20 research outputs found

    Dynamical study of spinodal decomposition in heavy ion collisions

    Full text link
    Nuclei undergo a phase transition in nuclear reactions according to a caloric curve determined by the amount of entropy. Here, the generation of entropy is studied in relation to the size of the nuclear system.Comment: 4 pages, 2 figures, Contributed paper for the 5th Latin American Symposium on High Energy Physics: V-SILAFAE (2004

    Topological characterization of neutron star crusts

    Get PDF
    Neutron star crusts are studied using a classical molecular dynamics model developed for heavy ion reactions. After the model is shown to produce a plethora of the so-called "pasta" shapes, a series of techniques borrowed from nuclear physics, condensed matter physics and topology are used to craft a method that can be used to characterize the shape of the pasta structures in an unequivocal way

    Geometrical aspects of isoscaling

    Full text link
    The property of isoscaling in nuclear fragmentation is studied using a simple bond percolation model with ``isospin'' added as an extra degree of freedom. It is shown analytically, first, that isoscaling is expected to exist in such a simple model with the only assumption of fair sampling with homogeneous probabilities. Second, numerical percolations of hundreds of thousands of grids of different sizes and with different NN to ZZ ratios confirm this prediction with remarkable agreement. It is thus concluded that isoscaling emerges from the simple assumption of fair sampling with homogeneous probabilities, a requirement which, if put in the nomenclature of the minimum information theory, translates simply into the existence of equiprobable configurations in maximum entropy states

    A Quasi-Classical Model of Intermediate Velocity Particle Production in Asymmetric Heavy Ion Reactions

    Full text link
    The particle emission at intermediate velocities in mass asymmetric reactions is studied within the framework of classical molecular dynamics. Two reactions in the Fermi energy domain were modelized, 58^{58}Ni+C and 58^{58}Ni+Au at 34.5 MeV/nucleon. The availability of microscopic correlations at all times allowed a detailed study of the fragment formation process. Special attention was paid to the physical origin of fragments and emission timescales, which allowed us to disentangle the different processes involved in the mid-rapidity particle production. Consequently, a clear distinction between a prompt pre- equilibrium emission and a delayed aligned asymmetric breakup of the heavier partner of the reaction was achieved.Comment: 8 pages, 7 figures. Final version: figures were redesigned, and a new section discussing the role of Coulomb in IMF production was include
    corecore