57,099 research outputs found
The phase transition in the anisotropic Heisenberg model with long range dipolar interactions
In this work we have used extensive Monte Carlo calculations to study the
planar to paramagnetic phase transition in the two-dimensional anisotropic
Heisenberg model with dipolar interactions (AHd) considering the true
long-range character of the dipolar interactions by means of the Ewald
summation. Our results are consistent with an order-disorder phase transition
with unusual critical exponents in agreement with our previous results for the
Planar Rotator model with dipolar interactions. Nevertheless, our results
disagrees with the Renormalization Group results of Maier and Schwabl [PRB, 70,
134430 (2004)] and the results of Rapini et. al. [PRB, 75, 014425 (2007)],
where the AHd was studied using a cut-off in the evaluation of the dipolar
interactions. We argue that besides the long-range character of dipolar
interactions their anisotropic character may have a deeper effect in the system
than previously believed. Besides, our results shows that the use of a cut-off
radius in the evaluation of dipolar interactions must be avoided when analyzing
the critical behavior of magnetic systems, since it may lead to erroneous
results.Comment: Accepted for publication in the Journal of Magnetism and Magnetic
Materials. arXiv admin note: substantial text overlap with arXiv:1109.184
Monomial transformations of the projective space
We prove that, over any field, the dimension of the indeterminacy locus of a
rational transformation of which is defined by monomials of the same
degree with no common factors is at least , provided that the
degree of as a map is not divisible by . This implies upper bounds on
the multidegree of
Spin Orbit Coupling and Spin Waves in Ultrathin Ferromagnets: The Spin Wave Rashba Effect
We present theoretical studies of the influence of spin orbit coupling on the
spin wave excitations of the Fe monolayer and bilayer on the W(110) surface.
The Dzyaloshinskii-Moriya interaction is active in such films, by virtue of the
absence of reflection symmetry in the plane of the film. When the magnetization
is in plane, this leads to a linear term in the spin wave dispersion relation
for propagation across the magnetization. The dispersion relation thus assumes
a form similar to that of an energy band of an electron trapped on a
semiconductor surfaces with Rashba coupling active. We also show SPEELS
response functions that illustrate the role of spin orbit coupling in such
measurements. In addition to the modifications of the dispersion relations for
spin waves, the presence of spin orbit coupling in the W substrate leads to a
substantial increase in the linewidth of the spin wave modes. The formalism we
have developed applies to a wide range of systems, and the particular system
explored in the numerical calculations provides us with an illustration of
phenomena which will be present in other ultrathin ferromagnet/substrate
combinations
- …