3,853 research outputs found
Ultra-efficient Cooling in Ferromagnet-Superconductor Microrefrigerators
A promising scheme for electron microrefrigeration based on
ferromagnet-superconductor contacts is presented. In this setup, cooling power
densities up to 600 nW/m can be achieved leading to electronic
temperature reductions largely exceeding those obtained with existing
superconductor-normal metal tunnel contacts. Half-metallic CrO/Al bilayers
are indicated as ideal candidates for the implementation of the device.Comment: 9 pages, 3 figures, submitted to Applied Physics Letter
Crossed Andreev reflection-induced magnetoresistance
We show that very large negative magnetoresistance can be obtained in
magnetic trilayers in a current-in-plane geometry owing to the existence of
crossed Andreev reflection. This spin-valve consists of a thin superconducting
film sandwiched between two ferromagnetic layers whose magnetization is allowed
to be either parallelly or antiparallelly aligned. For a suitable choice of
structure parameters and nearly fully spin-polarized ferromagnets the
magnetoresistance can exceed -80%. Our results are relevant for the design and
implementation of spintronic devices exploiting ferromagnet-superconductor
structures.Comment: 5 pages, 4 figures, final published versio
Registration-based model reduction of parameterized two-dimensional conservation laws
We propose a nonlinear registration-based model reduction procedure for rapid and reliable solution of parameterized two-dimensional steady conservation laws. This class of problems is challenging for model reduction techniques due to the presence of nonlinear terms in the equations and also due to the presence of parameter-dependent discontinuities that cannot be adequately represented through linear approximation spaces. Our approach builds on a general (i.e., independent of the underlying equation) registration procedure for the computation of a mapping Φ that tracks moving features of the solution field and on an hyper-reduced least-squares Petrov-Galerkin reduced-order model for the rapid and reliable computation of the solution coefficients. The contributions of this work are twofold. First, we investigate the application of registration-based methods to two-dimensional hyperbolic systems. Second, we propose a multi-fidelity approach to reduce the offline costs associated with the construction of the parameterized mapping and the reduced-order model. We discuss the application to an inviscid supersonic flow past a parameterized bump, to illustrate the many features of our method and to demonstrate its effectiveness
- …