38 research outputs found

    Comparative Genomics and Transcriptomics of Propionibacterium acnes

    Get PDF
    The anaerobic Gram-positive bacterium Propionibacterium acnes is a human skin commensal that is occasionally associated with inflammatory diseases. Recent work has indicated that evolutionary distinct lineages of P. acnes play etiologic roles in disease while others are associated with maintenance of skin homeostasis. To shed light on the molecular basis for differential strain properties, we carried out genomic and transcriptomic analysis of distinct P. acnes strains. We sequenced the genome of the P. acnes strain 266, a type I-1a strain. Comparative genome analysis of strain 266 and four other P. acnes strains revealed that overall genome plasticity is relatively low; however, a number of island-like genomic regions, encoding a variety of putative virulence-associated and fitness traits differ between phylotypes, as judged from PCR analysis of a collection of P. acnes strains. Comparative transcriptome analysis of strains KPA171202 (type I-2) and 266 during exponential growth revealed inter-strain differences in gene expression of transport systems and metabolic pathways. In addition, transcript levels of genes encoding possible virulence factors such as dermatan-sulphate adhesin, polyunsaturated fatty acid isomerase, iron acquisition protein HtaA and lipase GehA were upregulated in strain 266. We investigated differential gene expression during exponential and stationary growth phases. Genes encoding components of the energy-conserving respiratory chain as well as secreted and virulence-associated factors were transcribed during the exponential phase, while the stationary growth phase was characterized by upregulation of genes involved in stress responses and amino acid metabolism. Our data highlight the genomic basis for strain diversity and identify, for the first time, the actively transcribed part of the genome, underlining the important role growth status plays in the inflammation-inducing activity of P. acnes. We argue that the disease-causing potential of different P. acnes strains is not only determined by the phylotype-specific genome content but also by variable gene expression

    Insights into the Transposable Mobilome of Paracoccus spp. (Alphaproteobacteria)

    Get PDF
    Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial evolution

    The Thermoanaerobacter Glycobiome Reveals Mechanisms of Pentose and Hexose Co-Utilization in Bacteria

    Get PDF
    Author Summary Renewable liquid fuels derived from lignocellulosic biomass could alleviate global energy shortage and climate change. Cellulose and hemicellulose are the main components of lignocellulosic biomass. Therefore, the ability to simultaneously utilize pentose and hexose (i.e., co-utilization) has been a crucial challenge for industrial microbes producing lignocellulosic biofuels. Certain thermoanaerobic bacteria demonstrate this unusual talent, but the genetic foundation and molecular mechanism of this process remain unknown. In this study, we reconstructed the structure and dynamics of the first genome-wide carbon utilization network of thermoanaerobes. This transcriptome-based co-expression network reveals that glucose, xylose, fructose, and cellobiose catabolism are each featured on distinct functional modules. Furthermore, the dynamics of the network suggests a distinct yet collaborative nature between glucose and xylose catabolism. In addition, we experimentally demonstrated that these novel network-derived features can be rationally exploited for product-yield enhancement via optimized timing and balanced loading of the carbon supply in a substrate-specific manner. Thus, the newly discovered modular and precisely regulated network elucidates unique features of thermoanaerobic glycobiomes and reveals novel perturbation strategies and targets for the enhanced thermophilic production of lignocellulosic biofuels.Yeshttp://www.plosgenetics.org/static/editorial#pee

    New Formulations of Glass Based on Moroccan Natural Phosphate

    No full text

    Regulation of anaerobic arginine catabolism in Bacillus licheniformis by a protein of the Crp/Fnr family

    No full text
    Arginine anaerobic catabolism occurs in Bacillus licheniformis through the arginine deiminase pathway, encoded by the gene cluster arcABDC. We report here the involvement of a new protein, ArcR, in the regulation of the pathway. ArcR is a protein of the Crp/Fnr family encoded by a gene located 109 bp downstream from arcC. It binds to a palindromic sequence, very similar to an Escherichia coli Crp binding site, located upstream from arcA. Residues in the C-terminal domain of Crp that form the DNA binding motif, in particular residues Arg-180 and Glu-181 that make specific bonds with DNA, are conserved in ArcR, suggesting that the complexes formed with DNA by Crp and ArcR are similar. Moreover, the pattern of DNase I hypersensitivity sites induced by the binding of ArcR suggests that ArcR bends the DNA in the same way as Crp. From the absence of anaerobic induction following inactivation of arcR and from the existence of a binding site upstream of the arcA transcription start point, it can be inferred that ArcR is an activator of the arginine deiminase pathway. Copyright (C) 2000 Federation of European Microbiological Societies.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Keratin23 (KRT23) Knockdown Decreases Proliferation and Affects the DNA Damage Response of Colon Cancer Cells

    Get PDF
    <div><p>Keratin 23 (KRT23) is strongly expressed in colon adenocarcinomas but absent in normal colon mucosa. Array based methylation profiling of 40 colon samples showed that the promoter of KRT23 was methylated in normal colon mucosa, while hypomethylated in most adenocarcinomas. Promoter methylation correlated with absent expression, while increased KRT23 expression in tumor samples correlated with promoter hypomethylation, as confirmed by bisulfite sequencing. Demethylation induced KRT23 expression <i>in vitro.</i> Expression profiling of shRNA mediated stable KRT23 knockdown in colon cancer cell lines showed that KRT23 depletion affected molecules of the cell cycle and DNA replication, recombination and repair. <i>In vitro</i> analyses confirmed that KRT23 depletion significantly decreased the cellular proliferation of SW948 and LS1034 cells and markedly decreased the expression of genes involved in DNA damage response, mainly molecules of the double strand break repair homologous recombination pathway. KRT23 knockdown decreased the transcript and protein expression of key molecules as e.g. MRE11A, E2F1, RAD51 and BRCA1. Knockdown of KRT23 rendered colon cancer cells more sensitive to irradiation and reduced proliferation of the KRT23 depleted cells compared to irradiated control cells.</p></div
    corecore