1,043 research outputs found
Tremor in motor neuron disease may be central rather than peripheral in origin
BACKGROUND AND PURPOSE:
Motor neuron disease (MND) refers to a spectrum of degenerative diseases affecting motor neurons. Recent clinical and post-mortem observations have revealed considerable variability in the phenotype. Rhythmic involuntary oscillations of the hands during action, resembling tremor, can occur in MND, but their pathophysiology has not yet been investigated.
METHODS:
A total of 120 consecutive patients with MND were screened for tremor. Twelve patients with action tremor and no other movement disorders were found. Ten took part in the study. Tremor was recorded bilaterally using surface electromyography (EMG) and triaxial accelerometer, with and without a variable weight load. Power spectra of rectified EMG and accelerometric signal were calculated. To investigate a possible cerebellar involvement, eyeblink classic conditioning was performed in five patients.
RESULTS:
Action tremor was present in about 10% of our population. All patients showed distal postural tremor of low amplitude and constant frequency, bilateral with a small degree of asymmetry. Two also showed simple kinetic tremor. A peak at the EMG and accelerometric recordings ranging from 4 to 12 Hz was found in all patients. Loading did not change peak frequency in either the electromyographic or accelerometric power spectra. Compared with healthy volunteers, patients had a smaller number of conditioned responses during eyeblink classic conditioning.
CONCLUSIONS:
Our data suggest that patients with MND can present with action tremor of a central origin, possibly due to a cerebellar dysfunction. This evidence supports the novel idea of MND as a multisystem neurodegenerative disease and that action tremor can be part of this condition
Cognitive behavioral group therapy versus psychoeducational intervention in Parkinson's disease
Objective: The aim of the current study was to evaluate whether cognitive behavioral group therapy has a positive impact on psychiatric, and motor and non-motor symptoms in Parkinson’s disease (PD).
Methods: We assigned 20 PD patients with a diagnosis of psychiatric disorder to either a 12-week cognitive behavioral therapy (CBT) group or a psychoeducational protocol. For the neurological examination, we administered the Unified Parkinson’s Disease Rating Scale and
the non-motor symptoms scale. The severity of psychiatric symptoms was assessed by means of the Hamilton Depression Rating Scale, the Hamilton Anxiety Rating Scale, the Brief Psychiatric Rating Scale, and the Clinical Global Impressions. Results: Cognitive behavioral group therapy was effective in treating depression and anxiety symptoms as well as reducing the severity of non-motor symptoms in PD patients; whereas, no changes were observed in PD patients treated with the psychoeducational protocol. Conclusion: CBT offered in a group format should be considered in addition to standard drug therapy in PD patient
Pain-motor integration in the primary motor cortex in Parkinson's disease
In Parkinson's disease (PD), the influence of chronic pain on motor features has never been investigated. We have recently designed a technique that combines nociceptive system activation by laser stimuli and primary motor cortex (M1) activation through transcranial magnetic stimulation (TMS), in a laser-paired associative stimulation design (Laser-PAS). In controls, Laser-PAS induces long-term changes in motor evoked potentials reflecting M1 long-term potentiation-like plasticity, arising from pain-motor integration
Investigating the effects of transcranial alternating current stimulation on primary somatosensory cortex
Near-threshold tactile stimuli perception and somatosensory temporal discrimination threshold (STDT) are encoded in the primary somatosensory cortex (S1) and largely depend on alpha and beta S1 rhythm. Transcranial alternating current stimulation (tACS) is a non-invasive neurophysiological technique that allows cortical rhythm modulation. We investigated the effects of tACS delivered over S1 at alpha, beta, and gamma frequencies on near-threshold tactile stimuli perception and STDT, as well as phase-dependent tACS effects on near-threshold tactile stimuli perception in healthy subjects. In separate sessions, we tested the effects of different tACS montages, and tACS at the individualised S1 ÎĽ-alpha frequency peak, on STDT and near-threshold tactile stimuli perception. We found that tACS applied over S1 at alpha, beta, and gamma frequencies did not modify STDT or near-threshold tactile stimuli perception. Moreover, we did not detect effects of tACS phase or montage. Finally, tACS did not modify near-threshold tactile stimuli perception and STDT even when delivered at the individualised ÎĽ-alpha frequency peak. Our study showed that tACS does not alter near-threshold tactile stimuli or STDT, possibly due to the inability of tACS to activate deep S1 layers. Future investigations may clarify tACS effects over S1 in patients with focal dystonia, whose pathophysiology implicates increased STDT
Lifestyle interventions and prevention of suicide
Over the past years, there has been a growing interest in the association between lifestyle psychosocial interventions, severe mental illness, and suicide risk. Patients with severe mental disorders have higher mortality rates, poor health states, and higher suicide risk compared to the general population. Lifestyle behaviors are amenable to change through the adoption of specific psychosocial interventions, and several approaches have been promoted. The current article provides a comprehensive review of the literature on lifestyle interventions, mental health, and suicide risk in the general population and in patients with psychiatric disorders. For this purpose, we investigated lifestyle behaviors and lifestyle interventions in three different age groups: adolescents, young adults, and the elderly. Several lifestyle behaviors including cigarette smoking, alcohol use, and sedentary lifestyle are associated with suicide risk in all age groups. In adolescents, growing attention has emerged on the association between suicide risk and internet addiction, cyberbullying and scholastic and family difficulties. In adults, psychiatric symptoms, substance and alcohol abuse, weight, and occupational difficulties seems to have a significant role in suicide risk. Finally, in the elderly, the presence of an organic disease and poor social support are associated with an increased risk of suicide attempt. Several factors may explain the association between lifestyle behaviors and suicide. First, many studies have reported that some lifestyle behaviors and its consequences (sedentary lifestyle, cigarette smoking underweight, obesity) are associated with cardiometabolic risk factors and with poor mental health. Second, several lifestyle behaviors may encourage social isolation, limiting the development of social networks, and remove individuals from social interactions; increasing their risk of mental health problems and suicide
Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration
The spinal cord spinal cord has in the past been considered a hardwired system which responds to inputs in a stereotyped way. A growing body of data have instead demonstrated its ability to retain information and modify its effector capabilities, showing activity-dependent plasticity. Whereas, plasticity in the spinal cord is well documented after different forms of physical exercise, whether exogenous stimulation can induce similar changes is still a matter of debate. This issue is both of scientific and clinical relevance, since at least one form of stimulation, i.e., focal muscle vibration (fMV), is currently used as a treatment for spasticity. The aim of the present study was to assess whether fMV can induce plasticity at the SC level when applied to different muscles of the upper limb. Changes in different electrophysiological measures, such as H-reflex testing homonymous and heteronymous pathways, reciprocal inhibition and somatosensory evoked potentials were used as outcomes. We found that fMV was able to induce long-term depression-like plasticity in specific spinal cord circuits depending on the muscle vibrated. These findings helped understand the basic mechanisms underlying the effects of fMV and might help to develop more advanced stimulation protocols
Short-term plasticity of the motor cortex compensates for bradykinesia in Parkinson's disease
Patients with Parkinson's disease (PD) show impaired short-term potentiation (STP) mechanisms in the primary motor cortex (M1). However, the role played by this neurophysiological abnormality in bradykinesia pathophysiology is unknown. In this study, we used a multimodal neuromodulation approach to test whether defective STP contributes to bradykinesia. We evaluated STP by measuring motor-evoked potential facilitation during 5 Hz-repetitive transcranial magnetic stimulation (rTMS) and assessed repetitive finger tapping movements through kinematic techniques. Also, we used transcranial alternating current stimulation (tACS) to drive M1 oscillations and experimentally modulate bradykinesia. STP was assessed during tACS delivered at beta (β) and gamma (γ) frequency, and during sham-tACS. Data were compared to those recorded in a group of healthy subjects. In PD, we found that STP was impaired during sham- and γ-tACS, while it was restored during β-tACS. Importantly, the degree of STP impairment was associated with the severity of movement slowness and amplitude reduction. Moreover, β-tACS-related improvements in STP were linked to changes in movement slowness and intracortical GABA-A-ergic inhibition during stimulation, as assessed by short-interval intracortical inhibition (SICI). Patients with prominent STP amelioration had greater SICI reduction (cortical disinhibition) and less slowness worsening during β-tACS. Dopaminergic medications did not modify β-tACS effects. These data demonstrate that abnormal STP processes are involved in bradykinesia pathophysiology and return to normal levels when β oscillations increase. STP changes are likely mediated by modifications in GABA-A-ergic intracortical circuits and may represent a compensatory mechanism against β-induced bradykinesia in PD
Cortical M1 plasticity and metaplasticity in patients with multiple sclerosis
Background: Previous studies on patients with Multiple Sclerosis (MS) have reported contrasting findings on cortical plasticity of the primary motor cortex and no study has yet evaluated the regulatory mechanisms of cortical plasticity (i.e., metaplasticity) in MS patients. The aim of the present study was to investigate primary motor cortex (M1) plasticity and metaplasticity in patients with MS. Methods: Nineteen patients affected by Relapsing-–Remitting MS (RR-MS) and 16 age- and sex-matched healthy controls underwent intermittent Theta Burst Stimulation (iTBS) to evaluate cortical plasticity and iTBS preceded by repetitive index finger movements to evaluate M1 metaplasticity. Results: In healthy subjects MEP size significantly increased after iTBS whereas it significantly decreased when repetitive index finger movements preceded iTBS (metaplasticity) (factor PROTOCOL: p < 0.0001; PROTOCOL x TIME interaction: p = 0.001). Conversely, in MS patients MEP size mildly increased, albeit not significantly in both conditions (p > 0.05). In MS patients, percentage changes in MEP size induced by plasticity and metaplasticity protocol were significantly associated to EDSS (p = 0.001) and kinematics of index finger movements (p = 0.01). Conclusion: M1 plasticity and metaplasticity are both altered in MS patients. When TBS is used for therapeutic purposes, TBS protocols should be tailored according to the M1 plasticity functional reserve of each MS patient
Congenital mirror movements in a new Italian family
Mirror movements (MMs) occur on the contralateral side of a limb being used intentionally.
Because few families with congenital MMs and no other neurological signs have been reported, the underlying
mechanisms of MMs are still not entirely clear. We report on the clinical, genetic, neurophysiological and
neuroimaging findings of 10 of 26 living members of a novel four-generation family with congenital MMs. DCC
and RAD51 were sequenced in affected members of the family. Five of the ten subjects with MMs underwent
neurophysiological and neuroimaging evaluations. The neurophysiological evaluation consisted of
electromyographic (EMG) mirror recordings, investigations of corticospinal excitability, and analysis of
interhemispheric inhibition using transcranial magnetic stimulation techniques. The neuroimaging evaluation
included functional MRI during finger movements. Eight (all females) of the ten members examined presented
MMs of varying degrees at the clinical assessment. Transmission of MMs appears to have occurred according
to an autosomal-dominant fashion with variable expression. No mutation in DCC or RAD51 was identified. EMG
mirror activity was higher in MM subjects than in healthy controls. Short-latency interhemispheric inhibition
was reduced in MM subjects. Ipsilateral motor-evoked potentials were detectable in the most severe case.
The neuroimaging evaluation did not disclose any significant abnormalities in MM subjects. The variability of
the clinical features of this family, and the lack of known genetic abnormalities, suggests that MMs are
heterogeneous disorders. The pathophysiological mechanisms of MMs include abnormalities of transcallosal
inhibition and corticospinal decussatio
Tactile and proprioceptive temporal discrimination are impaired in functional tremor
Background and Methods: In order to obtain further information on the pathophysiology of functional tremor, we assessed
tactile discrimination threshold and proprioceptive temporal discrimination motor threshold values in 11 patients with
functional tremor, 11 age- and sex-matched patients with essential tremor and 13 healthy controls.
Results: Tactile discrimination threshold in both the right and left side was significantly higher in patients with functional
tremor than in the other groups. Proprioceptive temporal discrimination threshold for both right and left side was
significantly higher in patients with functional and essential tremor than in healthy controls. No significant correlation
between discrimination thresholds and duration or severity of tremor was found.
Conclusions: Temporal processing of tactile and proprioceptive stimuli is impaired in patients with functional tremor. The
mechanisms underlying this impaired somatosensory processing and possible ways to apply these findings clinically merit
further research
- …