33 research outputs found

    SOCAMPAR: una sociedad viva que progresa y potencia el crecimiento de cada uno de sus miembros.

    Get PDF
    Editorial que explica su experiencia en la socieda

    Better late than never? Interannual and seasonal variability in breeding chronology of gentoo penguins at stranger point, Antarctica

    Get PDF
    Rapid climate change recorded in the western Antarctic Peninsula confronts species with less predictable conditions in the marine and terrestrial environments. We analysed the breeding chronology and nesting site selection of gentoo penguins (Pygoscelis papua) at King George Island (Isla 25 de Mayo), Antarctica, during four seasons in which differences in snow presence and persistence on the ground were observed. We recorded an overall delay as well as seasonal asynchrony at the beginning of reproduction for those years with higher snow deposition. A redistribution of breeding groups was also observed. Nevertheless, the population breeding success and chicks' weight at fledging remained relatively constant, despite the delay in breeding chronology, the increased duration of foraging trips during the guard stage and the decreased weight of stomach contents during the cre'che stage. We suggest that the plasticity of their trophic biology, along with the flexibility of their breeding phenology and relocation of breeding groups, may be complementary reasons why gentoo penguin populations in the region have remained stable in spite of the changing conditions currently registered.Facultad de Ciencias Naturales y MuseoInstituto Multidisciplinario de Biología Celula

    Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behaviour and ecological adaptation

    Get PDF
    Antarctic krill, Euphausia superba, supports a valuable commercial fishery in the Southwest Atlantic, which holds the highest krill densities and is warming rapidly. The krill catch is increasing, is concentrated in a small area, and has shifted seasonally from summer to autumn/winter. The fishery is managed by the Commission for the Conservation of Antarctic Marine Living Resources, with the main goal of safeguarding the large populations of krilldependent predators. Here we show that, because of the restricted distribution of successfully spawning krill and high inter-annual variability in their biomass, the risk of direct fishery impacts on the krill stock itself might be higher than previously thought. We show how management benefits could be achieved by incorporating uncertainty surrounding key aspects of krill ecology into management decisions, and how knowledge can be improved in these key areas. This improved information may be supplied, in part, by the fishery itself

    Stepping stones towards Antarctica: Switch to southern spawning grounds explains an abrupt range shift in krill

    Get PDF
    Poleward range shifts are a global-scale response to warming, but these vary greatly among taxa and are hard to predict for individual species, localized regions or over shorter (years to decadal) timescales. Moving poleward might be easier in the Arctic than in the Southern Ocean, where evidence for range shifts is sparse and contradictory. Here, we compiled a database of larval Antarctic krill, Euphausia superba and, together with an adult database, it showed how their range shift is out of step with the pace of warming. During a 70-year period of rapid warming (1920s–1990s), distribution centres of both larvae and adults in the SW Atlantic sector remained fixed, despite warming by 0.5–1.0°C and losing sea ice. This was followed by a hiatus in surface warming and ice loss, yet during this period the distributions of krill life stages shifted greatly, by ~1000 km, to the south-west. Understanding the mechanism of such step changes is essential, since they herald system reorganizations that are hard to predict with current modelling approaches. We propose that the abrupt shift was driven by climatic controls acting on localized recruitment hotspots, superimposed on thermal niche conservatism. During the warming hiatus, the Southern Annular Mode index continued to become increasingly positive and, likely through reduced feeding success for larvae, this led to a precipitous decline in recruitment from the main reproduction hotspot along the southern Scotia Arc. This cut replenishment to the northern portion of the krill stock, as evidenced by declining density and swarm frequency. Concomitantly, a new, southern reproduction area developed after the 1990s, reinforcing the range shift despite the lack of surface warming. New spawning hotspots may provide the stepping stones needed for range shifts into polar regions, so planning of climate-ready marine protected areas should include these key areas of future habitat

    Observing change in pelagic animals as sampling methods shift: the case of Antarctic krill

    Get PDF
    Understanding and managing the response of marine ecosystems to human pressures including climate change requires reliable large-scale and multi�decadal information on the state of key populations. These populations include the pelagic animals that support ecosystem services including carbon export and fisheries. The use of research vessels to collect information using scientific nets and acoustics is being replaced with technologies such as autonomous moorings, gliders, and meta-genetics. Paradoxically, these newer methods sample pelagic populations at ever-smaller spatial scales, and ecological change might go undetected in the time needed to build up large-scale, long time series. These global-scale issues are epitomised by Antarctic krill (Euphausia superba), which is concentrated in rapidly warming areas, exports substantial quantities of carbon and supports an expanding fishery, but opinion is divided on how resilient their stocks are to climatic change. Based on a workshop of 137 krill experts we identify the challenges of observing climate change impacts with shifting sampling methods and suggest three tractable solutions. These are to: improve overlap and calibration of new with traditional methods; improve communication to harmonise, link and scale up the capacity of new but localised sampling programs; and expand opportunities from other research platforms and data sources, including the fishing industry. Contrasting evidence for both change and stability in krill stocks illustrates how the risks of false negative and false positive diagnoses of change are related to the temporal and spatial scale of sampling. Given the uncertainty about how krill are responding to rapid warming we recommend a shift towards a fishery management approach that prioritises monitoring of stock status and can adapt to variability and change

    Abundance and breeding distribution of seabirds in the northern part of the Danco Coast, Antarctic Peninsula

    Get PDF
    Seabird abundances and breeding distribution have the potential to serve as ecological indicators. The western Antarctic Peninsula is one of the three sites in the world with the greatest increases in local temperature during the last 50 years. The aim of this study was to monitor the distribution and abundance of breeding populations of seabirds in the northern sector of the Danco Coast, north-west of the Antarctic Peninsula, during the breeding season 2010/11. The birds were the Wilson's storm petrel (Oceanites oceanicus), South Polar skua (Stercorarius maccormicki), kelp gull (Larus dominicanus), Antarctic tern (Sterna vittata), snowy sheathbill (Chionis alba), chinstrap penguin (Pygoscelis antarctica), southern giant petrel (Macronectes giganteus), gentoo penguin (Pygoscelis papua), Cape petrel (Daption capense) and Antarctic shag (Phalacrocorax bransfieldensis). Annual breeding population growth increased in pygoscelids, southern giant petrel and sheathbill, and for the remaining species, breeding population trends were stable. Given that seabird populations can provide valuable information on the conditions of their feeding and nesting environments, this study highlights the need to maintain basics monitoring studies.Keywords: Seabird abundances; breeding distribution; Danco Coast; Antarctic Peninsula(Published: 28 February 2013)Citation: Polar Research 2013, 32, 11133, http://dx.doi.org/10.3402/polar.v32i0.1113
    corecore