355 research outputs found
Trial wave functions for High-Pressure Metallic Hydrogen
Many body trial wave functions are the key ingredient for accurate Quantum
Monte Carlo estimates of total electronic energies in many electron systems. In
the Coupled Electron-Ion Monte Carlo method, the accuracy of the trial function
must be conjugated with the efficiency of its evaluation. We report recent
progress in trial wave functions for metallic hydrogen implemented in the
Coupled Electron-Ion Monte Carlo method. We describe and characterize several
types of trial functions of increasing complexity in the range of the coupling
parameter . We report wave function comparisons for
disordered protonic configurations and preliminary results for thermal
averages.Comment: 11 pages, 6 figures, submitted to Computer Physics Communication
Equation of state of metallic hydrogen from Coupled Electron-Ion Monte Carlo simulations
We present a study of hydrogen at pressures higher than molecular
dissociation using the Coupled Electron-Ion Monte Carlo method. These
calculations use the accurate Reptation Quantum Monte Carlo method to estimate
the electronic energy and pressure while doing a Monte Carlo simulation of the
protons. In addition to presenting simulation results for the equation of state
over a large region of phase space, we report the free energy obtained by
thermodynamic integration. We find very good agreement with DFT calculations
for pressures beyond 600 GPa and densities above . Both
thermodynamic as well as structural properties are accurately reproduced by DFT
calculations. This agreement gives a strong support to the different
approximations employed in DFT, specifically the approximate
exchange-correlation potential and the use of pseudopotentials for the range of
densities considered. We find disagreement with chemical models, which suggests
a reinvestigation of planetary models, previously constructed using the
Saumon-Chabrier-Van Horn equations of state.Comment: 9 pages, 7 figure
Predicting the thermodynamics by using state-dependent interactions
We reconsider the structure-based route to coarse graining in which the
coarse-grained model is defined in such a way to reproduce some distributions
functions of the original system as accurately as possible. We consider
standard expressions for pressure and chemical potential applied to this family
of coarse-grained models with density-dependent interactions and show that they
only provide approximations to the pressure and chemical potential of the
underlying original system. These approximations are then carefully compared in
two cases: we consider a generic microscopic system in the low-density regime
and polymer solutions under good-solvent conditions. Moreover, we show that the
state-dependent potentials depend on the ensemble in which they have been
derived. Therefore, care must be used in applying canonical state-dependent
potentials to predict phase lines, which is typically performed in other
ensembles.Comment: 29 pages, 1 figure; To appear in J. Chem. Phy
Phase separation in hydrogen-helium mixtures at Mbar pressures
The properties of hydrogen-helium mixtures at Mbar pressures and intermediate
temperatures (4000 to 10000 K) are calculated with first-principles molecular
dynamics simulations. We determine the equation of state as a function of
density, temperature, and composition and, using thermodynamic integration, we
estimate the Gibbs free energy of mixing, thereby determining the temperature,
at a given pressure, when helium becomes insoluble in dense metallic hydrogen.
These results are directly relevant to models of the interior structure and
evolution of Jovian planets. We find that the temperatures for the demixing of
helium and hydrogen are sufficiently high to cross the planetary adiabat of
Saturn at pressures around 5 Mbar; helium is partially miscible throughout a
significant portion of the interior of Saturn, and to a lesser extent in
Jupiter.Comment: 6 pages, 7 figures. Published in "Proceedings of the National Academy
of Sciences USA
Velocity autocorrelations across the molecular-atomic fluid transformation in hydrogen under pressure
Non-monotonous changes in velocity autocorrelations across the transformation
from molecular to atomic fluid in hydrogen under pressure are studied by ab
initio molecular dynamics simulations at the temperature 2500 K. We report
diffusion coefficients in a wide range of densities from purely molecular fluid
up to metallic atomic fluid phase. An analysis of contributions to the velocity
autocorrelation functions from the motion of molecular centers-of-mass,
rotational and intramolecular vibrational modes is performed, and a crossover
in the vibrational density of intramolecular modes across the transition is
discussed.Comment: 7 pages, 5 figure
- …