921 research outputs found

    Properties of tunnel Josephson junctions with a ferromagnetic interlayer

    Get PDF
    We investigate superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions in the dirty limit, using the quasiclassical theory. We formulate a quantitative model describing the oscillations of critical current as a function of thickness of the ferromagnetic layer and use this model to fit recent experimental data. We also calculate quantitatively the density of states (DOS) in this type of junctions and compare DOS oscillations with those of the critical current.Comment: 9 pages, 8 figures, to be published in Phys. Rev.

    Density of states in SF bilayers with arbitrary strength of magnetic scattering

    Get PDF
    We developed the self-consistent method for the calculation of the density of states N(ϵ)N(\epsilon) in the SF bilayers. It based on the quasi-classical Usadel equations and takes into account the suppression of superconductivity in the S layer due to the proximity effect with the F metal, as well as existing mechanisms of the spin dependent electron scattering. We demonstrate that the increase of the spin orbit or spin flip electron scattering rates results in completely different transformations of N(ϵ)N(\epsilon) at the free F layer interface. The developed formalism has been applied for the interpretation of the available experimental data.Comment: 5 pages, 8 figure

    The current-phase relation in Josephson tunnel junctions

    Get PDF
    The J(ϕ)J(\phi) relation in SFIFS, SNINS and SIS tunnel junctions is studied. The method for analytical solution of linearized Usadel equations has been developed and applied to these structures. It is shown that the Josephson current across the structure has the sum of sinϕ\sin \phi and sin2ϕ\sin 2\phi components. Two different physical mechanisms are responsible for the sign of sin2ϕ\sin 2\phi . The first one is the depairing by current which contributes positively to the sin2ϕ\sin 2\phi term, while the second one is the finite transparency of SF or SN interfaces which provides the negative contribution. In SFIFS junctions, where the first harmonic vanishes at 0 - π\pi transition, the calculated second harmonic fully determines the J(ϕ)J(\phi) curve.Comment: 6 pages, 2 figure

    Green function theory of dirty two-band superconductivity

    Get PDF
    We study the effects of random nonmagnetic impurities on the superconducting transition temperature TcT_c in a two-band superconductor, where we assume the equal-time spin-singlet s-wave pair potential in each conduction band and the hybridization between the two bands as well as the band asymmetry. In the clean limit, the phase of hybridization determines the stability of two states: called s++s_{++} and s+s_{+-}. The interband impurity scatterings decrease TcT_c of the two states exactly in the same manner when the Hamiltonian preserves time-reversal symmetry. We find that a superconductor with larger hybridization shows more moderate suppression of TcT_c. This effect can be explained by the presence of odd-frequency Cooper pairs which are generated by the band hybridization in the clean limit and are broken by impurities.Comment: 11 pages, 2 figure

    Impurity scattering in highly anisotropic superconductors and interband sign reversal of the order parameter

    Full text link
    We discuss various mechanisms that can lead to interband sign reversal of the order parameter in a multiband superconductor. In particular, we generalize Abrikosov-Gor'kov solution of the problem of weakly coupled superconductor with magnetic and nonmagnetic impurities on the case of arbitary order parameter anisotropy, including extreme cases as dd-pairing or interband sign reversal of the order parameter, and show that interband scattering by magnetic impurities can stabilize an interband sign-reversal state. We discuss a possibility of such state in YBa2_2Cu3_3O7_7 in the context of various experiments: Josephson tunneling, neutron scattering, isotope effect measurements.Comment: 8 pages, 1 psfig. To be published in materials of 1996 SPIE conference "Spectroscopic Studies of Superconductors". This is a summary of papers cond-mat/9501117, cond-mat/9501118, cond-mat/9502025, cond-mat/9504076. Besides, we derive a formula for Tc suppression by magnetic and nonmagnetic impurities for arbitrary anisotrop

    Observability of surface Andreev bound states in a topological insulator in proximity to an s-wave superconductor

    Get PDF
    To guide experimental work on the search for Majorana zero-energy modes, we calculate the superconducting pairing symmetry of a three-dimensional topological insulator in combination with an s-wave superconductor. In analogy to the case of nanowires with strong spin-orbit coupling we show how the pairing symmetry changes across different topological regimes. We demonstrate that a dominant p-wave pairing relation is not sufficient to realize a Majorana zero-energy mode useful for quantum computation. Our main result of this paper is the relation between odd-frequency pairing and Majorana zero energy modes by using Green functions techniques in three-dimensional topological insulators in the so-called Majorana regime. We discuss thereafter how the pairing relations in the different regimes can be observed in the shape of the tunneling conductance of an s-wave proximized three-dimensional topological insulator. We will discuss the necessity to incorporate a ferromagnetic insulator to localize the zero-energy bound state to the interface as a Majorana mode.Comment: Accepted for publication in Journal of Physics: Condensed Matte

    Properties of rough interfaces in superconductors with d-wave pairing

    Get PDF
    Theoretical model of a rough interface in a superconductor with d-wave symmetry of the order parameter is proposed. The surface roughness is introduced by means of a surface layer with small electronic mean free path. The proximity effect between such a layer and a bulk d-wave superconductor is studied theoretically in the framework of the quasiclassical Eilenberger theory. It is shown that as a result of strong scattering in the interlayer the d-wave component of the order parameter near the interface is reduced while the s-wave component localized near the interface is generated. Angular and spatial structure of the pair potential and the electronic density of states near the interface is calculated. The interplay of the zero-energy (midgap) and finite-energy bound states leads to peculiarities in the energy dependence of the angle-averaged density of states. We argue that the model is relevant for the description of rough interfaces in high Tc superconductors. In the framework of the present approach we calculate the Josephson critical current for several types of junctions with rough interface

    Theory of proximity effect in ferromagnet/superconductor heterostructures in the presence of spin dependent interfacial phase shift

    Get PDF
    We study the proximity effect and charge transport in ferromagnet (F)/superconductor (S) and S/F/I/F/S junctions (where I is insulator) by taking into account simultaneously exchange field in F and spin-dependent interfacial phase shifts (SDIPS) at the F/S interface. We solve the Usadel equations using extended Kupriyanov–Lukichev boundary conditions which include SDIPS, where spin-independent part of tunneling conductance GT and spin-dependent one Gφ coexist. The resulting local density of states (LDOS) in a ferromagnet depends both on the exchange energy Eex and Gφ/GT. We show that the magnitude of zero-temperature gap and the height of zero-energy LDOS have a non-monotonic dependence on Gφ/GT. We also calculate Josephson current in S/F/I/F/S junctions and show that crossover from 0-state to
    corecore