32,239 research outputs found

    Revisiting the Hanbury Brown-Twiss set-up for fractional statistics

    Full text link
    The Hanbury Brown-Twiss experiment has proved to be an effective means of probing statistics of particles. Here, in a set-up involving edge-state quasiparticles in a fractional quantum Hall system, we show that a variant of the experiment composed of two sources and two sinks can be used to unearth fractional statistics. We find a clear cut signature of the statistics in the equal-time current-current correlation function for quasiparticle currents emerging from the two sources and collected at the sinks.Comment: 4 pages, 3 figure

    Microarray-based ultra-high resolution discovery of genomic deletion mutations

    Get PDF
    BACKGROUND: Oligonucleotide microarray-based comparative genomic hybridization (CGH) offers an attractive possible route for the rapid and cost-effective genome-wide discovery of deletion mutations. CGH typically involves comparison of the hybridization intensities of genomic DNA samples with microarray chip representations of entire genomes, and has widespread potential application in experimental research and medical diagnostics. However, the power to detect small deletions is low. RESULTS: Here we use a graduated series of Arabidopsis thaliana genomic deletion mutations (of sizes ranging from 4 bp to ~5 kb) to optimize CGH-based genomic deletion detection. We show that the power to detect smaller deletions (4, 28 and 104 bp) depends upon oligonucleotide density (essentially the number of genome-representative oligonucleotides on the microarray chip), and determine the oligonucleotide spacings necessary to guarantee detection of deletions of specified size. CONCLUSIONS: Our findings will enhance a wide range of research and clinical applications, and in particular will aid in the discovery of genomic deletions in the absence of a priori knowledge of their existence

    The effect of 3He impurities on the nonclassical response to oscillation of solid 4He

    Full text link
    We have investigated the influence of impurities on the possible supersolid transition by systematically enriching isotopically-pure 4He (< 1 ppb of 3He) with 3He. The onset of nonclassical rotational inertia is broadened and shifts monotonically to higher temperature with increasing 3He concentration, suggesting that the phenomenon is correlated to the condensation of 3He atoms onto the dislocation network in solid 4He.Comment: 4 page

    Consistency between renormalization group running of chiral operator and counting rule -- Case of chiral pion production operator --

    Full text link
    In nuclear chiral perturbation theory (ChPT), an operator is defined in a space with a cutoff which may be varied within a certain range. The operator runs as a result of the variation of the cutoff [renormalization group (RG) running]. In order for ChPT to be useful, the operator should run in a way consistent with the counting rule; that is, the running of chiral counter terms have to be of natural size. We vary the cutoff using the Wilsonian renormalization group (WRG) equation, and examine this consistency. As an example, we study the s-wave pion production operator for NN\to d pi, derived in ChPT. We demonstrate that the WRG running does not generate any chiral-symmetry-violating (CSV) interaction, provided that we start with an operator which does not contain a CSV term. We analytically show how the counter terms are generated in the WRG running in case of the infinitesimal cutoff reduction. Based on the analytic result, we argue a range of the cutoff variation for which the running of the counter terms is of natural size. Then, we numerically confirm this.Comment: 28 pages, 5 figures, significantly changed, published versio

    Vibration-induced granular segregation: a phenomenon driven by three mechanisms

    Full text link
    The segregation of large spheres in a granular bed under vertical vibrations is studied. In our experiments we systematically measure rise times as a function of density, diameter and depth; for two different sinusoidal excitations. The measurements reveal that: at low frequencies, inertia and convection are the only mechanisms behind segregation. Inertia (convection) dominates when the relative density is greater (less) than one. At high frequencies, where convection is suppressed, fluidization of the granular bed causes either buoyancy or sinkage and segregation occurs.Comment: 4 pages. 3 figures, revtex4, to appear in PRL (in press

    Proton-Rich Nuclear Statistical Equilibrium

    Full text link
    Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar-disk drive the matter proton-rich prior to or during the nucleosynthesis. In this paper we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton to nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freeze-out temperature is mainly composed of Ni56 and free protons. Previous results of nuclear reaction network calculations rely on this non-intuitive high proton abundance, which this paper will explain. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a delicate competition between the entropy and the nuclear binding energy.Comment: 4 pages, 7 figure

    Muon Anomalous g2g -2 and Gauged LμLτL_\mu - L_\tau Models

    Full text link
    In this paper we study ZZ' contribution to g2g -2 of the muon anomalous magnetic dipole moment in gauged U(1)LμLτU(1)_{L_\mu - L_\tau} models. Here LiL_i are the lepton numbers. We find that there are three classes of models which can produce a large value of g2g-2 to account for possible discrepancy between the experimental data and the Standard Model prediction. The three classes are: a) Models with an exact U(1)LμLτU(1)_{L_\mu - L_\tau}. In these models, ZZ' is massless. The new gauge interaction coupling ea/cosθWe a/\cos\theta_W is constrained to be 0.8×103<a<2.24×103 0.8\times 10^{-3} < |a| < 2.24\times 10^{-3}. b) Models with broken U(1)LμLτU(1)_{L_\mu - L_\tau} and the breaking scale is not related to electroweak symmetry breaking scale. The ZZ' gauge boson is massive. The allowed range of the coupling and the ZZ' mass are constrained, but ZZ' mass can be large; And c) The U(1)LμLτU(1)_{L_\mu-L_\tau} is broken and the breaking scale is related to the electroweak scale. In this case the ZZ' mass is constrained to be 1.2\sim 1.2 GeV. We find that there are interesting experimental signatures in μ+μμ+μ,τ+τ\mu^+\mu^-\to \mu^+\mu^-, \tau^+\tau^- in these models.Comment: 13 pages, 9 figure

    Sound propagation in density wave conductors and the effect of long-range Coulomb interaction

    Full text link
    We study theoretically the sound propagation in charge- and spin-density waves in the hydrodynamic regime. First, making use of the method of comoving frame, we construct the stress tensor appropriate for quasi-one dimensional systems within tight-binding approximation. Taking into account the screening effect of the long-range Coulomb interaction, we find that the increase of the sound velocity below the critical temperature is about two orders of magnitude less for longitudinal sound than for transverse one. It is shown that only the transverse sound wave with displacement vector parallel to the chain direction couples to the phason of the density wave, therefore we expect significant electromechanical effect only in this case.Comment: revtex, 14 pages (in preprint form), submitted to PR

    Kaon differential flow in relativistic heavy-ion collisions

    Get PDF
    Using a relativistic transport model, we study the azimuthal momentum asymmetry of kaons with fixed transverse momentum, i.e., the differential flow, in heavy-ion collisions at beam momentum of 6 GeV/c per nucleon, available from the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL). We find that in the absence of kaon potential the kaon differential flow is positive and increases with transverse momentum as that of nucleons. The repulsive kaon potential as predicted by theoretical models, however, reduces the kaon differetnial flow, changing it to negative for kaons with low momenta. Cancellation between the negative differential flow at low mementa and the positive one at high momenta is then responsible for the experimentally observed nearly vanishing in-plane transverse flow of kaons in heavy ion experiments.Comment: Phys. Rev. C in pres
    corecore