may
lead to inefficient expression of snRNAs. On the other hand,
factors like USPL1 have been shown to participate directly in
processing of pre-snRNA transcripts,94 so it is difficult to

distinguish between the function of the protein and that of the
nuclear body.

While there is not a direct connection between SMN and
genome conformation disruption, SMN is important for

Figure 2. (A) In SMN(C) Cajal bodies, coilin and SMN physically interact. These heterotypic interactions are likely to regulate the overall composition of the nuclear body.
Cajal bodies and Gems are kinetically autonomous compartments as illustrated by the Gem and SMN(¡) Cajal body. The basis for this kinetic autonomy is likely due to
the ability of SMN and coilin to maintain homotypic interactions (coilin-coilin and SMN-SMN) within the separated nuclear bodies. (B) SMN-Gem2 exists as a stable hetero-
dimer that, for purposes of discussing higher order oligomerization, has been shown as a single structural unit (labeled “SMN”). At varying concentrations, this complex
exists in an equilibrium mixture containing dimers, tetramers (dimer of dimers), and octamers of SMN-Gem2. Human SMN-Gem2 forms dimers to octamers and possibly
even larger complexes. Octamers appear to form via self-association of tetramers. (C) The concentration of SMN within certain subcellular compartments (e.g. Cajal bodies,
snRNA gene clusters or cytoplasmic stress granules) is significantly greater than that of the surrounding regions of the cell. High concentrations of SMN are also thought
to be found in mRNP transport particles along axons as well as at neuromuscular junctions. If there are unique functions of SMN that can only be performed by higher-
order oligomers it is likely that such functions are being carried out in specific cellular locales that contain high concentrations of the SMN complex, as illustrated by the
bright green circles.
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maintaining the structure of the Cajal body. Previously, low lev-
els of SMN have been linked to widespread changes in expres-
sion patterns,121-128 but it is currently an open question as to
how these changes might be linked to Cajal bodies. In addition,
the mechanism by which these conformational changes in the
nucleus affect the rest of the cell and which cellular components
and processes are most severely affected has yet to be studied.

SMN and transcriptional regulation

While SMN is definitively important for maintaining the struc-
ture of the Cajal body, there is emerging evidence suggesting
the involvement of SMN in other processes while in this
nuclear body. One potential role for SMN is in RNA Polymer-
ase II (RNAPII) termination. Zhao et al.129 recently showed
that SMN binds to the symmetric dimethylation of arginine-
1810 (R1810me2s) of the RNAPII C-terminal domain (CTD).

Asymmetric dimethylation of this residue leads to reduced
expression of snRNAs and snoRNAs when recognized by
TDRD3.130

In addition to the interaction of SMN with R1810me2s,
SMN interacts with senataxin (SETX) (Fig. 3A). Binding of
SMN at the R1810me2s stabilizes interaction of SETX with the
CTD. SETX is a RNA/DNA helicase that is responsible for
unwinding R-loops around transcription termination sites.131

This unwinding allows the 50-to-30 exonuclease XRN2 to be
recruited, thus terminating transcription.132 Mutation of argi-
nine to alanine at this residue and knockdown of SMN cause
accumulation of RNAPII at termination regions of active genes
across the genome (Fig. 3B). A CRISPR knockout of SMN led
to increased R-loops in termination regions and g-H2AX, a
marker of DNA damage, accumulates at these sites.

R-loops have been shown to both stabilize and destabilize
the genome depending on the context.133,134 The characteristics

Figure 3. (A) The binding of SMN to R1810me2s on RNAPII CTD is shown to stabilize the binding of an RNA/DNA helicase, SETX, to the CTD. SETX prevents R-loops at ter-
mination sites and allows the exonuclease XRN2 to terminate the transcript, and RNAPII is released. The prevention of R-loops by SETX also allows the spliceosome to
access the RNA and modify the transcript through splicing. (B) When SMN is reduced, or the R1810 residue is lost, this results in reduced recruitment of SETX and an
increase in R-loops and DNA damage. RNAPII also accumulates at the transcription termination site.
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and mechanisms that determine whether an R-loop is beneficial
or detrimental to the genome are unknown. SMN may contrib-
ute to this determination through its interaction with SETX.

If SMN does indeed affect RNAPII termination through its
interaction with senataxin, it’s possible that its structural and
transcriptional functions coincide adjacent to the Cajal body. It
has not been shown that this active role of SMN is associated
with the Cajal body, but this would provide a parsimonious
model for efficient transcript processing of chromosomal
regions associated with the Cajal body, including snRNAs gene
arrays. This provides a potential mechanism for how these
genes are expressed and regulated in a finely tuned manner. It
has been shown that snRNAs with extended 30 regions associate
with Cajal bodies135 and that snRNAs accumulate in the Cajal
body before they are exported to the cytoplasm.136 Conve-
niently, snRNA export proteins PHAX and CRM1 are also con-
centrated at Cajal bodies.13,137 Inhibition of PHAX leads to
accumulation of snRNAs in the Cajal body.136 The return of
snRNPs to their initial site of biogenesis is also thought to be a
mechanism for feedback regulation of snRNA transcription
and gene dosage compensation.138 It is clear that the Cajal
body is used as a hub for snRNAs as they transition from tran-
scription to export, but whether this nuclear body is also
directly associated with the active transcriptional regulation of
snRNAs remains to be studied.

Conclusions and perspectives

Following its discovery as the product of the SMA-determining
gene,17 the SMN protein was quickly shown to accumulate in
nuclear Cajal bodies.67,139,140 Understanding the function of the
SMN complex within the Cajal body has been a much slower pro-
cess. As discussed in the preceding paragraphs, the nuclear frac-
tion of SMN may well participate in both early and late events in
the biogenesis of spliceosomal snRNPs. Particularly appealing is
the idea that SMN might also chaperone assembly of other types
of RNPs, wherever they may happen to congregate inside the cell.
What sets the Cajal body bound fraction of SMN apart from the
nucleoplasmic SMN complex? The simple answer is that the
apparent protein concentration difference between the 2 subcellu-
lar compartments determines the oligomerization potential of
nucleoplasmic SMN. Is there a specific molecular function that is
performed only by the larger SMN multimers? If so, is a similar
function carried out by SMN in stress granules, where the cyto-
plasmic fraction of SMN is most concentrated?141-143 Additional
studies will be needed to answer these questions.

One possibility is that the larger SMN oligomers might serve
as intracellular signaling hubs. Interestingly, SMN depletion is
associated with innate immune and stress signaling.144-146

Moreover, hypomorphic SMN mutations that cause milder
forms of SMA in humans and significant viability defects in
SMA model flies are neither associated with defects in pre-
mRNA splicing nor spliceosomal snRNP biogenesis.147

Although potential defects in snRNP biogenesis at specific
developmental time points are possible, these findings indicate
that snRNP-dependent RNA processing changes are unlikely to
be primary drivers of SMA pathology. Rather, SMN-dependent
activation of innate immune and other types of stress signaling

pathways may be more important to neuromuscular patho-
physiology than previously envisioned.147,148,149

As the storehouse of nuclear SMN protein, the Cajal body
likely plays an important role in its nuclear activities. Learning
more about mechanisms of SMN nuclear-cytoplasmic trafficking
and its various functions within the Cajal body should help eluci-
date SMN’s role in organismal development and SMA etiology.
The mysteries surrounding the connection between SMN and
Cajal bodies, and the implications of this relationship for human
disease are a perfect example of an observation that Cajal himself
made in Advice for a Young Investigator, saying that, “each prob-
lem solved stimulates an infinite number of new questions, and
that today’s discovery contains the seed of tomorrow’s [idea].”
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