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Introduction
Colorectal cancer (CRC) is one of the most com-
monly diagnosed cancers among both men and 
women worldwide, being the third most frequent 
in many developed countries, with an estimated 
135,430 new cases expected in 2017 in the United 
States.1 The increasing incidence in developing 
countries seems to be closely related to changes in 
lifestyle.2,3 In fact, only 15% of patients with this 
disease present a genetic background of familiar-
ity, whereas 85% of cases are represented by spo-
radic forms.4 Known environmental factors 
involved in CRC development include smoking, 
alcoholism, obesity, sedentary lifestyle, diabetes 
mellitus, consumption of red meat, a high-fat diet 
and inadequate intake of fibers.5 The gut micro-
bial composition has also been reported as another 
important factor associated with CRC progress.

Recent findings show that gut microorganisms 
could modulate the mucosal immune system and 
change the expression of some host genes associ-
ated with important functions, such as nutrient 

uptake, metabolism, angiogenesis and mucosal 
barrier function.6,7 Accordingly, the imbalance of 
the symbiotic relationship that exists between the 
gut and its microbiota8 may disturb the intestinal 
epithelial integrity, resulting in multiple down-
stream consequences, including inflammation, 
oncogenesis and the progression of primary 
tumors into metastasis.9,10 However, even if some 
microorganisms constitute a fundamental part of 
natural gut composition, playing protective roles 
against cancer,11 the role of other strains, such as 
Enterococcus faecalis, still remains unclear.

E. faecalis is a Firmicutes member, sometimes used 
as a probiotic product.12,13 However, in some spe-
cific situations, E. faecalis can result in pathogenic 
and, as reported by some authors, a harmful 
microorganism on CRC development, due to its 
ability to damage colonic epithelial cell DNA.14 
Because of these conflicting roles, in this review 
we examine the most relevant published data that 
correlate E. faecalis with CRC either in a harmful 
or a protective way.
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Features of CRC
CRC is a multifactorial disease that occurs in a 
multistep process involving accumulating muta-
tions in tumor suppressor genes and oncogenes. 
This means that the colorectal tumorigenesis 
includes several genetic and epigenetic changes 
required for tumor initiation and progression.15 
CRC is one of the most genetically complex can-
cers that have been investigated, and its underly-
ing genetic basis is described by the 
‘adenoma–carcinoma sequence’ model (Figure 
1), which posits that the genomic instability drives 
epithelial dysplasia and hyperplasia in the colon, 
resulting, eventually, in CRC.16

Differently from the CRC molecular phenotype 
originating from genetic familiarity, that is char-
acterized by high-frequency microsatellite insta-
bility phenotypes, and by germline mutations in 
the mismatch repair genes17 or the adenomatous 
polyposis coli (APC) gene,18 the sporadic cases of 
CRC phenotypes present chromosomal instabil-
ity and allelic imbalance at several chromosomal 
loci (reviewed by Cunningham and colleagues).19 
Besides the occurrence of genetic and epigenetic 
abnormalities, many aspects of CRC malignancy 
are affected by cancer-associated inflammation, 
such as proliferation and survival of malignant 
cells, angiogenesis and tumor metastasis. Finally, 
the presence of an inflammatory microenviron-
ment also plays a crucial role in CRC develop-
ment.20,21 In this scenario, cancer could be 
described not just as a concentration of malignant 
cells, but it is also composed of the stromal and 
infiltrating immunological or inflammatory cells.

It is well known that the diet is definitely the most 
important (and previously identified) exogenous 
factor in CRC etiology,22 since components, 
ingested through the diet, are the major source of 
mutagenic compounds that may promote both 
cancer initiation and progression.23 In addition, 
epidemiological studies show that diet–gene 
interactions are one of the leading causes explain-
ing the wide variation in CRC developing risk 
among different individuals.24 For example, the 
excessive consumption of fats, animal proteins, 
processed meat, and heterocyclic amines (HCAs) 
has shown strong correlations with CRC inci-
dence.25,26 However, a vegetarian diet helps to 
prevent CRC, since fruits and vegetables invaria-
bly contain antioxidants, which scavenge free 
radicals, inhibiting the DNA damage responsible 
for mutations and eventually cancer.27,28 The 

diet also influences the features of gut microbiota, 
as well as other factors, such as the host’s age, sex, 
geography and ethnicity.29

General aspects of gut microbiota
The gut microbiota, now fully recognized as a 
natural defensive barrier against infections, is 
involved in several physiological functions and 
plays a large role in maintaining the gut homeo-
stasis.30 Almost immediately after birth, the 
human gastrointestinal tract (GI) is colonized by 
a large and diverse community of microorganisms 
which will compose the GI microbiota.31 The 
colonization pattern is influenced by the type of 
delivery (vaginal delivery or caesarean section)32 
and the type of baby diet (breast or formula feed-
ing).33 These pioneer microorganisms modulate 
the expression of some genes from host epithelial 
cells, creating a flattering habitat for themselves, 
and also preventing the growth of other 
microorganisms.34

The adult phylogenetic composition of gut micro-
biota could be influenced by a lot of factors like 
diet, antibiotic consumption, external environ-
mental microorganisms, geographic/cultural tra-
ditions and age.35,36 Gut microbiota is normally 
compounded by autochthonous members, which 
occupy specific niches constituting the most sta-
ble populations over long periods, and by alloch-
thonous members that may be found in any given 
habitat in significant numbers, but do not influ-
ence the gut ecosystem balance in the same way.37 
Humans have a close relationship with these 
microorganisms, given that their health and well-
being are closely interconnected with this com-
plex mutualism.38 The microbiota plays a 
fundamental role in displaying some essential 
organismal functions such as helping food diges-
tion, contributing to nutrition,39 modulating the 
immune system40,41 and defending against a lot of 
diseases caused by other pathological microbes.42

Over the gastric tract, there are variations in the 
concentration of microorganisms, species and 
specific functions. For example, in the proximal 
GI tract, the relatively low (108 cells/ml) micro-
bial biomass is associated with the host amino 
acid requirements,43 and is composed of 
Bacteroidetes, members of the Clostridiales clusters 
(clusters XIV and I), and specifically in lumen by 
Enterobacteriaceae V. This restricted bacterial 
composition is determined by several factors such 
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as acid pH, rapid lumen flow tendency, bile salts 
and the presence of immunoglobulin A (IgA). In 
contrast, the large intestine, which is associated, 
for example, with the production of short-chain 
fatty acids (SCFAs) by fermentation of dietary 
compounds (that escape from the digestion in the 
small intestine), is colonized by higher concentra-
tions (1011 cells/g) of microorganisms, mainly  
by Firmicutes (clusters IX, XIV, and XVI), 
Bacteroidetes, Actinobacteria, Verrucomicrobia, 

Proteobacteria and Fusobacteria (reviewed by 
Walter and Ley).44

Even if these data are well known, there is no con-
sensus about what is a ‘healthy’ or ‘average’ intes-
tinal microbiota. For example, studies with rodents 
have demonstrated that a given bacterial species 
can have opposite effects in disease induction in 
one susceptible host, but can protect another 
rodent strain. Furthermore, different bacterial 

Figure 1. ‘Adenoma–carcinoma’ progression following the model proposed by Fearon and Vogelstein17 
incorporating the ‘bacterial driver-passenger’ model of Tjalsma and colleagues. In this situation, the 
adenoma–carcinoma progression occurs because of the genomic instability (accumulating genetic and 
epigenetic mutations), caused by changes in gut microbiota. These changes initiate with the presence 
of a ‘drive bacteria’ which drives the epithelial DNA damage and contributes to colorectal cancer (CRC) 
promotion. Then the tumorigenesis induces intestinal niche alterations, which favor the proliferation 
of opportunistic bacteria (bacterial passengers). EGF, epidermal growth factor; IL, interleukin; K-ras, 
Kirsten rat sarcoma viral oncogene homolog; TGF, transforming growth factor; TNF, tumor necrosis 
factor.
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species can induce variable clinical phenotypes in a 
single genetically susceptible host.45 Nevertheless, 
it seems that beyond the organization of this com-
plex and diverse bacterial ecosystem, the two most 
common phyla present in the gut, are the Firmicutes 
and the Bacteroidetes,46 with a documented hierar-
chy of dominant anaerobic bacteria, like Bacteroides, 
Eubacterium, Bifidobacterium, Peptostreptococcus, 
Ruminococcus, Clostridium and Propionibacterium, 
and a subdominant bacteria represented by the 
Enterobacteriaceae family, especially Escherichia coli 
and the genera Streptococcus, Enterococcus, 
Lactobacillus, Fusobacterium, Desulfovibrio and 
Methanobrevibacter.47 In fact, one of the most stud-
ied parameters regarding the ‘normal composition’ 
of gut microbiota is the Firmicutes/Bacteroidetes 
ratio, as well as its variations between individuals,42 
and it seems to be closely linked to health prob-
lems such as obesity and metabolic disorders.48,49

Gut microbiota and CRC
As well as in different types of tumors such as 
skin, liver, lungs and breast cancers, CRC can be 
associated with host microbiome dysbiosis.50,51 In 
fact, microorganisms are suspected to be involved 
in approximately 20% of cancers,52 especially 
CRC,53 since the dynamic crosstalk between 
intestinal epithelial cells (IECs), the microbes 
that colonize their apical surface and the sur-
rounding local immune cells, is necessary to 
maintain intestinal homeostasis.54 Changes in the 
Firmicutes/Bacteroidetes ratio55 as well as other 
microbiota imbalances56,57 are associated with the 
beginning, maintenance, and determination of 
the phenotype of human inflammatory bowel dis-
eases (IBDs), especially Crohn’s disease and 
ulcerative colitis. These diseases, characterized by 
chronic inflammation of the GI tract (as a result 
of inappropriate activation of intestinal mucosal 
immunity), affect more than 0.4% of Europeans 
and North Americans,58 and are associated with 
an increased risk of CRC development.59,60

The relationship between the commensal micro-
biota and IBD could occur in different forms 
(reviewed by Sartor and Mazmanian),61 but all of 
them seem to be related to the increase in bacte-
rial antigens’ exposure to effector T cells and 
innate immune cells (resident in the intestinal 
mucosa) or alteration of the host immune 
response to commensal bacteria.62 Nevertheless, 
different studies have also demonstrated that 
patients with IBD present a reduction of Firmicutes 

members, specifically Faecalibacterium and 
Roseburia, which play a role in protecting the 
intestine by producing SCFAs.63

However, an interesting way to explain the role of 
microorganisms in CRC development was pro-
posed by Tjalsma and colleagues in the ‘bacterial 
driver-passenger’ model.64 According to this 
model, the DNA damage caused by distinct 
indigenous intestinal bacteria (driver bacteria) can 
drive genome instability, which starts the first 
phase of cancer progression. These microorgan-
isms may be able to induce alterations in mucosal 
permeability, which favors the translocation of 
bacteria and bacterial toxins, causing a gut inflam-
matory response that contributes to the develop-
ment and progression of cancer. The intestinal 
inflammation can result from an aberrant ratio of 
protective (tolerogenic) to aggressive (proinflam-
matory, damage-inducing, protumorigenic) 
microbiota, since GI bacteria are able to trigger 
production of both interleukin (IL)-10 (tolero-
genic) and IL-17 (proinflammatory) cytokines.65 
This CRC microenvironment could impact the 
microbial regulation, alter microbiota composi-
tion by selective pressure on the microbial com-
munity, and thus could support the outgrowth of 
specific opportunistic bacteria (passengers bacte-
ria) that potentially have carcinogenic effects63,66 
(Figure 1).

Furthermore, this inflammatory scenario has an 
important role in tumor development and main-
tenance. Once activated, inflammatory cells pro-
duce reactive oxygen species (ROS) and reactive 
nitrogen that can promote the accumulation of 
additional mutations and epigenetic changes. 
These mutations can activate oncogenes or inac-
tive tumor suppressor genes, thus increasing the 
risk of cancer development.23,67,68 One of the 
important bacteria cited as an ‘inducer’ of genetic 
instability in colonic epithelial cells’ DNA, 
through the oxidative process, is E. faecalis.61,69

Properties of E. faecalis
Among the enterococci that colonize the GI tract, 
the most prevalent cultured strain found in 
human feces is E. faecalis (105–107 colony-form-
ing units (CFU)/g) followed by E. faecium (104–
105 CFU/g). However these numbers can change 
with the host’s geographical location, and espe-
cially, diet. For instance, Hill and colleagues 
demonstrated that feces samples of individuals 
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from England, Scotland and the USA (who have 
a Western diet) present lower concentrations of 
Enterococcus spp. compared with subjects from 
India, Japan and Uganda, who adopt a mainly 
vegetarian diet.70 This Gram-positive commensal 
bacterium belongs to the lactic acid bacteria 
(LAB), it is a facultative anaerobic, resistant to 
extreme environmental challenges and is usually 
found in the human oral cavity, GI and vagina 
mucosa.71 However, it can emerge as a human 
pathogen of significant concern72 and so can be 
associated with various pathologies including uri-
nary tract infections,73 endocarditis,74 persistent 
endodontic diseases,75 blood stream infections76 
and chronic periodontitis.77

E. faecalis is the first colonizer of the human GI 
tract and has a major impact on intestinal immune 
development in the very early stages of life.78 In 
newborn babies, it plays a protective role regulating 
the colonic homeostasis during development by 
suppressing pathogen-mediated inflammatory 
responses in human IECs, inducing IL-10 expres-
sion,79 and attenuating the secretion of proinflam-
matory cytokines, especially IL-8.80 Moreover, 
because of this anti-inflammatory potential, E. faec-
alis is commonly adopted as a probiotic in the treat-
ment of some diseases such as recurrent chronic 
sinusitis, bronchitis or infant acute diarrhea.13,14 In 
fact, it has been demonstrated that, compared with 
70 different LABs isolated from healthy adults, E. 
faecalis showed the highest probiotic activity.81 
Furthermore, due to its thermophilic fermentation 
potential (it can ferment different types of sugars, 
grows at 10°C, and survives at 60°C for 30 min), E. 
faecalis is commonly used in the production of some 
cheeses and fermented sausages.82,83

The ‘Gianus’ role of E. faecalis in cancer 
development
Data about the role of E. faecalis in CRC are dis-
cordant: some authors suggest a protective role or 
no role at all in CRC while others demonstrated 
harmful activity. For example, Viljoen and col-
leagues did not find any significant clinical asso-
ciation between this bacterium and colon 
adenocarcinoma.84 In another study, when cocul-
tivated with HCT-116 (an aggressive CRC lin-
age), E. faecalis was able to downregulate the 
expression of the FIAF gene (angiopoietin-like 
protein 4), normally associated with the develop-
ment of some cancer types.85 In a mouse model of 
ulcerative colitis, the increase in E. faecalis 

colonization after a treatment with vinegar was 
associated with the inhibition of inflammation by 
suppressing T helper (Th)-1 and Th17 responses.86 
On human peripheral blood mononuclear cells, 
the heat-killed E. faecalis YM-73 strain shows 
immunomodulatory ability, increasing Th1- and 
reducing Th2-associated cytokines.87

In a recent study, when murine primary colon 
epithelial cells were cocultured with M1 mac-
rophages polarized by E. faecalis, their Wnt/β-
catenin signaling was activated and pluripotent 
transcription factors associated with dedifferenti-
ation were induced. Consequently, these cells 
were reprogrammed and transformed the primary 
colon epithelial cells, thus suggesting a role of the 
microbiome in inducing CRC.88 In contrast, 
Miyamoto and colleagues demonstrated that in 
Min mice (APC-mutant mice) which develop 
many intestinal polyps through activation of β-
catenin signaling, administration of the heat-
killed E. faecalis EC-12 strain tends to reduce 
polyp development in the proximal to middle 
portion of the small intestine, by suppressing β-
catenin signaling.89 Nevertheless, the same probi-
otic strain EC-12 has been demonstrated to 
protect the host against pathogens by inducing 
B-cell activation in the gut.90 The other probiotic 
strain, CECT7121, can protect animals from 
lymphoma challenge and rechallenge by down-
regulating LBC cell – a poorly immunogenic cell 
line derived from a spontaneous murine T-cell 
lymphoma – proliferation, inducing apoptosis in 
these cells and enhancing the immune response.91 
This strain is also able to enhance and skew the 
cytokine profile to the Th1 phenotype in different 
conditions such as vaccination, antitumor immu-
nity, and allergic reactions.92,93 Furthermore, 
Hassan and colleagues suggested that E. faecalis 
strains, isolated from human breast milk, could 
be candidates for breast cancer prevention and 
treatment once they are able to inhibit the prolif-
erative activity of breast cancer cells.94

The anticarcinogenic role of some LABs has 
already been described and related to their immu-
nomodulatory activities, inducing changes in the 
cytokine profile.95 These changes are orchestrated 
by the activation of dendritic cells (DCs), which 
recognize and respond to microbial structures via 
PRRs (pattern-recognition receptors) such as 
toll-like receptors (TLRs).96 In addition, different 
stimuli can induce the production of specific 
cytokines that are responsible for the fine tuning 
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of an adequate immune response in each patho-
gen.97 For example, in the case of the CECT7121 
strain, it has been demonstrated that, whereas cell 
wall and soluble lysates are capable of activating 
DCs and induce dose-dependent secretion of 
IL-6 and IL-12, only the cell wall, but not the 
soluble lysates, can induce tumor necrosis factor 
α and IL-10 secretion.93

Despite the fact that commensal and clinical 
strains share the same evolutionary origin, behav-
ioral differences may occur when harmless ones 
acquire antibiotic resistant or putative virulent 
genes from other bacteria, via horizontal gene 
transfer (HGT). HGT favors rapid changes 
occurring in bacterial structure, generating resist-
ance and pathogenicity island (a dynamic compo-
nent of their genome), which can affect or 
influence their virulence.98,99 Many putative viru-
lence factors of E. faecalis have been described. 
Most of them are associated with aggregation 
substance, surface adhesins, sex pheromones, 
lipoteichoic acid, extracellular superoxide, gelati-
nase, hyaluronidase and cytolysin (hemolysin) 
(reviewed by Kayaoglu and Ørstavik).100

The harmful role of E. faecalis has been suggested 
to be mainly associated with its ability to generate 
ROS and extracellular superoxide that can cause 
genomic instability, damaging colonic DNA, and 
because of that, predisposing the host to muta-
tions and thus cancer.16 Moreover, E. faecalis has 
been demonstrated to produce metalloprotease 
that can directly compromise the intestinal epithe-
lial barrier and induce inflammation.101 It can also 
activate the macrophage matrix metalloprotease 
MMP-9102 and lead to disruption of monolayer 
integrity, which could be responsible for morpho-
logical transformation of progenitor cells that get a 
migrating phenotype, contributing to epithelial 
mesenchymal transition.103 Furthermore, some 
authors have observed that, compared with 
healthy controls, the fecal E. faecalis population 
was increased in Indian patients with CRC,11,104 
which is also noted in oral cancerous lesions.105,106

These contrasting data suggest that the origin of 
the isolated strain is an important variable that 
should be considered when its role is analysed.107 
This is also motivated by the rapid and continu-
ous changes in the DNA of E. faecalis that could 
modify genes associated with important features 
of enterococcal virulence, including hemolytic, 
gelatinase activities,108 antibiotic resistance and 

biofilm production.109 Different dysbiotic scenar-
ios, such as those promoted by the use of antibiot-
ics, which perturb the normal commensal 
microbiota and set the stage for intestinal domi-
nation, could favor these gene changes between 
the strains, thus suggesting possible explanations 
for the different roles of this bacterium in IBD, 
dysplasia and carcinoma.110

Discussion
In recent years, crucial discoveries and findings 
about gut microbiota and its impact on host func-
tions have increased the interest evaluating the 
microbiome role in human health. Finding micro-
organisms that can be used as probiotics, either to 
contrast the infections, or for antitumor treat-
ments, has become a fundamental area of investi-
gation in translational research, generating high 
expectations for science and medicine.

In this review, we report that E. faecalis has been 
associated with human IEC injury by ROS pro-
duction. However, it has also been described as 
showing a protective role in the same cells by 
inducing IL-10 expression, attenuating the secre-
tion of the proinflammatory cytokines (e.g. IL-8).

In order to provide an explanation for this sce-
nario, we suggest that this conflicting role could 
be attributed to the different isolated and investi-
gated strains of E. faecalis. In fact, this bacterium 
could come up against various mutations due to 
gene transfer. These mutations have shown the 
potential to make it more or less virulent,111 espe-
cially by changing the cytokine/functional profile 
of the respondents of APCs, like DCs and 
macrophages.

Furthermore, when we analyzed the studies asso-
ciating E. faecalis with cancer development, we 
noted that data demonstrated only an increase in 
its concentration, but not the functional roles of 
its bacterium on CRC development. In the case 
of documented cell or tissue injuries, the condi-
tions were extreme, such as immunosuppressed 
animals. Therefore, we propose that in CRC, E. 
faecalis could act as a ‘passenger’ bacterium, 
rather than a ‘driver’, as suggested by Tjalsma 
and colleagues. We also suggest that, due to its 
intrinsic resistance and ability to acquire it (by 
mutations or HGT), E. faecalis can emerge as 
pathogenic only when the major environment 
undergoes alterations, such as during the 
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appearance of cytokines and mucins or during 
changes in oxygen tension (typically observed on 
CRC onset and progression conditions).112 By 
considering all environmental changes caused by 
tumorigenesis, E. faecalis can grow uncontrolled, 
thus increasing the possibility of new mutations 
that can modify its virulence and also change the 
final product of its metabolism, becoming poten-
tially harmful to the epithelial tissue. This could 
be an explanation for the increased concentra-
tions of E. faecalis that were found in some studies 
on CRC patients’ feces, as well as its harmful role 
in immunodeficient mice.

Conclusion
By considering all these contrasting data, we sug-
gest that the role of E. faecalis should be investi-
gated in more detail and under different 
experimental conditions since its adoption not 
only as a fermentative bacterium in food manufac-
turing, but also as a probiotic product. Our group 
is currently studying the role of this bacterium in 
Italian patients with CRC. Our recent data are 
showing interesting results about the presence and 
incidence of E. faecalis in patients with CRC, as 
well as the effects of different strains on tumor cells 
and inflammatory response (data forthcoming).
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