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Abstract

One of the most amazing findings in molecular biology was the discovery that eukaryotic genes

are discontinuous, interrupted by stretches of non-coding sequence. The subsequent realization

that the intervening regions are removed from pre-mRNA transcripts via the activity of a common

set of small nuclear RNAs (snRNAs), which assemble together with associated proteins into a

spliceosome, was equally surprising. How do cells orchestrate the assembly of this molecular

machine? And how does the spliceosome accurately recognize exons and introns to carry out the

splicing reaction? Insights into these questions have been gained by studying the life cycle of

spliceosomal snRNAs from their transcription, nuclear export and reimport, all the way through to

their dynamic assembly into the spliceosome. This assembly process can also affect the regulation

of alternative splicing and has implications for human disease.

Most genes in higher eukaryotes are transcribed as pre-mRNAs that contain intervening

sequences (introns) as well as expressed sequences (exons). Discovered in the late 1970s,

introns are now known to be removed during the process of pre-mRNA splicing, which joins

exons together to produce mature mRNAs1, 2. Because most human genes contain multiple

introns, splicing is a crucial step in gene expression. Although the splicing reaction is

chemically simple, what occurs inside a cell is much more complicated: splicing is catalysed

in two distinct steps by a dynamic ribonucleoprotein (RNP) machine called the

spliceosome3, requiring hydrolysis of a large quantity of ATP4. This increased complexity is

thought to ensure that splicing is accurate and regulated.

The spliceosome is composed of five different RNP subunits, along with a host of associated

protein co-factors4, 5. To distinguish them from other cellular RNPs such as the ribosomal

subunits, the spliceosomal subunits were termed small nuclear RNPs (snRNPs). As with

ribosome assembly, the biogenesis of spliceosomal snRNPs is a multi-step process that takes

place in distinct subcellular compartments. A common principle in the biogenesis of snRNPs
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is the assembly of stable, but inactive, pre-RNPs that require maturation at locations that are

distinct from their sites of function. Assembly of functional complexes and delivery to their

final destinations are often regulated by progression through a series of intermediate

complexes and subcellular locales.

In this Review, we discuss the key steps in the life cycle of spliceosomal snRNPs. We focus

on how snRNAs are synthesized and assembled with proteins into RNPs, and furthermore,

how the snRNPs are assembled into the spliceosome. Finally, we highlight our current

knowledge of regulatory proteins and how they affect snRNP function. We draw upon

recent insights from molecular, genetic, genomic and ultrastructural studies to illustrate how

these factors ultimately dictate splice site choice.

Biogenesis of spliceosomal RNPs

Small nuclear RNAs are a group of abundant, non-coding, non-polyadenylated transcripts

that carry out their functions in the nucleoplasm. On the basis of common sequence features

and protein cofactors, they can be subdivided into two major classes: Sm and Sm-like

snRNAs6. Below, we focus on the biogenesis and processing of the major and minor Sm

class spliceosomal snRNAs: U1, U2, U4, U4atac, U5, U11 and U12. Biogenesis of the Sm-

like snRNAs (U6 and U6atac) is distinct from that of Sm class RNAs6 and will not be

discussed in detail here.

Transcription and processing of small nuclear RNAs

In metazoans, transcription and processing of snRNAs are coupled by a cellular system that

is parallel to, but distinct from, the one that generates mRNAs. Indeed, snRNA genes share

many common features with protein-coding genes, including the relative positioning of

elements that control transcription and RNA processing (Fig. 1). Sm class snRNAs are

transcribed from highly specialized RNA polymerase II (pol II) promoters that contain

proximal and distal sequence elements similar to the TATA box and enhancer sequences,

respectively, of protein-coding genes. In addition to the general transcription factors (GTFs:

TFIIA, TFIIB, TFIIE and TFIIF), initiation of snRNA transcription requires binding of a

pentameric factor called the snRNA-activating protein complex (SNAPc)7, 8. Promoter-

swapping experiments have shown that factors required for the accurate recognition of

snRNA 3′ processing signals must load onto the polymerase in a promoter-proximal

fashion.9 Specific post-translational modifications of the C-terminal domain (CTD) of the

pol II large subunit are important for loading of these processing factors and for accurate

processing10, 11. Similarly to other pol II transcripts, capping of the 5′ end of an snRNA and

cleavage of its 3′ end are thought to occur co-transcriptionally (Fig. 1).

Maturation of the snRNA 3′ end requires a large, multi-subunit factor called the Integrator

complex12, 13, which recognizes a downstream processing signal (called the 3′-box) and

endonucleolytically cleaves the nascent transcript as it emerges from the polymerase (Fig.

1). Whether this cleavage occurs prior to, or concomitant with, arrival of pol II at the

downstream terminator sequence is not known. Interestingly, Integrator Subunit 11 (IntS11)

and IntS9 share significant sequence similarity to components of the mRNA 3′ end

processing machinery, CPSF73 and CPSF100, respectively12, 14, 15. But beyond these two

Matera and Wang Page 2

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



subunits, the additional Integrator complex proteins bear little similarity to those involved in

mRNA cleavage and polyadenylation13, 16. Notably, the Cdk8-CyclinC heterodimer shows

snRNA 3′ processing activity in a reporter assay and physically associates with the

Integrator complex.13 Although the kinase activity of Cdk8-CyclinC was also essential for

processing, whether it phosphorylates Integrator subunits and/or the pol II CTD remains

unclear13. Thus, the precise mechanism by which metazoan pol II snRNA gene transcription

is terminated remains mysterious. What is clear is that 3′ end processing of Sm class

snRNAs requires three important features: an snRNA-specific promoter, a cis-acting 3′-box

element located downstream of the cleavage site and an assortment of trans-acting factors

that load onto the pol II CTD (Fig. 1).

Nuclear export, Cajal bodies and RNP quality control

Sm class snRNPs primarily function in the nucleus. However, in most species, newly

synthesized snRNAs are first exported to the cytoplasm, where they undergo additional

maturation steps before they are imported back into the nucleus. Notable exceptions to this

rule are found in budding yeast and trypanosomes, in which RNP assembly is thought to be

entirely nuclear17–21. Why cells export precursor snRNAs to the cytoplasm only to import

them after their assembly into stable RNP particles is an open question. This property is not

unique to snRNAs: ribosomal subunits, which function in the cytoplasm, are primarily

assembled in the nucleolus22. Both types of RNP certainly undergo remodelling steps within

their ‘destination’ compartments, but the initial stages of particle assembly take place in

remote cellular locations. This arrangement provides a plausible mechanism for quality

control, ensuring that partially assembled RNPs would not come into contact with their

substrates.

Most types of RNA, including rRNA, tRNA, mRNA, miRNA and SRP (signal recognition

particle) RNA are exported to the cytoplasm following nuclear transcription and processing.

Emerging evidence points to a role for nuclear RNA-binding factors in specifying the

cytoplasmic fate of an RNA23. However, the connections between RNA processing and

nuclear export are not as well worked out as they are for transcription and 3′ end formation.

Typically, specific RNA sequences and/or structures are the determinants that promote

direct or indirect binding to the appropriate transport receptor (as occurs for tRNAs and

rRNAs)24. Because Sm class snRNAs and mRNAs are both transcribed by pol II, they share

a 5′ cap structure, raising the issue of how the export machinery discriminates between these

two types of RNA. Solving this longstanding riddle, an elegant series of papers has shown

that snRNAs are distinguished from mRNAs on the basis of their length and their

association with heterogeneous nuclear RNP (hnRNP) C1–C2 proteins25–28. Pol II mRNA

transcripts that are longer than ~250 nt are bound by hnRNP C1–C2 tetramers and shunted

towards the NXF1-NXT1 (also known as TAP-p15) mRNA export pathway28. Transcripts

shorter than this threshold are exported by a distinct set of factors that includes the cap

binding complex (CBP80 and CBP20)29, the snRNA-specific export adaptor PHAX30, and

arsenite resistance protein 2 (Ars2)31. These proteins form a link between the 5′ cap and the

export receptor, CRM1 (also known as Exportin1), which interacts with nuclear pore

proteins to promote export (Fig. 2)32. Although PHAX can bind to mRNA 5′ caps in vitro, it

is inhibited from doing so in vivo by hnRNP C1–C228.
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Several lines of evidence indicate that precursor snRNA transcripts often traffic through

snRNP-rich nuclear structures known as Cajal bodies on their way out of the nucleus. First,

in situ hybridization shows that pre-snRNA transcripts with long 3′ extensions localize to

mammalian Cajal bodies33. Second, microinjection experiments in Xenopus oocyte nuclei

reveal that pre-snRNAs temporarily accumulate in Cajal bodies, and that this localization

decreases over time as the RNAs are exported34. Third, PHAX and CRM1 are both

concentrated in Cajal bodies35, 36. Fourth, inhibition of PHAX activity interferes with

snRNA export30, and either causes pre-snRNAs to accumulate within frog oocyte Cajal

bodies34 or results in dispersal of mammalian Cajal body components83. The data are most

consistent with a model whereby assembly of pre-export complexes is facilitated within

Cajal bodies, followed by nuclear export upon docking to CRM1. The model further invokes

a function for Cajal bodies in nuclear RNP remodelling37 and sorting23, as outlined below.

Cytoplasmic RNP assembly and the SMN complex

After the pre-snRNA translocates to the cytoplasm, dissociation of the export complex (Fig.

2) is triggered by dephosphorylation of PHAX38. The survival motor neuron (SMN) protein

complex, which includes SMN and several tightly associated proteins, collectively called

Gemins39–43, is thought to regulate the entire cytoplasmic phase of the snRNP cycle. The

SMN complex recruits the newly exported snRNAs and combines them with a set of seven

Sm proteins to form a toroidal ring around an RNA binding site that is present within each

of the eponymous Sm-class snRNAs (Fig. 3). The Sm proteins are delivered to the SMN

complex via the activity of the PRMT5 complex, which methylates C-terminal arginine

residues within SmB, SmD1 and SmD344, 45 and then chaperones delivery of partially

assembled Sm subcomplexes46, 47. Binding to the SMN complex is therefore proposed to

initiate in the cytoplasm, and Gemin5 is thought to be the factor responsible for recognition

of Sm site-containing RNAs48. Assembly of the Sm core not only stabilizes the snRNA by

protecting it from nucleases, but is also required for the downstream RNA processing steps

that culminate in nuclear import. The physiological relevance of Sm core assembly has also

been emphasized by the demonstration that mutations in the gene encoding the SMN protein

cause the human neuromuscular disease spinal muscular atrophy (Box 1).

Box 1

Human spliceosomal diseases

As a major regulatory step in gene expression, mis-regulation of splicing is a common

feature of many human diseases. These disorders can be caused by mutations that disrupt

splicing of specific genes175, 176, or by a general loss of spliceosomal function, affecting

many gene targets. We focus here on those that disrupt spliceosomal biogenesis and/or

function.

Retinitis pigmentosa (RP) is an inherited degenerative eye disease that causes severe

vision impairment and blindness. Mutations in several core spliceosomal proteins (e.g.

human PRPF3, PRPF8, PRPF31, PAP1, Prp8 and Brr2) cause autosomal dominant

retinitis pigmentosa17, 177–179, suggesting that human retinal cells are especially sensitive

to splicing defects. Mutations in the minor spliceosomal snRNA, U4atac, were recently
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shown to result in microcephalic osteodysplastic primordial dwarfism (MOPD) type I180,

a rare genetic defect that causes severe growth retardation and infant death.

Spinal muscular atrophy (SMA) is a recessive neuromuscular disease caused by reduced

levels of the survival motor neuron (SMN) protein. There are two SMN genes in humans,

SMN1 and SMN2. SMA is usually caused by homozygous deletion of SMN1. Due to a

single point mutation between the two paralogues, exon 7 of SMN2 is often skipped,

resulting in a truncated and unstable protein product181. Consistent with the primary

function of SMN in the biogenesis of spliceosomal snRNPs, complete loss of SMN

function is embryonic lethal182. However it remains unclear why partial loss of SMN

function causes a neuromuscular disease. Although animal models of severe SMA show

differential reduction in the levels of major versus minor Sm class snRNPs,183 recent

reports dispute the extent to which defects in minor intron splicing can account for SMA-

like phenotypes 184, 185. Using an SMN point mutation that causes a mild/intermediate

form of SMA in humans, Praveen et al.184 showed that the role of SMN in snRNP

biogenesis can be uncoupled from the organismal viability and locomotor defects. Thus,

although splicing defects are a predominant feature of severe SMA, they are detectable

only relatively late in the disease course, well after the onset of neuromuscular deficits186

and a better understanding of SMA disease etiology is still required.

Chronic lymphocytic leukemia and myelodysplasia have also been associated with

splicing defects187, 188. For example, core components of the U2 snRNP, such as SF3B1

and U2AF35, are frequently mutated in these cancers 187, 188. Such mutations might

result in defective snRNP assembly, deregulated alternative splicing, or accumulation of

unspliced mRNA, and thus may alter the expression of multiple genes189. In addition to

genetic mutations, the mis-regulation of splicing factor levels has often been found to be

associated with various neoplasias. Such a shift in expression level for major splicing

factors in cancer may explain the extensive change of alternative splicing that is observed

for thousands of genes in cancer patient samples. Therefore, targeting spliceosome

function may provide a new route for cancer therapy.

Sm proteins do not bind the snRNA as a pre-formed ring. Instead, they form heterodimeric

(SmD1-SmD2 and SmB-SmD3) or heterotrimeric (SmE-SmF-SmG) subcomplexes (Fig. 3).

When purified in vitro, these subcomplexes spontaneously coalesce into a ring only in the

presence of an appropriate RNA target49–51. However, in cell extracts, this reaction requires

the whole SMN complex as well as ATP39. In vivo, the SMN complex is thus thought to

provide added specificity, to avoid assembly of Sm cores onto non-target RNAs40, 48 and to

accelerate formation of the final product from kinetically trapped intermediates47.

One of the most surprising insights from recent studies of the SMN complex is that SMN

protein is probably not the primary architect of Sm core RNP assembly. Two

crystallographic studies demonstrated that Gemin2, a conserved member of the SMN

complex52, binds directly to five of the seven Sm proteins (Fig. 3) and holds them in the

proper ‘horseshoe’ orientation for subsequent snRNA binding and ring closure53. These

results were not predicted from earlier in vitro binding studies of Gemin254 and were

surprising because previous work on Sm binding had mainly focused on SMN itself55, 56.
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However, given that the budding yeast genome apparently lacks SMN but contains a

potential Gemin2 orthologue54, 57, the idea that Gemin2 plays a starring role in Sm core

assembly is gaining considerable traction.

Precisely how SMN is involved in Sm core RNP formation is still an open question,

although RNA interference analyses in metazoan cells have demonstrated it is required58, 59.

Moreover, SMN-Gemin2 heterodimers are sufficient for Sm core assembly activity in

vitro52. Importantly, the assembly chaperone pICln (Fig. 3) may function as an SmB-SmD3

mimic that stabilizes the pentameric Sm horseshoe structure in preparation for handoff to

Gemin246, 47. The Tudor domain of SMN contains an Sm-fold60 and is hypothesized to play

a mimetic role (Fig. 3), occupying the space for SmB-SmD3 during the transition between

the pICln-bound intermediate and the Gemin2-Sm pentamer structure46. The self-

oligomerization activity of SMN, contained within its C-terminal YG-box domain, is also

required for Sm core formation56, 59, 61. It is not yet clear how the C-terminus of SMN,

which forms a YG zipper motif62, interfaces with the rest of the SMN molecule and other

members of the SMN complex. These and other important questions will need to be

addressed by future studies.

Nuclear import and RNP remodelling

Formation of the Sm ring protects and stabilizes the snRNA and initiates downstream RNA

processing steps that culminate in nuclear import of the SMN complex (Fig. 2). As part of

its overall chaperoning function, the SMN complex recruits TGS1, an RNA

methyltransferase that modifies the snRNA 5′ end to form a 2,2,7-trimethylguanosine

(TMG) structure43. The TMG cap functions as a nuclear localization signal63. Along with a

subset of factors within the SMN complex,64 the Sm core itself functions as a second,

parallel nuclear localization signal65. Concomitant with (or subsequent to) these 5′ events,

the 3′ end of the snRNA is exonucleolytically trimmed to its mature length. Thus, SMN-

mediated assembly of the Sm core is required for proper cytoplasmic RNP maturation in

vivo.

After import back into the nucleus, TMG cap formation triggers dissociation of TGS1 from

the pre-import complex (Fig. 2); this is followed by binding of Snurportin66, the snRNP-

specific import adaptor, to the hypermethylated cap structure. Snurportin interacts directly

with the import receptor Importin-beta67 to promote import, although the SMN complex (or

a subcomplex thereof) is also thought to accompany newly assembled snRNPs into the

nucleus64. The SMN complex does not associate with nucleus-injected (that is, ‘naked’)

RNAs; experiments in Xenopus oocyte nuclei showed that the SMN complex interacts with

microinjected snRNAs only after their export to the cytoplasm68.

Once a snRNP has been imported into the nucleus, it is free to diffuse throughout the

interchromatin space. SMN is thought to dissociate from the snRNP relatively soon after

import, as the protein does not co-purify with mature snRNP mono-particles, spliceosomes

or splicing intermediates69–71. In most cell types, the nuclear fraction of the SMN complex

localizes primarily within Cajal bodies; however, SMN also accumulates in distinct nuclear

substructures called Gemini bodies (or Gems)72. Cajal bodies contain a plethora of RNAs
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and their associated proteins, but components of Gems have thus far been limited to

components of the SMN complex72, 73.

In mammalian cells, substantial evidence points to a role for Cajal bodies in the

nucleoplasmic maturation of snRNPs, following nuclear import. Newly imported Sm-class

RNPs transiently accumulate in Cajal bodies prior to localizing in other nucleoplasmic

subcompartments known as speckles (see below)74, 75. In nuclear transport assays using

digitonin-permeabilized cells, Snurportin1 and partially assembled (12S) U2 snRNPs

accumulate within Cajal bodies76. Additional RNP remodelling and RNA processing steps

are thought to take place in Cajal bodies, including noncoding RNA-guided covalent

modification of the snRNAs77 and binding of snRNP-specific proteins78, 79. Furthermore,

Cajal bodies are thought to facilitate the de novo assembly and post-splicing reassembly of

U4/U6 di-snRNP and U4/U6•U5 tri-snRNP80–82. Given that Cajal body homeostasis is

disrupted by depletion of a variety of snRNP biogenesis factors59, 83–85, it is perhaps

surprising that snRNP trafficking through Cajal bodies is not obligatory in mice or flies86–88

(although it seems to be essential in fish89). Taken together, these findings strongly suggest

that Cajal bodies participate in RNP biogenesis on both the outbound and inbound legs of an

snRNA’s journey through the cell.

Within the nucleus, spliceosomal snRNPs and their associated co-factors (for example, SR

proteins) are typically excluded from nucleoli, localizing in a punctate pattern of variably

sized and irregularly shaped nuclear speckles. In fact, this speckled pattern is highly

diagnostic for factors involved in pre-mRNA splicing75. Speckles are extremely dynamic

nucleoplasmic domains, but contain little or no DNA and are thus thought to function as

storage compartments90. Most splicing activity seems to localize to the borders between

speckles and the adjacent chromatin domains91, 92. Precisely how snRNPs and other splicing

factors are recruited from the speckles to sites of active transcription is unclear. However,

once the fully assembled snRNPs are loaded onto the pol II CTD and targeted to the site of

transcription, they are then poised to carry out spliceosome assembly and pre-mRNA

splicing.

Spliceosomal assembly and catalysis

Non-coding RNAs typically function as adaptors that position nucleic-acid targets adjacent

to an enzymatic activity that is catalysed either by the RNAs themselves or by associated

proteins6. Consistent with this notion, spliceosomal snRNA function is driven by base

pairing with short conserved motifs located at the junctions between the expressed exon

sequences and the intervening introns of target mRNAs. The 5′ splice site (ss) of a pre-

mRNA is present at the beginning of an intron, the 3′ss is located at the end of an intron, and

the branch point adenosine is usually located ~15–50 nucleotides upstream of the 3′ss (Fig.

1b). In addition to the primary splicing signals located at exon-intron boundaries, splice site

choice is modulated by multiple cis-acting regulatory elements throughout the pre-mRNA.

As outlined below, spliceosomes are assembled onto their targets via a multistep process

whereby these cis-acting elements recruit trans-acting factors that ultimately control higher

order particle assembly. For more details on splicing mechanisms, readers are referred to

recent reviews4, 93.
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Stepwise spliceosome assembly

Although spliceosome assembly is best understood in budding yeast, the key assembly steps

are well conserved in humans. For the purposes of this review, we refer to the names of

yeast proteins. First, U1 snRNP recognizes the 5′ss via base pairing of U1 snRNA to the

mRNA, forming the early complex (complex E, Fig. 4a). In addition to base pairing, the 5′ss

can also be recognized by U1C, a subunit of the U1 snRNP94. This process is facilitated by

the pol II CTD, which reportedly interacts directly with U1 snRNP95, 96 although the

functional role of this interaction is still under debate97. The interaction between the 5′ss and

U1 snRNP in complex E is ATP independent and fairly weak; it is stabilized by other factors

such as SR proteins98, 99 and the cap-binding complex100. The 3′ss of the pre-mRNA is

recognized by the U2 snRNP and associated factors, such as SF1 and U2 auxiliary factors

(U2AF), which are also components of complex E.

In a subsequent ATP-dependent process catalysed by DExD/H helicases (Prp5 and Sub2),

U2 snRNA recognizes sequences around the branch point adenosine and interacts with U1

snRNP to form the pre-spliceosome (complex A). Formation of an intron-spanning complex

A was originally described in yeast, but more complicated assembly pathways are prevalent

among higher eukaryotes. Because metazoan genes contain relatively short exons (~50–250

nt) that are separated by larger introns (up to 1000 kb), splice sites are predominantly

recognized in pairs across exons through the interaction of U1 and U2 snRNPs101, 102. This

process is called exon definition, and the U1–U2 snRNP complex that forms across exons is

known as the exon definition complex103. In a subsequent transition step, U1 and U2

snRNPs undergo poorly understood rearrangements, forming an intron-spanning interaction

known as the intron definition complex that also brings the 5′ss, branch point and 3′ss into

close proximity104. Thus, the metazoan intron definition complex is generally considered to

be equivalent to complex A in yeast, whereas the metazoan exon definition complex is

similar to complex E.

Formation of the exon definition complex and the subsequent transition to the intron

definition complex are intermediate stages that are crucial for regulating splicing105, 106.

After the assembly of complex A, the U4/U6 and U5 snRNPs are recruited as a

preassembled tri-snRNP to form complex B, in a reaction catalysed by the DExD/H helicase

Prp28. The resulting complex B goes through a series of compositional and conformational

rearrangements to form a catalytically active complex B (complex B*). Multiple RNA

helicases (Brr2, Snu114 and Prp2) are required for the activation of complex B, resulting in

rearrangements that lead to the formation of U2/U6 snRNA structure that catalyses the

splicing reaction107. The activation of complex B also unwinds the U4 and U6 snRNAs,

releasing U4 and U1 from the complex108, which is thought to unmask the 5′ end of U6

snRNA.

Complex B* then carries out the first catalytic step of splicing, generating complex C, which

contains the free exon 1 and the intron-exon 2 lariat intermediate (Fig. 4a). Complex C

undergoes additional ATP-dependent rearrangements before carrying out the second

catalytic step of splicing, dependent on Prp8, Prp16 and Slu7; this results in a post-

spliceosomal complex that contains the lariat intron and spliced exons. Finally, the U2, U5

and U6 snRNPs are released from the mRNP particle and recycled for additional rounds of
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splicing. As with other spliceosomal rearrangement steps, release of the spliced product

from the spliceosome is catalysed by the DExD/H helicases Prp22109, 110. Disassembly of

the post-catalytic spliceosome is also driven by several RNA helicases (for example, Brr2,

Snu114, Prp22, Prp43) in an ATP-dependent manner111.

Single molecule analyses have provided additional insights into the process of spliceosome

assembly. Fluorescence labelling has been used to visualize how individual spliceosomal

subcomplexes sequentially associate with the pre-mRNA to generate functional

spliceosomes112, 113. Using purified components, these in vitro studies have shown that all

of the major spliceosomal assembly steps are reversible113, including the catalytic splicing

steps114. This reversibility, especially that of the early steps, imply the existence of proof-

reading during splicing115. Commitment to splicing is thought to increase as spliceosome

assembly proceeds in vitro113, consistent with the idea of a reversible stage during which

partially assembled spliceosomes retain the capacity to disassemble and reassemble onto an

alternative splice site. Whether or not splicing can be reversed in vivo is unclear, and

additional studies will be required to address this point.

Aside from the traditional pathway of spliceosome assembly, at least two alternative models

have been proposed. In one model, spliceosome assembly does not strictly depend on a pre-

mRNA substrate, and the mRNA 5′ss can be recognized by the U1 snRNP within a penta-

snRNP complex containing all five snRNPs116, 117. However, this penta-snRNP observed in

vitro has not been supported by studies of co-transcriptional spliceosome assembly118, and a

majority of the evidence indicates that initial spliceosome assembly requires the presence of

a 5′ss in the pre-mRNA substrate119. In an alternative model, the U4/U6•U5 tri-snRNP can

be recruited to the exon definition complex, which then can be directly transformed into a

cross-intron B-like complex without prior formation of a cross-intron complex A120.

Splicing is catalysed by RNA

The spliceosome is a dynamic complex whose components undergo multiple conformational

and compositional changes during the splicing reaction. Such rearrangements occur between

snRNAs, spliceosomal proteins and the pre-mRNA substrate, and are required in order to

generate an activated spliceosome. The snRNAs, rather than the spliceosomal proteins, are

believed to provide the catalytic activity. Previous genetic and biochemical studies have

established that snRNAs and substrate pre-mRNA undergo a series of dynamic base-pairing

rearrangements to achieve catalysis (reviewed in ref.121). More recently, it was shown that

the two-step splicing reaction (i.e., the exchange of phosphodiester bonds) could be

catalysed in a protein-free system by a U6/U2 snRNA complex that resembles a self-splicing

ribozyme122, 123. Indeed, structural analyses have provided information regarding atomic

events within the catalytic core of the spliceosome during distinct stages of the splicing

reaction124. Here, we provide a brief overview of how the active structure of the catalytic

site is generated via RNA rearrangement (see references 4, 93, 121 for more detailed reviews).

During the early stages of spliceosomal assembly, U1 snRNA base pairs with the 5′ss.

Meanwhile, U2 snRNA pairs with the branch point sequence, forming a short duplex that

causes the branchpoint adenosine to bulge out and present its 2′ hydroxyl group as a

nucleophile (Fig. 4b, left). Within complex A, interactions between U1 and U2 snRNPs
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bring the 5′ss, the branch point and 3′ss into close proximity. Subsequently, complex A

associates with the U4/U6•U5 tri-snRNP (Table 1). Recruitment of the tri-snRNP complex

displaces the extensive base pairing between U4 and U6 snRNAs and leads to formation of

new base pairs between U2 and U6 (Fig. 4b, middle)107. During this process, dissociation of

U4 from U6 snRNA exposes the 5′ end of U6, which then base pairs with the 5′ss,

displacing U1 snRNA (Fig. 4b, right).

An extensive network of base pairs is thus formed between U6 and U2 snRNA, which

juxtaposes the 5′ss and branch point adenosine for the first catalytic step of splicing. The

central region of U6 snRNA forms an intramolecular stem-loop (the U6-ISL) that is key for

splicing catalysis. Recruitment of the U4/U6•U5 tri-snRNP also triggers U5 snRNA

interaction with exonic sequences located near the 5′ss. This interaction is probably essential

for anchoring exon 1 in proximity to the lariat-exon 2 in preparation for the second catalytic

step of splicing (Figs. 4a and 4b). During these dynamic rearrangements, the U2/U6

complex (Fig. 4b) is thought to be the active structure that catalyses both steps of the

splicing reaction. This complex shares several common structural features with the group II

self-splicing introns that are found in ribozymes124–126, suggesting that spliceosomal

catalysis might be mechanistically similar to that of ribozymes127.

In addition to base pairing among and between the snRNAs, divalent cations (for example,

Mg2+) are also required for pre-mRNA splicing128. These metal ions might directly

participate in the catalytic reactions and/or simply help maintain the active RNA

conformation93. Using a ‘metal rescue’ strategy, U6 snRNA was shown to position the

divalent metal ions to catalyse both steps of splicing by stabilizing the leaving groups127.

The energy requirement for both catalytic steps of splicing is minimal, but a large amount of

energy is devoted to RNA remodelling of the snRNAs. Spliceosomal remodelling is

primarily catalysed by multiple DExD/H RNA helicase/ATPase129 and EF-G-like

GTPase130 proteins.

Certain spliceosomal proteins may also improve the efficiency of splicing by stabilizing the

RNA active site in vivo. For example, Prp8 is closely associated with the catalytic core of

the spliceosome131 and is required for both its catalytic steps132. The Brr2 helicase unwinds

U4/U6 snRNAs to allow U6 to pair with U2 and form the catalytically active structure.

Moreover, the C-terminal tail of Prp8 can interact with Brr2 and inhibit this process133,

suggesting that alternating interactions between snRNAs and proteins regulate spliceosomal

activation. The second catalytic step of splicing is also thought to be promoted by proteins,

including Prp16, Prp18 and Slu7. Notably, the ATP-dependent activity of Prp16 is sufficient

to activate complex C for the second catalytic step of splicing134.

Splicing regulation

Most genes in higher eukaryotes undergo alternative splicing to produce multiple isoforms

with distinct activities. The spliceosome is responsible for directing both constitutive and

alternative splicing, and regulation of its assembly is a key control point in these processes.

Alternative splicing is tightly controlled in different tissues at distinct developmental stages,

and the dysregulation of splicing is associated with several human diseases (Box 1). Human
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introns are several to hundreds of kilobases in length (~5 kb on average) and contain

numerous ‘decoy’ splice sites (that is, sequences that have a similar degree of consensus

matching with authentic sites). A pair of decoy splice sites often form pseudo-exons that

resemble authentic exons in terms of length and splice site strength but are very rarely, if

ever, spliced135. So despite these prevalent decoy sites, the splicing process occurs with high

fidelity, suggesting that additional sequence features aside from core splicing signals

contribute to exon-intron definition.

Cis-acting elements regulate splicing

Alternative splicing is typically controlled by numerous cis-regulatory RNA elements that

serve as either splicing enhancers or silencers. Based on their locations and activities, these

splicing regulatory elements (SREs) have been classified as either exonic or intronic splicing

enhancers and silencers (ESEs and ISEs versus ESSs and ISSs, respectively). Although the

activities of SREs are often context dependent (Fig. 5a), these sequences generally function

by recruiting trans-acting splicing factors that activate or suppress different steps of the

splicing reaction136, 137.

How splicing factors affect splicing decisions has been a topic of extensive research. Many

splicing factors are auxiliary proteins of the spliceosome and interact with its core

components to regulate splicing5, 138–140. Most known splicing factors control splicing by

affecting the early and intermediate steps of spliceosomal assembly: formation of the exon

definition complex and the subsequent transition to the intron-spanning complex A. A well-

studied example is the polypyrimidine-tract-binding protein, PTB, which typically inhibits

splicing by binding to short polypyrimidine-rich elements in pre-mRNAs. When binding to

exons, PTB can cause exon skipping by recognizing an ESS and inhibiting formation of the

exon definition complex141. PTB can also inhibit splicing by affecting the transition from an

exon definition complex to an intron definition complex106, and can directly interact with

U1 snRNP to prevent its interaction with other spliceosomal components142 (Fig. 5a).

Similarly, the splicing factor RBM5 interacts with a U2 snRNP component (U2AF65) and

inhibits the transition from an exon definition to intron definition complex105. In addition,

hnRNP L and hnRNP A1 induce extended contacts between U1 snRNA at the 5′ss and

neighbouring exonic sequences that, in turn, inhibit stable association of U6 snRNA and

subsequent spliceosomal catalysis143. In addition to the early steps of spliceosomal

assembly, an alternative exon in the CD45 mRNA was found to be inhibited after ATP-

dependent exon recognition144, suggesting that alternative splicing can be regulated at many

points along the spliceosomal assembly pathway.

The activities of SREs often depend on their relative locations within pre-mRNAs (Fig. 5b).

This context dependence highlights how flexible the interactions of splicing regulatory

factors with the core splicing machinery are. Given the complexities of spliceosomes, it is

not surprising that the effects of splicing factors on core spliceosomal components might

vary, depending on their relative positions on the pre-mRNA. For example, oligo-G tracts

commonly enhance splicing from intronic locations by recruiting hnRNP H145, 146, but these

same elements can inhibit splicing when located in exons147, 148 (Fig. 5b). The underlying

mechanism for such activities may involve inhibition of the exon definition complex by
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hnRNP H ‘across’ the site of binding. Similarly, the YCAY motifs that are recognized by

the Nova family of neuron-specific splicing factors can function as ESEs, ISEs or ISSs,

depending on their positions relative to the regulated exon149 (Fig. 5b). SR proteins usually

promote splicing when bound to exons, but they can inhibit splicing when associated with

introns150. Moreover, hnRNP A1 can inhibit splicing from either exonic or intronic

locations150 (Fig. 5b). Notable exceptions to these rules have also been observed. For

example, the Drosophila orthologues of hnRNP A1 can enhance splicing from an intron151.

U1 snRNPs can also suppress splicing or inhibit polyadenylation by interacting with 5′ss-

like RNA elements. In an unbiased screen, sequences resembling 5′ splice sites were

identified as ESSs that inhibit exon inclusion152. The binding kinetics between U1 snRNP

and the 5′ss can also affect alternative splice site choice, independent of the activities of

other splicing factors153. Non-conventional functions of U1 snRNPs in preventing

premature mRNA cleavage and polyadenylation are discussed in greater detail in Box 2.

Box 2

The unusual activities of U1 snRNP

In addition to its function in the spliceosome, U1 snRNP has additional roles in RNA

processing. As a core component of the spliceosome, U1 regulates splicing in a similar

fashion to that of auxiliary splicing factors, usually inhibiting splicing by binding to the

5′ss like elements, which were identified as ESSs in an unbiased screen152. For example,

a 5′ss-like sequence in an intron of the ATM gene inhibits pseudo-exon splicing by

recruiting U1 snRNP, and a mutation of this sequence causes ataxia telangiectasia190–192.

In addition to regulating splicing, the U1 snRNP also controls other RNA-processing

pathways such as polyadenylation193, 194. Using genome-wide analysis methods, U1

snRNP was found to protect premature RNA cleavage and polyadenylation at alternative

polyadenylation sites in primary transcripts195–197. In certain cases, recruitment of a

single U1 snRNP component (U1A) affected selection of the alternative polyadenylation

site198, 199. The precise mechanism by which U1 snRNP affects polyadenylation is not

clear. Current models suggest that U1 may inhibit the cleavage or polyadenylation site or

affect recognition of the polyadenylation signal by the cleavage and polyadenylation

specificity factor (CPSF), a protein complex that cleaves mRNA at the 3′ end to facilitate

subsequent polyadenylation200.

Another twist in U1 snRNP function is found during trans-splicing in lower eukaryotes,

where a spliced leader (SL) RNA forms a U1-snRNP like complex that interacts with

other snRNPs to direct the splicing of SL-RNA onto pre-mRNAs. In such cases, the SL

RNP complex has a dual function and acts similarly to complex E which contains both

U1 snRNP and pre-mRNA. Similarly to other snRNPs, the maturation of SL RNP also

requires the SMN complex, involves both nuclear and cytoplasmic events 201, and will

subsequently interact with U2, U4, U5 and U6 snRNP to form the trans-spliceosome.

This form of splicing is found in almost all genes in Trypanosoma and Caenorhabditis,

and can be found in very low frequency in mammalian cells202. Interestingly, an artificial

‘half exon’ can be forced to trans-splice onto a normal human pre-mRNA with
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reasonable efficiency203, suggesting that trans-splicing probably uses a similar

spliceosomal assembly pathway to direct the splicing reaction.

Other influences on splicing

The accessibility of splice sites or cis-acting SREs can be influenced by pre-mRNA

structures and binding proteins. For example, a stem-loop sequence located at the 5′ss of

exon 10 of the human tau gene directly affects the usage of the 5′ss. Stabilization of this

stem-loop decreases exon 10 inclusion and, reciprocally, its destabilization increases exon

10 inclusion154. Another example is the Dscam gene in Drosophila melanogaster, in which

the secondary structure of the intron ensures mutually exclusive splicing of alternative

exons155–157. It is unclear whether examples like this represent unusual cases, or are a

general rule. Spliceosomes contain multiple DExD/H RNA helicases that can unwind RNA

structures and remodel RNA-protein complexes158. Although the primary function of these

helicases seems to be rearrangement of snRNA-snRNA and snRNA-protein interactions in

the spliceosome, at least one helicase (DDX17/p72) might be able to remodel pre-mRNA

structures, thus modulating alternative splicing159, 160. General roles for RNA structures in

splicing regulation have yet to be clearly defined, and the identification of such elements by

high throughput methods should prove very useful161.

Because splicing of most introns happens co-transcriptionally162, alternative splicing is also

affected by factors that control transcription initiation and elongation. For example, the rate

of transcription elongation can affect splicing events; slow elongation rate generally

promotes the inclusion of weak exons163, 164. In addition, alternative splicing may also be

affected by chromatin structure and nucleosome positioning. A large number of recent

reports have provided interesting insights into the connections between splicing and

transcription (for further details, see references 165, 166).

An integrated code for splicing regulation

Traditional models of splicing regulation typically consider the interaction between cis-

acting SREs and their cognate factors as a one-to-one relationship. However, most splicing

factors can recognize two or more SRE motifs and each SRE motif is bound by multiple

alternative factors, supporting the idea that a complex network of protein-RNA interactions

is responsible for splicing regulation150, 167. This pattern of overlapping binding specificities

may enable a variety of regulatory relationships between splicing regulators. Multiple

proteins with similar splicing regulatory activities might bind the same motif, resulting in

functional redundancy; alternatively, one factor might displace another factor with opposite

activity to confer functional antagonism. For example, in HeLa cells, neuronal PTB (nPTB)

can compensate for depletion of PTB 168, whereas during neural development replacement

of PTB by nPTB is thought to initiate an alternative splicing programme169. RNA-binding

factors with overlapping specificities may also provide subtle fine-tuning of splicing levels.

Importantly, the densely connected network of SREs and their cognate splicing factors

suggests that individual exons are often controlled by multiple factors to achieve regulatory

plasticity. To assemble a set of splicing regulatory rules (known as the ‘splicing code’),

computational models have been applied to integrate the actions of multiple splicing factors
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and SREs, thereby allowing splicing outcomes to be predicted from sequence information in

the pre-mRNA152, 170.

Conclusions and perspectives

A major challenge in the post-genomic age of molecular biology is to understand how a

limited number of human genes can generate a proteome that has five times the number of

proteins171. The spliceosome, which reads the information for splicing of each pre-mRNA

transcript, is probably the most complicated RNA-protein complex inside the eukaryotic

cell172. Although important insights have been obtained during the past decade, there are

still many unanswered questions about the biogenesis of this macromolecular machine. For

example, the signalling factors that regulate snRNP biogenesis are poorly understood, as are

the functions of many post-translational modifications of snRNP proteins. Moreover, a key

question is how conformational and compositional changes within the spliceosome dictate

splicing outcomes. Detailed studies of spliceosome dynamics should provide much needed

answers.

Another important research goal is to understand the ‘splicing code’ by which exon

inclusion or exclusion by the spliceosome is controlled in different tissues and cell types170.

Recent advances in functional genomics have fuelled identification of the myriad of

regulatory elements and splicing factors involved, providing the research community with a

near-complete parts list of the splicing regulatory machinery. Integration of this information

should help determine the mechanism by which the splicing code is read by the spliceosome

and ultimately provide a better understanding of complicated gene expression networks.
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Glossary terms

Tudor domains A conserved protein structural motifs that are thought to bind to

methylated arginine or lysine residues, promoting physical

interactions with their target proteins

Cajal bodies Nuclear substructures that are highly enriched in pre-mRNA splicing

factors. Thought to function as sites of ribonucleoprotein RNP

assembly and remodelling

Nuclear Speckles Sub-nuclear structures highly enriched in pre-mRNA splicing

factors. At the ultrastructural level, they correspond to domains

known as interchromatin granule clusters

Splice site The short sequences at exon-intron junctions of pre-mRNA,

including the 5′ splice (splice donor) site and the 3′ splice (splice

acceptor) site located at the beginning and the end of an intron,

respectively
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Branch point A loosely conserved short sequence usually located at ~15–50 nt

upstream of the 3′ splice site, before a region rich in pyrimidines (C

and U). Most branch points include an adenine nucleotide as the site

of lariat formation

Exon definition One of two different modes of initial splice site pairing at the early

stage of splicing. During exon definition, the U1 and U2 snRNPs

interact to pair the splice sites across an exon. For some small

introns, the U1 and U2 snRNPs interact to pair the splice sites across

introns

SR proteins Proteins that contain a domain with repeats of serine and arginine

residues and one or more RNA recognition motifs (RRMs). Best

known for their ability to bind ESEs and activate splicing, although

some SR proteins also regulate transcription

Heterogeneous
nuclear RNP
(hnRNP)

A diverse class of ribonucleoproteins (RNPs) located in the cell

nucleus, and primarily involved in post-transcriptional regulation of

mRNAs. The hnRNP proteins are a class of RNA-binding factors,

many of which shuttle between the nucleus and cytoplasm, that are

involved in regulating the processing, stability and subcellular

transport of mRNPs

References

1. Berget SM, Moore C, Sharp PA. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA.
Proceedings of the National Academy of Sciences of the United States of America. 1977; 74:3171–
5. [PubMed: 269380]

2. Chow LT, Gelinas RE, Broker TR, Roberts RJ. An amazing sequence arrangement at the 5′ ends of
adenovirus 2 messenger RNA. Cell. 1977; 12:1–8. [PubMed: 902310]

3. Lerner MR, Boyle JA, Mount SM, Wolin SL, Steitz JA. Are snRNPs involved in splicing? Nature.
1980; 283:220–4. [PubMed: 7350545]

4. Will CL, Luhrmann R. Spliceosome structure and function. Cold Spring Harbor perspectives in
biology. 2011; 3

5. Jurica MS, Moore MJ. Pre-mRNA splicing: awash in a sea of proteins. Molecular cell. 2003; 12:5–
14. [PubMed: 12887888]

6. Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small
nucleolar RNAs. Nat Rev Mol Cell Biol. 2007; 8:209–20. [PubMed: 17318225]

7. Henry RW, Mittal V, Ma B, Kobayashi R, Hernandez N. SNAP19 mediates the assembly of a
functional core promoter complex (SNAPc) shared by RNA polymerases II and III. Genes Dev.
1998; 12:2664–72. [PubMed: 9732265]

8. Hung KH, Stumph WE. Regulation of snRNA gene expression by the Drosophila melanogaster
small nuclear RNA activating protein complex (DmSNAPc). Crit Rev Biochem Mol Biol. 2011;
46:11–26. [PubMed: 20925482]

9. Hernandez N, Weiner AM. Formation of the 3′ end of U1 snRNA requires compatible snRNA
promoter elements. Cell. 1986; 47:249–58. [PubMed: 3768956]

10. Egloff S, et al. The integrator complex recognizes a new double mark on the RNA polymerase II
carboxyl-terminal domain. J Biol Chem. 2010; 285:20564–9. [PubMed: 20457598]

11. Egloff S, et al. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene
expression. Science. 2007; 318:1777–9. [PubMed: 18079403]

Matera and Wang Page 15

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



12. Baillat D, et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates
with the C-terminal repeat of RNA polymerase II. Cell. 2005; 123:265–76. [PubMed: 16239144]

13. Chen J, et al. An RNAi screen identifies additional members of the Drosophila Integrator complex
and a requirement for cyclin C/Cdk8 in snRNA 3′-end formation. RNA. 2012; 18:2148–56.
[PubMed: 23097424]

14. Weiner AM. E Pluribus Unum: 3′ end formation of polyadenylated mRNAs, histone mRNAs, and
U snRNAs. Mol Cell. 2005; 20:168–70. [PubMed: 16246719]

15. Mandel CR, et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing
endonuclease. Nature. 2006; 444:953–6. [PubMed: 17128255]

16. Ezzeddine N, et al. A subset of Drosophila integrator proteins is essential for efficient U7 snRNA
and spliceosomal snRNA 3′-end formation. Mol Cell Biol. 2011; 31:328–41. [PubMed: 21078872]

17. Boon KL, et al. prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP
maturation defect in yeast. Nat Struct Mol Biol. 2007; 14:1077–83. [PubMed: 17934474]

18. Murphy MW, Olson BL, Siliciano PG. The yeast splicing factor Prp40p contains functional
leucine-rich nuclear export signals that are essential for splicing. Genetics. 2004; 166:53–65.
[PubMed: 15020406]

19. Tkacz ID, et al. Identification of novel snRNA-specific Sm proteins that bind selectively to U2 and
U4 snRNAs in Trypanosoma brucei. RNA. 2007; 13:30–43. [PubMed: 17105994]

20. Palfi Z, et al. SMN-assisted assembly of snRNP-specific Sm cores in trypanosomes. Genes Dev.
2009; 23:1650–64. [PubMed: 19605687]

21. Jae N, et al. snRNA-specific role of SMN in trypanosome snRNP biogenesis in vivo. RNA Biol.
2011; 8:90–100. [PubMed: 21282982]

22. Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DL. The nucleolus: structure/
function relationship in RNA metabolism. Wiley interdisciplinary reviews. RNA. 2010; 1:415–31.
[PubMed: 21956940]

23. Ohno M. Size matters in RNA export. RNA Biol. 2012; 9:1413–7. [PubMed: 23187719]

24. Cullen BR. Nuclear RNA export. J Cell Sci. 2003; 116:587–97. [PubMed: 12538759]

25. Ohno M, Segref A, Kuersten S, Mattaj IW. Identity elements used in export of mRNAs. Mol Cell.
2002; 9:659–71. [PubMed: 11931772]

26. Masuyama K, Taniguchi I, Kataoka N, Ohno M. RNA length defines RNA export pathway. Genes
Dev. 2004; 18:2074–85. [PubMed: 15314030]

27. Fuke H, Ohno M. Role of poly (A) tail as an identity element for mRNA nuclear export. Nucleic
Acids Res. 2008; 36:1037–49. [PubMed: 18096623]

28. McCloskey A, Taniguchi I, Shinmyozu K, Ohno M. hnRNP C tetramer measures RNA length to
classify RNA polymerase II transcripts for export. Science. 2012; 335:1643–6. [PubMed:
22461616]

29. Izaurralde E, et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell.
1994; 78:657–68. [PubMed: 8069914]

30. Ohno M, Segref A, Bachi A, Wilm M, Mattaj IW. PHAX, a mediator of U snRNA nuclear export
whose activity is regulated by phosphorylation. Cell. 2000; 101:187–98. [PubMed: 10786834]

31. Hallais M, et al. CBC-ARS2 stimulates 3′-end maturation of multiple RNA families and favors
cap-proximal processing. Nat Struct Mol Biol. 2013

32. Fornerod M, Ohno M, Yoshida M, Mattaj IW. CRM1 is an export receptor for leucine-rich nuclear
export signals. Cell. 1997; 90:1051–60. [PubMed: 9323133]

33. Smith KP, Lawrence JB. Interactions of U2 gene loci and their nuclear transcripts with Cajal
(coiled) bodies: evidence for PreU2 within Cajal bodies. Mol Biol Cell. 2000; 11:2987–98.
[PubMed: 10982395]

34. Suzuki T, Izumi H, Ohno M. Cajal body surveillance of U snRNA export complex assembly. J Cell
Biol. 2010; 190:603–12. [PubMed: 20733056]

35. Boulon S, et al. PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli.
Mol Cell. 2004; 16:777–87. [PubMed: 15574332]

36. Frey MR, Matera AG. RNA-mediated interaction of Cajal bodies and U2 snRNA genes. J Cell
Biol. 2001; 154:499–509. [PubMed: 11489914]

Matera and Wang Page 16

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



37. Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK. Nuclear bodies: random aggregates of
sticky proteins or crucibles of macromolecular assembly? Dev Cell. 2009; 17:639–47. [PubMed:
19922869]

38. Kitao S, et al. A compartmentalized phosphorylation/dephosphorylation system that regulates U
snRNA export from the nucleus. Mol Cell Biol. 2008; 28:487–97. [PubMed: 17967890]

39. Meister G, Buhler D, Pillai R, Lottspeich F, Fischer U. A multiprotein complex mediates the ATP-
dependent assembly of spliceosomal U snRNPs. Nat Cell Biol. 2001; 3:945–9. [PubMed:
11715014]

40. Pellizzoni L, Yong J, Dreyfuss G. Essential role for the SMN complex in the specificity of snRNP
assembly. Science. 2002; 298:1775–9. [PubMed: 12459587]

41. Massenet S, Pellizzoni L, Paushkin S, Mattaj IW, Dreyfuss G. The SMN complex is associated
with snRNPs throughout their cytoplasmic assembly pathway. Mol Cell Biol. 2002; 22:6533–41.
[PubMed: 12192051]

42. Narayanan U, Ospina JK, Frey MR, Hebert MD, Matera AG. SMN, the spinal muscular atrophy
protein, forms a pre-import snRNP complex with snurportin1 and importin beta. Hum Mol Genet.
2002; 11:1785–95. [PubMed: 12095920]

43. Mouaikel J, et al. Interaction between the small-nuclear-RNA cap hypermethylase and the spinal
muscular atrophy protein, survival of motor neuron. EMBO Rep. 2003; 4:616–22. [PubMed:
12776181]

44. Meister G, et al. Methylation of Sm proteins by a complex containing PRMT5 and the putative U
snRNP assembly factor pICln. Curr Biol. 2001; 11:1990–4. [PubMed: 11747828]

45. Friesen WJ, et al. The methylosome, a 20S complex containing JBP1 and pICln, produces
dimethylarginine-modified Sm proteins. Mol Cell Biol. 2001; 21:8289–300. [PubMed: 11713266]

46. Grimm C, et al. Structural Basis of Assembly Chaperone- Mediated snRNP Formation. Mol Cell.
2013; 49:692–703. [PubMed: 23333303]

47. Chari A, et al. An assembly chaperone collaborates with the SMN complex to generate
spliceosomal SnRNPs. Cell. 2008; 135:497–509. [PubMed: 18984161]

48. Yong J, Kasim M, Bachorik JL, Wan L, Dreyfuss G. Gemin5 delivers snRNA precursors to the
SMN complex for snRNP biogenesis. Mol Cell. 2010; 38:551–62. [PubMed: 20513430]

49. Raker VA, Plessel G, Luhrmann R. The snRNP core assembly pathway: identification of stable
core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J. 1996;
15:2256–69. [PubMed: 8641291]

50. Kambach C, et al. Crystal structures of two Sm protein complexes and their implications for the
assembly of the spliceosomal snRNPs. Cell. 1999; 96:375–87. [PubMed: 10025403]

51. Leung AK, Nagai K, Li J. Structure of the spliceosomal U4 snRNP core domain and its implication
for snRNP biogenesis. Nature. 2011; 473:536–9. [PubMed: 21516107]

52. Kroiss M, et al. Evolution of an RNP assembly system: a minimal SMN complex facilitates
formation of UsnRNPs in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2008; 105:10045–
50. [PubMed: 18621711]

53. Zhang R, et al. Structure of a key intermediate of the SMN complex reveals Gemin2′s crucial
function in snRNP assembly. Cell. 2011; 146:384–95. [PubMed: 21816274]

54. Liu Q, Fischer U, Wang F, Dreyfuss G. The spinal muscular atrophy disease gene product, SMN,
and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell. 1997;
90:1013–21. [PubMed: 9323129]

55. Buhler D, Raker V, Luhrmann R, Fischer U. Essential role for the tudor domain of SMN in
spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum Mol Genet.
1999; 8:2351–7. [PubMed: 10556282]

56. Pellizzoni L, Charroux B, Dreyfuss G. SMN mutants of spinal muscular atrophy patients are
defective in binding to snRNP proteins. Proc Natl Acad Sci U S A. 1999; 96:11167–72. [PubMed:
10500148]

57. Hannus S, Buhler D, Romano M, Seraphin B, Fischer U. The Schizosaccharomyces pombe protein
Yab8p and a novel factor, Yip1p, share structural and functional similarity with the spinal
muscular atrophy-associated proteins SMN and SIP1. Hum Mol Genet. 2000; 9:663–74. [PubMed:
10749973]

Matera and Wang Page 17

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



58. Rajendra TK, et al. A Drosophila melanogaster model of spinal muscular atrophy reveals a
function for SMN in striated muscle. J Cell Biol. 2007; 176:831–41. [PubMed: 17353360]

59. Shpargel KB, Matera AG. Gemin proteins are required for efficient assembly of Sm-class
ribonucleoproteins. Proceedings of the National Academy of Sciences of the United States of
America. 2005; 102:17372–7. [PubMed: 16301532]

60. Selenko P, et al. SMN tudor domain structure and its interaction with the Sm proteins. Nat Struct
Biol. 2001; 8:27–31. [PubMed: 11135666]

61. Lorson CL, et al. SMN oligomerization defect correlates with spinal muscular atrophy severity.
Nat Genet. 1998; 19:63–6. [PubMed: 9590291]

62. Martin R, Gupta K, Ninan NS, Perry K, Van Duyne GD. The survival motor neuron protein forms
soluble glycine zipper oligomers. Structure. 2012; 20:1929–39. [PubMed: 23022347]

63. Fischer U, Luhrmann R. An essential signaling role for the m3G cap in the transport of U1 snRNP
to the nucleus. Science. 1990; 249:786–90. [PubMed: 2143847]

64. Narayanan U, Achsel T, Luhrmann R, Matera AG. Coupled in vitro import of U snRNPs and
SMN, the Spinal Muscular Atrophy protein. Mol Cell. 2004; 16:223–34. [PubMed: 15494309]

65. Fischer U, Sumpter V, Sekine M, Satoh T, Luhrmann R. Nucleo-cytoplasmic transport of U
snRNPs: definition of a nuclear location signal in the Sm core domain that binds a transport
receptor independently of the m3G cap. EMBO J. 1993; 12:573–83. [PubMed: 7679989]

66. Huber J, et al. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain
structure. EMBO J. 1998; 17:4114–26. [PubMed: 9670026]

67. Palacios I, Hetzer M, Adam SA, Mattaj IW. Nuclear import of U snRNPs requires importin beta.
EMBO J. 1997; 16:6783–92. [PubMed: 9362492]

68. Fischer U, Liu Q, Dreyfuss G. The SMN-SIP1 complex has an essential role in spliceosomal
snRNP biogenesis. Cell. 1997; 90:1023–9. [PubMed: 9323130]

69. Neubauer G, et al. Mass spectrometry and EST-database searching allows characterization of the
multi-protein spliceosome complex. Nat Genet. 1998; 20:46–50. [PubMed: 9731529]

70. Trinkle-Mulcahy L, et al. Identifying specific protein interaction partners using quantitative mass
spectrometry and bead proteomes. J Cell Biol. 2008; 183:223–39. [PubMed: 18936248]

71. Herold N, et al. Conservation of the protein composition and electron microscopy structure of
Drosophila melanogaster and human spliceosomal complexes. Mol Cell Biol. 2009; 29:281–301.
[PubMed: 18981222]

72. Matera AG, Shpargel KB. Pumping RNA: nuclear bodybuilding along the RNP pipeline. Curr
Opin Cell Biol. 2006; 18:317–24. [PubMed: 16632338]

73. Stanek D, Neugebauer KM. The Cajal body: a meeting place for spliceosomal snRNPs in the
nuclear maze. Chromosoma. 2006; 115:343–54. [PubMed: 16575476]

74. Sleeman JE, Lamond AI. Newly assembled snRNPs associate with coiled bodies before speckles,
suggesting a nuclear snRNP maturation pathway. Curr Biol. 1999; 9:1065–74. [PubMed:
10531003]

75. Lamond AI, Spector DL. Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol.
2003; 4:605–12. [PubMed: 12923522]

76. Ospina JK, et al. Cross-talk between snurportin1 subdomains. Mol Biol Cell. 2005; 16:4660–71.
[PubMed: 16030253]

77. Jady BE, et al. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body
following import from the cytoplasm. EMBO J. 2003; 22:1878–88. [PubMed: 12682020]

78. Nesic D, Tanackovic G, Kramer A. A role for Cajal bodies in the final steps of U2 snRNP
biogenesis. J Cell Sci. 2004; 117:4423–33. [PubMed: 15316075]

79. Schaffert N, Hossbach M, Heintzmann R, Achsel T, Luhrmann R. RNAi knockdown of hPrp31
leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. Embo J. 2004; 23:3000–9.
[PubMed: 15257298]

80. Novotny I, Blazikova M, Stanek D, Herman P, Malinsky J. In vivo kinetics of U4/U6.U5 tri-
snRNP formation in Cajal bodies. Mol Biol Cell. 2011; 22:513–23. [PubMed: 21177826]

81. Stanek D, Neugebauer KM. Detection of snRNP assembly intermediates in Cajal bodies by
fluorescence resonance energy transfer. J Cell Biol. 2004; 166:1015–25. [PubMed: 15452143]

Matera and Wang Page 18

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



82. Stanek D, Rader SD, Klingauf M, Neugebauer KM. Targeting of U4/U6 small nuclear RNP
assembly factor SART3/p110 to Cajal bodies. J Cell Biol. 2003; 160:505–16. [PubMed:
12578909]

83. Lemm I, et al. Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol Biol
Cell. 2006; 17:3221–31. [PubMed: 16687569]

84. Strzelecka M, Oates AC, Neugebauer KM. Dynamic control of Cajal body number during
zebrafish embryogenesis. Nucleus. 2010; 1:96–108. [PubMed: 21327108]

85. Takata H, Nishijima H, Maeshima K, Shibahara K. The integrator complex is required for integrity
of Cajal bodies. J Cell Sci. 2012; 125:166–75. [PubMed: 22250197]

86. Tucker KE, et al. Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and
SMN, the spinal muscular atrophy gene product. J Cell Biol. 2001; 154:293–307. [PubMed:
11470819]

87. Liu JL, et al. Coilin is essential for Cajal body organization in Drosophila melanogaster. Mol Biol
Cell. 2009; 20:1661–70. [PubMed: 19158395]

88. Walker MP, Tian L, Matera AG. Reduced viability, fertility and fecundity in mice lacking the cajal
body marker protein, coilin. PLoS One. 2009; 4:e6171. [PubMed: 19587784]

89. Strzelecka M, et al. Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis.
Nat Struct Mol Biol. 2010; 17:403–9. [PubMed: 20357773]

90. Spector DL, Lamond AI. Nuclear Speckles. Cold Spring Harb Perspect Biol. 2011

91. Hall LL, Smith KP, Byron M, Lawrence JB. Molecular anatomy of a speckle. Anat Rec A Discov
Mol Cell Evol Biol. 2006; 288:664–75. [PubMed: 16761280]

92. Girard C, et al. Post-transcriptional spliceosomes are retained in nuclear speckles until splicing
completion. Nature communications. 2012; 3:994.

93. Valadkhan S. Role of the snRNAs in spliceosomal active site. RNA biology. 2010; 7:345–53.
[PubMed: 20458185]

94. Du H, Rosbash M. The U1 snRNP protein U1C recognizes the 5′ splice site in the absence of base
pairing. Nature. 2002; 419:86–90. [PubMed: 12214237]

95. Wiesner S, Stier G, Sattler M, Macias MJ. Solution structure and ligand recognition of the WW
domain pair of the yeast splicing factor Prp40. Journal of molecular biology. 2002; 324:807–22.
[PubMed: 12460579]

96. Morris DP, Greenleaf AL. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal
domain of RNA polymerase II. The Journal of biological chemistry. 2000; 275:39935–43.
[PubMed: 10978320]

97. Gornemann J, et al. Cotranscriptional spliceosome assembly and splicing are independent of the
Prp40p WW domain. RNA. 2011; 17:2119–29. [PubMed: 22020974]

98. Staknis D, Reed R. SR proteins promote the first specific recognition of Pre-mRNA and are
present together with the U1 small nuclear ribonucleoprotein particle in a general splicing
enhancer complex. Molecular and cellular biology. 1994; 14:7670–82. [PubMed: 7935481]

99. Cho S, et al. Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and
U1-70K snRNP protein determines early spliceosome assembly. Proceedings of the National
Academy of Sciences of the United States of America. 2011; 108:8233–8. [PubMed: 21536904]

100. Pabis M, et al. The nuclear cap-binding complex interacts with the U4/U6.U5 tri-snRNP and
promotes spliceosome assembly in mammalian cells. RNA. 2013; 19:1054–63. [PubMed:
23793891]

101. Fox-Walsh KL, et al. The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
Proceedings of the National Academy of Sciences of the United States of America. 2005;
102:16176–81. [PubMed: 16260721]

102. Xiao X, Wang Z, Jang M, Burge CB. Coevolutionary networks of splicing cis-regulatory
elements. Proceedings of the National Academy of Sciences of the United States of America.
2007; 104:18583–8. [PubMed: 17998536]

103. Sterner DA, Carlo T, Berget SM. Architectural limits on split genes. Proc Natl Acad Sci U S A.
1996; 93:15081–5. [PubMed: 8986767]

Matera and Wang Page 19

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



104. De Conti L, Baralle M, Buratti E. Exon and intron definition in pre-mRNA splicing. Wiley
interdisciplinary reviews. RNA. 2013; 4:49–60. [PubMed: 23044818]

105. Bonnal S, et al. RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon
definition. Molecular cell. 2008; 32:81–95. [PubMed: 18851835]

106. Sharma S, Kohlstaedt LA, Damianov A, Rio DC, Black DL. Polypyrimidine tract binding protein
controls the transition from exon definition to an intron defined spliceosome. Nature structural &
molecular biology. 2008; 15:183–91.

107. Sun JS, Manley JL. A novel U2–U6 snRNA structure is necessary for mammalian mRNA
splicing. Genes Dev. 1995; 9:843–54. [PubMed: 7705661]

108. Raghunathan PL, Guthrie C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the
DEIH-box splicing factor Brr2. Current biology: CB. 1998; 8:847–55. [PubMed: 9705931]

109. Ilagan JO, Chalkley RJ, Burlingame AL, Jurica MS. Rearrangements within human spliceosomes
captured after exon ligation. RNA. 2013

110. Schwer B, Gross CH. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-
mRNA splicing. EMBO J. 1998; 17:2086–94. [PubMed: 9524130]

111. Fourmann JB, et al. Dissection of the factor requirements for spliceosome disassembly and the
elucidation of its dissociation products using a purified splicing system. Genes Dev. 2013;
27:413–28. [PubMed: 23431055]

112. Abelson J, et al. Conformational dynamics of single pre-mRNA molecules during in vitro
splicing. Nature structural & molecular biology. 2010; 17:504–12.

113. Hoskins AA, et al. Ordered and dynamic assembly of single spliceosomes. Science. 2011;
331:1289–95. [PubMed: 21393538]

114. Tseng CK, Cheng SC. Both catalytic steps of nuclear pre-mRNA splicing are reversible. Science.
2008; 320:1782–4. [PubMed: 18583613]

115. Yang F, et al. Splicing proofreading at 5′ splice sites by ATPase Prp28p. Nucleic acids research.
2013; 41:4660–70. [PubMed: 23462954]

116. Malca H, Shomron N, Ast G. The U1 snRNP base pairs with the 5′ splice site within a penta-
snRNP complex. Molecular and cellular biology. 2003; 23:3442–55. [PubMed: 12724403]

117. Stevens SW, et al. Composition and functional characterization of the yeast spliceosomal penta-
snRNP. Mol Cell. 2002; 9:31–44. [PubMed: 11804584]

118. Gornemann J, Kotovic KM, Hujer K, Neugebauer KM. Cotranscriptional spliceosome assembly
occurs in a stepwise fashion and requires the cap binding complex. Molecular cell. 2005; 19:53–
63. [PubMed: 15989964]

119. Behzadnia N, Hartmuth K, Will CL, Luhrmann R. Functional spliceosomal A complexes can be
assembled in vitro in the absence of a penta-snRNP. RNA. 2006; 12:1738–46. [PubMed:
16880538]

120. Schneider M, et al. Exon definition complexes contain the tri-snRNP and can be directly
converted into B-like precatalytic splicing complexes. Molecular cell. 2010; 38:223–35.
[PubMed: 20417601]

121. Madhani HD, Guthrie C. Dynamic RNA-RNA interactions in the spliceosome. Annual review of
genetics. 1994; 28:1–26.

122. Valadkhan S, Mohammadi A, Wachtel C, Manley JL. Protein-free spliceosomal snRNAs catalyze
a reaction that resembles the first step of splicing. RNA. 2007; 13:2300–11. [PubMed: 17940139]

123. Valadkhan S, Mohammadi A, Jaladat Y, Geisler S. Protein-free small nuclear RNAs catalyze a
two-step splicing reaction. Proceedings of the National Academy of Sciences of the United States
of America. 2009; 106:11901–6. [PubMed: 19549866]

124. Marcia M, Pyle AM. Visualizing group II intron catalysis through the stages of splicing. Cell.
2012; 151:497–507. [PubMed: 23101623]

125. Toor N, Keating KS, Pyle AM. Structural insights into RNA splicing. Current opinion in
structural biology. 2009; 19:260–6. [PubMed: 19443210]

126. Toor N, Keating KS, Taylor SD, Pyle AM. Crystal structure of a self-spliced group II intron.
Science. 2008; 320:77–82. [PubMed: 18388288]

Matera and Wang Page 20

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



127. Fica SM, et al. RNA catalyses nuclear pre-mRNA splicing. Nature. 2013; 503:229–34. [PubMed:
24196718]

128. Butcher SE. The spliceosome and its metal ions. Metal ions in life sciences. 2011; 9:235–51.
[PubMed: 22010274]

129. Cordin O, Hahn D, Beggs JD. Structure, function and regulation of spliceosomal RNA helicases.
Current opinion in cell biology. 2012; 24:431–8. [PubMed: 22464735]

130. Small EC, Leggett SR, Winans AA, Staley JP. The EF-G-like GTPase Snu114p regulates
spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. Molecular cell. 2006;
23:389–99. [PubMed: 16885028]

131. Galej WP, Oubridge C, Newman AJ, Nagai K. Crystal structure of Prp8 reveals active site cavity
of the spliceosome. Nature. 2013; 493:638–43. [PubMed: 23354046]

132. Schellenberg MJ, et al. A conformational switch in PRP8 mediates metal ion coordination that
promotes pre-mRNA exon ligation. Nature structural & molecular biology. 2013; 20:728–34.

133. Mozaffari-Jovin S, et al. Inhibition of RNA helicase Brr2 by the C-terminal tail of the
spliceosomal protein Prp8. Science. 2013; 341:80–4. [PubMed: 23704370]

134. Ohrt T, et al. Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in
a purified system. RNA. 2013; 19:902–15. [PubMed: 23685439]

135. Sun H, Chasin LA. Multiple splicing defects in an intronic false exon. Mol Cell Biol. 2000;
20:6414–25. [PubMed: 10938119]

136. Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: towards a cellular code.
Nature reviews Molecular cell biology. 2005; 6:386–98.

137. Wang Z, Burge CB. Splicing regulation: from a parts list of regulatory elements to an integrated
splicing code. RNA. 2008; 14:802–13. [PubMed: 18369186]

138. Bessonov S, Anokhina M, Will CL, Urlaub H, Luhrmann R. Isolation of an active step I
spliceosome and composition of its RNP core. Nature. 2008; 452:846–50. [PubMed: 18322460]

139. Zhou Z, Licklider LJ, Gygi SP, Reed R. Comprehensive proteomic analysis of the human
spliceosome. Nature. 2002; 419:182–5. [PubMed: 12226669]

140. Hegele A, et al. Dynamic protein-protein interaction wiring of the human spliceosome. Molecular
cell. 2012; 45:567–80. [PubMed: 22365833]

141. Izquierdo JM, et al. Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and
PTB on exon definition. Molecular cell. 2005; 19:475–84. [PubMed: 16109372]

142. Sharma S, Maris C, Allain FH, Black DL. U1 snRNA directly interacts with polypyrimidine tract-
binding protein during splicing repression. Molecular cell. 2011; 41:579–88. [PubMed:
21362553]

143. Chiou NT, Shankarling G, Lynch KW. HnRNP L and HnRNP A1 Induce Extended U1 snRNA
Interactions with an Exon to Repress Spliceosome Assembly. Molecular cell. 2013

144. House AE, Lynch KW. An exonic splicing silencer represses spliceosome assembly after ATP-
dependent exon recognition. Nature structural & molecular biology. 2006; 13:937–44.

145. McCullough AJ, Berget SM. G triplets located throughout a class of small vertebrate introns
enforce intron borders and regulate splice site selection. Mol Cell Biol. 1997; 17:4562–71.
[PubMed: 9234714]

146. Chou MY, Rooke N, Turck CW, Black DL. hnRNP H is a component of a splicing enhancer
complex that activates a c-src alternative exon in neuronal cells. Mol Cell Biol. 1999; 19:69–77.
[PubMed: 9858532]

147. Chen CD, Kobayashi R, Helfman DM. Binding of hnRNP H to an exonic splicing silencer is
involved in the regulation of alternative splicing of the rat beta-tropomyosin gene. Genes Dev.
1999; 13:593–606. [PubMed: 10072387]

148. Caputi M, Zahler AM. Determination of the RNA binding specificity of the heterogeneous
nuclear ribonucleoprotein (hnRNP) H/H′/F/2H9 family. J Biol Chem. 2001; 276:43850–9.
[PubMed: 11571276]

149. Ule J, et al. An RNA map predicting Nova-dependent splicing regulation. Nature. 2006; 444:580–
6. [PubMed: 17065982]

Matera and Wang Page 21

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



150. Wang Y, et al. A complex network of factors with overlapping affinities represses splicing
through intronic elements. Nat Struct Mol Biol. 2013; 20:36–45. [PubMed: 23241926]

151. Borah S, Wong AC, Steitz JA. Drosophila hnRNP A1 homologs Hrp36/Hrp38 enhance U2-type
versus U12-type splicing to regulate alternative splicing of the prospero twintron. Proceedings of
the National Academy of Sciences of the United States of America. 2009; 106:2577–82.
[PubMed: 19196985]

152. Wang Z, et al. Systematic identification and analysis of exonic splicing silencers. Cell. 2004;
119:831–45. [PubMed: 15607979]

153. Yu Y, et al. Dynamic regulation of alternative splicing by silencers that modulate 5′ splice site
competition. Cell. 2008; 135:1224–36. [PubMed: 19109894]

154. Donahue CP, Muratore C, Wu JY, Kosik KS, Wolfe MS. Stabilization of the tau exon 10 stem
loop alters pre-mRNA splicing. J Biol Chem. 2006; 281:23302–6. [PubMed: 16782711]

155. Graveley BR. Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing
intronic RNA secondary structures. Cell. 2005; 123:65–73. [PubMed: 16213213]

156. Yang Y, et al. RNA secondary structure in mutually exclusive splicing. Nat Struct Mol Biol.
2011; 18:159–68. [PubMed: 21217700]

157. Wang X, et al. An RNA architectural locus control region involved in Dscam mutually exclusive
splicing. Nature communications. 2012; 3:1255.

158. Bleichert F, Baserga SJ. The long unwinding road of RNA helicases. Mol Cell. 2007; 27:339–52.
[PubMed: 17679086]

159. Honig A, Auboeuf D, Parker MM, O’Malley BW, Berget SM. Regulation of alternative splicing
by the ATP-dependent DEAD-box RNA helicase p72. Mol Cell Biol. 2002; 22:5698–707.
[PubMed: 12138182]

160. Lee CG. RH70, a bidirectional RNA helicase, co-purifies with U1snRNP. J Biol Chem. 2002;
277:39679–83. [PubMed: 12193588]

161. Weeks KM. Advances in RNA structure analysis by chemical probing. Current opinion in
structural biology. 2010; 20:295–304. [PubMed: 20447823]

162. Khodor YL, et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in
Drosophila. Genes & development. 2011; 25:2502–12. [PubMed: 22156210]

163. Ip JY, et al. Global impact of RNA polymerase II elongation inhibition on alternative splicing
regulation. Genome research. 2011; 21:390–401. [PubMed: 21163941]

164. Roberts GC, Gooding C, Mak HY, Proudfoot NJ, Smith CW. Co-transcriptional commitment to
alternative splice site selection. Nucleic acids research. 1998; 26:5568–72. [PubMed: 9837984]

165. Kornblihtt AR, et al. Alternative splicing: a pivotal step between eukaryotic transcription and
translation. Nature reviews. Molecular cell biology. 2013; 14:153–65.

166. Brugiolo M, Herzel L, Neugebauer KM. Counting on co-transcriptional splicing. F1000prime
reports. 2013; 5:9. [PubMed: 23638305]

167. Wang Y, Ma M, Xiao X, Wang Z. Intronic splicing enhancers, cognate splicing factors and
context-dependent regulation rules. Nat Struct Mol Biol. 2012

168. Spellman R, Llorian M, Smith CW. Crossregulation and functional redundancy between the
splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell. 2007; 27:420–34. [PubMed:
17679092]

169. Boutz PL, et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins
reprograms alternative splicing in developing neurons. Genes Dev. 2007; 21:1636–52. [PubMed:
17606642]

170. Barash Y, et al. Deciphering the splicing code. Nature. 2010; 465:53–9. [PubMed: 20445623]

171. Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature.
2010; 463:457–63. [PubMed: 20110989]

172. Nilsen TW. The spliceosome: the most complex macromolecular machine in the cell? BioEssays:
news and reviews in molecular, cellular and developmental biology. 2003; 25:1147–9.

173. Smith ER, et al. The little elongation complex regulates small nuclear RNA transcription. Mol
Cell. 2011; 44:954–65. [PubMed: 22195968]

Matera and Wang Page 22

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



174. Fabrizio P, et al. The evolutionarily conserved core design of the catalytic activation step of the
yeast spliceosome. Mol Cell. 2009; 36:593–608. [PubMed: 19941820]

175. Singh RK, Cooper TA. Pre-mRNA splicing in disease and therapeutics. Trends Mol Med. 2012;
18:472–82. [PubMed: 22819011]

176. Padgett RA. New connections between splicing and human disease. Trends Genet. 2012; 28:147–
54. [PubMed: 22397991]

177. Tanackovic G, et al. PRPF mutations are associated with generalized defects in spliceosome
formation and pre-mRNA splicing in patients with retinitis pigmentosa. Human molecular
genetics. 2011; 20:2116–30. [PubMed: 21378395]

178. Utz VM, Beight CD, Marino MJ, Hagstrom SA, Traboulsi EI. Autosomal Dominant Retinitis
Pigmentosa Secondary to Pre-mRNA Splicing-Factor Gene PRPF31 (RP11): Review of Disease
Mechanism and Report of a Family with a Novel 3-Base Pair Insertion. Ophthalmic genetics.
2013

179. Pena V, Liu S, Bujnicki JM, Luhrmann R, Wahl MC. Structure of a multipartite protein-protein
interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Molecular cell.
2007; 25:615–24. [PubMed: 17317632]

180. He H, et al. Mutations in U4atac snRNA, a component of the minor spliceosome, in the
developmental disorder MOPD I. Science. 2011; 332:238–40. [PubMed: 21474760]

181. Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates
splicing and is responsible for spinal muscular atrophy. Proceedings of the National Academy of
Sciences of the United States of America. 1999; 96:6307–11. [PubMed: 10339583]

182. Schrank B, et al. Inactivation of the survival motor neuron gene, a candidate gene for human
spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci
U S A. 1997; 94:9920–5. [PubMed: 9275227]

183. Gabanella F, et al. Ribonucleoprotein assembly defects correlate with spinal muscular atrophy
severity and preferentially affect a subset of spliceosomal snRNPs. PLoS One. 2007; 2:e921.
[PubMed: 17895963]

184. Praveen K, Wen Y, Matera AG. A Drosophila model of spinal muscular atrophy uncouples
snRNP biogenesis functions of survival motor neuron from locomotion and viability defects. Cell
Rep. 2012; 1:624–31. [PubMed: 22813737]

185. Garcia EL, Lu Z, Meers MP, Praveen K, Matera AG. Developmental arrest of Drosophila
survival motor neuron (Smn) mutants accounts for differences in expression of minor intron-
containing genes. RNA. 2013; 19 in press.

186. Baumer D, et al. Alternative splicing events are a late feature of pathology in a mouse model of
spinal muscular atrophy. PLoS Genet. 2009; 5:e1000773. [PubMed: 20019802]

187. Cazzola M, Rossi M, Malcovati L. Biologic and clinical significance of somatic mutations of
SF3B1 in myeloid and lymphoid neoplasms. Blood. 2013; 121:260–9. [PubMed: 23160465]

188. Yoshida K, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature.
2011; 478:64–9. [PubMed: 21909114]

189. Chesnais V, et al. Spliceosome mutations in myelodysplastic syndromes and chronic
myelomonocytic leukemia. Oncotarget. 2012; 3:1284–93. [PubMed: 23327988]

190. Dhir A, Buratti E, van Santen MA, Luhrmann R, Baralle FE. The intronic splicing code: multiple
factors involved in ATM pseudoexon definition. EMBO J. 2010; 29:749–60. [PubMed:
20094034]

191. Lewandowska MA, Stuani C, Parvizpur A, Baralle FE, Pagani F. Functional studies on the ATM
intronic splicing processing element. Nucleic Acids Res. 2005; 33:4007–15. [PubMed:
16030351]

192. Pagani F, et al. A new type of mutation causes a splicing defect in ATM. Nat Genet. 2002;
30:426–9. [PubMed: 11889466]

193. Gunderson SI, Polycarpou-Schwarz M, Mattaj IW. U1 snRNP inhibits pre-mRNA
polyadenylation through a direct interaction between U1 70K and poly(A) polymerase. Mol Cell.
1998; 1:255–64. [PubMed: 9659922]

194. Langemeier J, Radtke M, Bohne J. U1 snRNP-mediated poly(A) site suppression: Beneficial and
deleterious for mRNA fate. RNA Biol. 2013; 10

Matera and Wang Page 23

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



195. Kaida D, et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation.
Nature. 2010; 468:664–8. [PubMed: 20881964]

196. Almada AE, Wu X, Kriz AJ, Burge CB, Sharp PA. Promoter directionality is controlled by U1
snRNP and polyadenylation signals. Nature. 2013; 499:360–3. [PubMed: 23792564]

197. Berg MG, et al. U1 snRNP determines mRNA length and regulates isoform expression. Cell.
2012; 150:53–64. [PubMed: 22770214]

198. Peterson ML, Bingham GL, Cowan C. Multiple features contribute to the use of the
immunoglobulin M secretion-specific poly(A) signal but are not required for developmental
regulation. Mol Cell Biol. 2006; 26:6762–71. [PubMed: 16943419]

199. Hall-Pogar T, Liang S, Hague LK, Lutz CS. Specific trans-acting proteins interact with auxiliary
RNA polyadenylation elements in the COX-2 3′-UTR. RNA. 2007; 13:1103–15. [PubMed:
17507659]

200. Luo W, et al. The Conserved Intronic Cleavage and Polyadenylation Site of CstF-77 Gene
Imparts Control of 3′ End Processing Activity through Feedback Autoregulation and by U1
snRNP. PLoS genetics. 2013; 9:e1003613. [PubMed: 23874216]

201. Michaeli S. Trans-splicing in trypanosomes: machinery and its impact on the parasite
transcriptome. Future microbiology. 2011; 6:459–74. [PubMed: 21526946]

202. Lasda EL, Blumenthal T. Trans-splicing. Wiley interdisciplinary reviews. RNA. 2011; 2:417–34.
[PubMed: 21957027]

203. Bruzik JP, Maniatis T. Spliced leader RNAs from lower eukaryotes are trans-spliced in
mammalian cells. Nature. 1992; 360:692–5. [PubMed: 1465136]

Matera and Wang Page 24

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. Comparison of transcription and processing of snRNAs and mRNAs
Sm-class snRNA genes (a) share a number of common features with protein-coding mRNA

genes (b), including the arrangement of upstream and downstream control elements. The

cis-acting elements and trans-acting factors involved in expression of these two types of

transcripts are depicted. The DSE (distal sequence element) and PSE (proximal sequence

element) are roughly equivalent to the enhancer and TATA box elements, respectively, of

mRNA genes. Positive transcription elongation factor b (P-TEFb; not shown) is recruited to

both promoters by RNA pol II. In addition, snRNA promoters recruit the LEC (little

elongation complex), whereas mRNA promoters recruit the SEC (super elongation

complex)173. Initiation of snRNA transcription requires general transcription factors (GTFs)

as well as the snRNA-activating protein complex (SNAPc). The Integrator complex is

required for recognition of snRNA downstream processing signals, including the 3′ box.

Two of its subunits, IntS11 and IntS9, share sequence similarity to the mRNA 3′ processing

factors CPSF73 and CPSF100. For both snRNAs and mRNAs, 5′ end capping and 3′ end

cleavage are thought to occur co-transcriptionally. Additional processing factors (not shown)

are recruited to the nascent transcripts via interactions with the pol II C-terminal domain.
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Figure 2. Maturation of snRNAs requires nuclear and cytoplasmic regulatory steps
The snRNA pre-export complex consists of the heterodimeric cap-binding complex (CBC),

arsenite resistance protein 2 (ARS2), the hyperphosphorylated form of the export adaptor

PHAX and the large multi-subunit Integrator complex (not shown). Upon release from the

site of snRNA transcription, the pre-export complex is remodelled within the nucleoplasm to

form the export complex. This step involves removal of Integrator proteins and binding of

the export receptor CRM1 (chromosome region maintenance 1) and the GTP-bound form of

the RAN GTPase. Nucleoplasmic remodelling probably includes a Cajal body-mediated

surveillance step to ensure RNP quality. Once transported to the cytoplasm, these export

factors dissociate from the pre-snRNA prior to Sm core assembly and exonucleolytic

trimming of the snRNA 3′ end (orange stem sloop). Following assembly of the Sm core

snRNP (detailed in Fig. 3), the 7-methylguanosine (m7G) cap is hypermethylated by TGS1

(trimethylguanosine synthase 1) to form a 2,2,7-trimethylguanosine (TMG) cap. Generation

of the TMG cap triggers assembly of the import complex, which includes the import adaptor

snurportin (SPN) and the import receptor importin-β; both SPN and the SMN complex make

functional contacts with importin-β (for simplicity, other components of the SMN complex

are not depicted). Upon nuclear re-entry, the Sm snRNPs transiently localize to Cajal bodies

for nuclear maturation steps, followed by dissociation from SMN and storage within splicing

factor compartments called nuclear speckles. Spliceosome assembly (detailed in Fig. 4)

takes place at sites of pre-mRNA transcription.
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Figure 3. Assisted assembly of Sm-class snRNPs
Following their translation, Sm proteins are sequestered and symmetrically dimethylated by

the PRMT5 complex. Once formed, the 6S complex of the Sm (D1-D2-F-E-G) pentamer

and pICln is thought to be released from PRMT5c as a separate particle. This 6S complex is

delivered to the oligomeric, multi-subunit SMN complex, which provides the overall

platform for subsequent assembly steps. Gemin2, (Gem2), the heterodimeric binding partner

of SMN, binds to the 6S complex, forming an early 8S assembly intermediate. In parallel,

the SMN complex, including Gemin5 (Gem5), recognizes specific sequence elements (the

Sm-site and the 3′ stem-loop) within the post-export snRNA. A poorly understood series of

rearrangements leads to formation of the assembled core snRNP. These involve recruitment

of the m7G-capped snRNA and the SmB-SmD3-pICln subcomplex, followed by

dissociation of pICln. Prior to SmB-SmD3 incorporation, the ‘horseshoe’ intermediate may

be stabilized by the Tudor domain of SMN, which contains an Sm fold. Incorporation of

SmB-SmD3 and completion of the heteroheptameric ring requires the presence of an RNA

that contains an Sm site. This produces an assembled core snRNP that is ready for

downstream events including TMG capping and formation of the nuclear import complex

(see Fig. 2).

Matera and Wang Page 27

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. Step-wise assembly of the spliceosome and catalytic steps of splicing
Spliceosome assembly takes place at sites of transcription. (a) The U1 and U2 snRNPs

assemble onto the pre-mRNA in a co-transcriptional manner through recognition of the 5′

and 3′ splice sites, which is mediated by the C-terminal domain (CTD) of pol II. The U1 and

U2 snRNPs interact with each other to form the pre-spliceosome (complex A). This process

is dependent on DExD/H helicases Prp5 and Sub2. In a subsequent reaction catalysed by

Prp28, the preassembled tri-snRNP U4/U6•U5 is recruited to form complex B. The resulting

complex B undergoes a series of rearrangements to form a catalytically active complex B

(complex B*), which requires multiple RNA helicases (Brr2, Snu114 and Prp2) and results

in the release of U4 and U1 snRNPs. Complex B* then carries out the first catalytic step of

splicing, generating complex C, which contains the free exon 1 and the intron-exon 2 lariat

intermediate. Complex C undergoes additional rearrangements and then carries out the

second catalytic step, resulting in a post-spliceosomal complex that contains the lariat intron

and spliced exons. Finally, the U2, U5 and U6 snRNPs are released from the mRNP particle

and recycled for additional rounds of splicing. Release of the spliced product from the

spliceosome is catalysed by the DExD/H helicase Prp22109, 110. (b) During splicing, RNA-

RNA interactions are rearranged in a stepwise manner to create the catalytic center of the

spliceosome. Initially, U1 and U2 snRNA pair with the 5′ss and the branch point sequence

within complex A (left, the branch point adenosine is indicated). Subsequently, complex A

associates with the U4/U6•U5 tri-snRNP, leading to new base pairs between U2 and U6

snRNA and between U5 snRNA and exonic sequences near the 5′ss (middle). The U4

snRNA is disassociated from U6 to expose the 5′ end of U6, which then base pairs with the

5′ss to displace U1 snRNA (right). In the end, an extensive network of base pairing

interactions is formed between U6 and U2, juxtaposing the 5′ss and branch point adenosine
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for the first catalytic step of splicing. The central region of U6 snRNA forms an

intramolecular stem-loop (the U6-ISL) that is key for splicing catalysis.
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Figure 5. Regulation of alternative splicing
(a) Splice site choice is regulated through cis-acting splicing regulatory elements (SREs) and

trans-acting splicing factors. Based on their relative locations and activities, SREs can be

classified as exonic or intronic splicing enhancers and silencers (ESEs, ISEs, ESSs or ISSs).

These SREs specifically recruit splicing factors to promote or inhibit recognition of nearby

splice sites. Common splicing factors include SR proteins that recognize ESEs to promote

splicing, as well as various hnRNPs that typically recognize ESSs to inhibit splicing. Both

often affect the function of U2 and U1 snRNPs during spliceosomal assembly. (b) The

activity of splicing factors and cis-acting SREs is context-dependent. Four well

characterized examples are shown from left to right. Oligo-G tracts, recognized by hnRNP

H, function as ISEs to promote splicing when they are located inside an intron or as ESSs

when located within exons (left). YCAY motifs, recognized by NOVA, act as ESEs when

located inside an exon, as ISSs when located in the upstream intron of an alternative exon,

or as ISEs when located in the downstream intron. Binding sites for SR proteins or hnRNP

A1 also have distinct activities when located at different regions on the pre-mRNA.
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Table 1

Composition of major spliceosomal snRNPs*.

snRNP RNA secondary structure
(length**)

Sm proteins Other core proteins
associated with snRNA

Associated proteins

U1 snRNP

(568 nt)

Sm proteins (B, D3, G, E, F,
D2 and D1)

Snp1 (U1-70K)
Mud1 (U1A)
Yhc (U1C)

Prp39, Prp40, Prp42
Snu71
Nam8
Snu56
Urn1

U2 snRNP

(1175 nt)

Sm proteins (B, D3, G, E, F,
D2 and D1)

Lea1 (U2A′), Msl1 (U2B″),
Prp9 (SF3a60)
Prp11 (SF3a66)
Prp21 (SF3a120)
Rds3 (SF3b14b)
Snu17 (SF3b14a/p14)
Hsh155 (SF3b155)
Cus1 (SF3b145)
Rse1 (SF3b130)
Hsh49 (SF3b49)
Ysf3 (SF3b10)

U2AF35
Mud2 (U2AF65)
Msl5 (SF1/BBP)

U4/U6 snRNP

(160/112 nt)

Sm proteins for U4 snRNA
(B, D3, G, E, F, D2 and D1)
LSm proteins for U6 snRNA
(Lsm2–8)

Prp3
Prp31
Prp4
Snu13/15.5K

U5 snRNP

(179 or 214 nt, for short or long
forms)

Sm proteins (B, D3, G, E, F,
D2 and D1)

Prp8
Prp6
Prp28
Brr2
Snu114
U5-40K
Dib1

Snu23
Prp38
Prp2
Spp2
Yju2
Cbc2 (52K)

U4/U5/U6 snRNP 2 set of Sm proteins (B, D3,
G, E, F, D2 and D1) for U4
and U5
1 set of LSm proteins
(Lsm2–8) for U6

Prp3
Prp31
Prp4
Snu13/15.5K
Prp8
Prp6
Prp28
Brr2
Snu114
U5-40K
SnRNP27/27K
Dib1

Snu23
Prp38
Prp2
Spp2
Yju2
Snu66
Sad1

Cus1, cold-sensitive U2 snRNA suppressor 1: Lea1, looks exceptionally like U2A 1; Lsm, Sm-like; Msl, Male-specific lethal homologue; nt,
nucleotides; Prp, pre-mRNA processing; Rds3, regulator of drug sensitivity 3; Rse1, RNA splicing and ER to Golgi transport factor 1; Sad1,
snRNP assembly-defective 1; SF, splicing factor; Spp2, suppressor of PRP; snRNA, small nuclear RNA; snRNP, small nuclear ribonucleoprotein;
Snu, U5 small nuclear ribonucleoprotein component; U2AF, U2 auxiliary factor; Urn1, U2-U5-U6 snRNP, RES complex and NTC-interacting pre-
mRNA-splicing factor 1.

*
The protein composition is primarily based on a mass spectrometric analysis of the yeast spliceosome174; certain regulatory factors that are

closely associated with the core spliceosome (such as SR proteins) are not included. Proteins were listed using the budding yeast nomenclature
unless there was no known yeast homologue. In certain cases, the common name of a metazoan homologue was also included.

**
The snRNA lengths are based on yeast transcripts.
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