1,635 research outputs found
Anisotropic magnetic field responses of ferroelectric polarization in a trigonal multiferroic CuFe1-xAlxO2 (x=0.015)
We have investigated magnetic field dependences of a ferroelectric
incommensurate-helimagnetic order in a trigonal magneto-electric (ME)
multiferroic CuFe1-xAlxO2 with x=0.015, which exhibits the ferroelectric phase
as a ground state, by means of neutron diffraction, magnetization and
dielectric polarization measurements under magnetic fields applied along
various directions. From the present results, we have established the H-T
magnetic phase diagrams for the three principal directions of magnetic fields;
(i) parallel to the c axis, (ii) parallel to the helical axis, and (iii)
perpendicular to the c and the helical axes. While the previous dielectric
polarization (P) measurements on CuFe1-xGaxO2 with x=0.035 have demonstrated
that the magnetic field dependence of the `magnetic domain structure' results
in distinct magnetic field responses of P [S. Seki et al., Phys. Rev. Lett.,
103 237601 (2009)], the present study have revealed that the anisotropic
magnetic field dependence of the ferroelectric helimagnetic order `in each
magnetic domain' can be also a source of a variety of magnetic field responses
of P in CuFe1-xAxO2 systems (A=Al, Ga).Comment: 11 pages, 9 figures, accepted for publication in Phys. Rev.
Role of Oxygen Electrons in the Metal-Insulator Transition in the Magnetoresistive Oxide LaSrMnO Probed by Compton Scattering
We have studied the [100]-[110] anisotropy of the Compton profile in the
bilayer manganite. Quantitative agreement is found between theory and
experiment with respect to the anisotropy in the two metallic phases (i.e. the
low temperature ferromagnetic and the colossal magnetoresistant phase under a
magnetic field of 7 T). Robust signatures of the metal-insulator transition are
identified in the momentum density for the paramagnetic phase above the Curie
temperature. We interpret our results as providing direct evidence for the
transition from the metallic-like to the admixed ionic-covalent bonding
accompanying the magnetic transition. The number of electrons involved in this
phase transition is estimated from the area enclosed by the Compton profile
anisotropy differences. Our study demonstrates the sensitivity of the Compton
scattering technique for identifying the number and type of electrons involved
in the metal-insulator transition.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
Bulk Fermi surface and momentum density in heavily doped LaSrCuO using high resolution Compton scattering and positron annihilation spectroscopies
We have observed the bulk Fermi surface (FS) in an overdoped (=0.3) single
crystal of LaSrCuO by using Compton scattering. A
two-dimensional (2D) momentum density reconstruction from measured Compton
profiles yields a clear FS signature in the third Brillouin zone along [100].
The quantitative agreement between density functional theory (DFT) calculations
and momentum density experiment suggests that Fermi-liquid physics is restored
in the overdoped regime. In particular the predicted FS topology is found to be
in good accord with the corresponding experimental data. We find similar
quantitative agreement between the measured 2D angular correlation of positron
annihilation radiation (2D-ACAR) spectra and the DFT based computations.
However, 2D-ACAR does not give such a clear signature of the FS in the extended
momentum space in either the theory or the experiment.Comment: 9 pages, 8 figure
Activation of PAK by HIV and SIV Nef: importance for AIDS in rhesus macaques
AbstractBackground The primate lentiviruses, human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and simian immunodeficiency virus (SIV), encode a conserved accessory gene product, Nef. In vivo, Nef is important for the maintenance of high virus loads and progression to AIDS in SIV-infected adult rhesus macaques. In tissue culture cells expressing Nef, this viral protein interacts with a cellular serine kinase, designated Nef-associated kinase.Results This study identifies the Nef-associated kinase as a member of the p21-activated kinase (PAK) family of kinases and investigates the role of this Nef-associated kinase in vivo. Mutants of Nef that do not associate with the cellular kinase are unable to activate the PAK-related kinase in infected cells. To determine the role of cellular kinase association in viral pathogenesis, macaques were infected with SIV containing point-mutations in Nef that block PAK activation. Virus recovered at early time points after inoculation with mutant virus was found to have reverted to prototype Nef function and sequence. Reversion of the kinase-negative mutant to a kinase-positive genotype in macaques infected with the mutant virus preceded the induction of high virus loads and disease progression.Conclusions Nef associates with and activates a PAK-related kinase in lymphocytes infected in vitro. Moreover, the Nef-mediated activation of a PAK-related kinase correlates with the induction of high virus loads and the development of AIDS in the infected host. These findings reveal that there is a strong selective pressure in vivo for the interaction between Nef and the PAK-related kinase
Ehrenfest relations and magnetoelastic effects in field-induced ordered phases
Magnetoelastic properties in field-induced magnetic ordered phases are
studied theoretically based on a Ginzburg-Landau theory. A critical field for
the field-induced ordered phase is obtained as a function of temperature and
pressure, which determine the phase diagram. It is found that magnetic field
dependence of elastic constant decreases discontinuously at the critical field,
Hc, and that it decreases linearly with field in the ordered phase (H>Hc). We
found an Ehrenfest relation between the field dependence of the elastic
constant and the pressure dependence of critical field. Our theory provides the
theoretical form for magnetoelastic properties in field- and pressure-induced
ordered phases.Comment: 7 pages, 3 figure
High resolution Compton scattering as a Probe of the Fermi surface in the Iron-based superconductor
We have carried out first principles all-electron calculations of the
(001)-projected 2D electron momentum density and the directional Compton
profiles along the [100], [001] and [110] directions in the Fe-based
superconductor LaOFeAs within the framework of the local density approximation.
We identify Fermi surface features in the 2D electron momentum density and the
directional Compton profiles, and discuss issues related to the observation of
these features via Compton scattering experiments.Comment: 4 pages, 3 figure
White dwarf spins from low mass stellar evolution models
The prediction of the spins of the compact remnants is a fundamental goal of
the theory of stellar evolution. Here, we confront the predictions for white
dwarf spins from evolutionary models including rotation with observational
constraints. We perform stellar evolution calculations for stars in the mass
range 1... 3\mso, including the physics of rotation, from the zero age main
sequence into the TP-AGB stage. We calculate two sets of model sequences, with
and without inclusion of magnetic fields. From the final computed models of
each sequence, we deduce the angular momenta and rotational velocities of the
emerging white dwarfs. While models including magnetic torques predict white
dwarf rotational velocities between 2 and 10 km s, those from the
non-magnetic sequences are found to be one to two orders of magnitude larger,
well above empirical upper limits. We find the situation analogous to that in
the neutron star progenitor mass range, and conclude that magnetic torques may
be required in order to understand the slow rotation of compact stellar
remnants in general.Comment: Accepted for A&A Letter
- …