236 research outputs found
Monte-Carlo methods for NLTE spectral synthesis of supernovae
We present JEKYLL, a new code for modelling of supernova (SN) spectra and
lightcurves based on Monte-Carlo (MC) techniques for the radiative transfer.
The code assumes spherical symmetry, homologous expansion and steady state for
the matter, but is otherwise capable of solving the time-dependent radiative
transfer problem in non-local-thermodynamic-equilibrium (NLTE). The method used
was introduced in a series of papers by Lucy, but the full time-dependent NLTE
capabilities of it have never been tested. Here, we have extended the method to
include non-thermal excitation and ionization as well as charge-transfer and
two-photon processes. Based on earlier work, the non-thermal rates are
calculated by solving the Spencer-Fano equation. Using a method previously
developed for the SUMO code, macroscopic mixing of the material is taken into
account in a statistical sense. In addition, a statistical Markov-chain model
is used to sample the emission frequency, and we introduce a method to control
the sampling of the radiation field. Except for a description of JEKYLL, we
provide comparisons with the ARTIS, SUMO and CMFGEN codes, which show good
agreement in the calculated spectra as well as the state of the gas. In
particular, the comparison with CMFGEN, which is similar in terms of physics
but uses a different technique, shows that the Lucy method does indeed converge
in the time-dependent NLTE case. Finally, as an example of the time-dependent
NLTE capabilities of JEKYLL, we present a model of a Type IIb SN, taken from a
set of models presented and discussed in detail in an accompanying paper. Based
on this model we investigate the effects of NLTE, in particular those arising
from non-thermal excitation and ionization, and find strong effects even on the
bolometric lightcurve. This highlights the need for full NLTE calculations when
simulating the spectra and lightcurves of SNe.Comment: Accepted for publication by Astronomy & Astrophysic
Emission line models for the lowest-mass core collapse supernovae. I: Case study of a 9 one-dimensional neutrino-driven explosion
A large fraction of core-collapse supernovae (CCSNe), 30-50%, are expected to
originate from the low-mass end of progenitors with . However, degeneracy effects make stellar evolution modelling of
such stars challenging, and few predictions for their supernova light curves
and spectra have been presented. Here we calculate synthetic nebular spectra of
a 9 Fe CCSN model exploded with the neutrino mechanism. The model
predicts emission lines with FWHM1000 km/s, including signatures from
each deep layer in the metal core. We compare this model to observations of the
three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs,
and SN 2008bk. The prediction of both line profiles and luminosities are in
good agreement with SN 1997D and SN 2008bk. The close fit of a model with no
tuning parameters provides strong evidence for an association of these objects
with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the
observational coverage ended before key diagnostic lines from the core had
emerged. We perform a parameterised study of the amount of explosively made
stable nickel, and find that none of these three SNe show the high
Ni/Ni ratio predicted by current models of electron capture SNe
(ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O
and He shell material, these SNe rather originate from Fe core progenitors. We
argue that the outcome of self-consistent explosion simulations of low-mass
stars, which gives fits to many key observables, strongly suggests that the
class of subluminous Type IIP SNe is the observational counterpart of the
lowest mass CCSNe.Comment: Resubmitted to MNRAS after referee comment
The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines
We present nebular phase optical and near-infrared spectroscopy of the Type
IIP supernova SN 2012aw combined with NLTE radiative transfer calculations
applied to ejecta from stellar evolution/explosion models. Our spectral
synthesis models generally show good agreement with the ejecta from a MZAMS =
15 Msun progenitor star. The emission lines of oxygen, sodium, and magnesium
are all consistent with the nucleosynthesis in a progenitor in the 14 - 18 Msun
range. We also demonstrate how the evolution of the oxygen cooling lines of [O
I] 5577 A, [O I] 6300 A, and [O I] 6364 A can be used to constrain the mass of
oxygen in the non-molecularly cooled ashes to < 1 Msun, independent of the
mixing in the ejecta. This constraint implies that any progenitor model of
initial mass greater than 20 Msun would be difficult to reconcile with the
observed line strengths. A stellar progenitor of around MZAMS = 15 Msun can
consistently explain the directly measured luminosity of the progenitor star,
the observed nebular spectra, and the inferred pre-supernova mass-loss rate. We
conclude that there is still no convincing example of a Type IIP explosion
showing the nucleosynthesis expected from a MZAMS > 20 Msun progenitor.Comment: Accepted for publication in MNRA
Constraints on explosive silicon burning in core-collapse supernovae from measured Ni/Fe ratios
Measurements of explosive nucleosynthesis yields in core-collapse supernovae
provide tests for explosion models. We investigate constraints on explosive
conditions derivable from measured amounts of nickel and iron after radioactive
decays using nucleosynthesis networks with parameterized thermodynamic
trajectories. The Ni/Fe ratio is for most regimes dominated by the production
ratio of 58Ni/(54Fe + 56Ni), which tends to grow with higher neutron excess and
with higher entropy. For SN 2012ec, a supernova that produced a Ni/Fe ratio of
times solar, we find that burning of a fuel with neutron excess
is required. Unless the progenitor metallicity
is over 5 times solar, the only layer in the progenitor with such a neutron
excess is the silicon shell. Supernovae producing large amounts of stable
nickel thus suggest that this deep-lying layer can be, at least partially,
ejected in the explosion. We find that common spherically symmetric models of
Msun stars exploding with a delay time of less than
one second ( Msun) are able to achieve such silicon-shell
ejection. Supernovae that produce solar or sub-solar Ni/Fe ratios, such as SN
1987A, must instead have burnt and ejected only oxygen-shell material, which
allows a lower limit to the mass cut to be set. Finally, we find that the
extreme Ni/Fe value of 60-75 times solar derived for the Crab cannot be
reproduced by any realistic-entropy burning outside the iron core, and
neutrino-neutronization obtained in electron-capture models remains the only
viable explanation.Comment: 13 pages, 9 figures, accepted for publication in Ap
Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh
We investigate line formation processes in Type IIb supernovae (SNe) from 100
to 500 days post-explosion using spectral synthesis calculations. The modeling
identifies the nuclear burning layers and physical mechanisms that produce the
major emission lines, and the diagnostic potential of these. We compare the
model calculations with data on the three best observed Type IIb SNe to-date -
SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively
on the main-sequence mass of the star and modeling of the [O I] 6300, 6364
lines constrains the progenitors of these three SNe to the M_ZAMS=12-16 M_sun
range (ejected oxygen masses 0.3-0.9 M_sun), with SN 2011dh towards the lower
end and SN 1993J towards the upper end of the range. The high ejecta masses
from M_ZAMS >= 17 M_sun progenitors give rise to brighter nebular phase
emission lines than observed. Nucleosynthesis analysis thus supports a scenario
of low/moderate mass progenitors for Type IIb SNe, and by implication an origin
in binary systems. We demonstrate how oxygen and magnesium recombination lines
may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh,
a magnesium mass of of 0.02-0.14 M_sun is derived, which gives a Mg/O
production ratio consistent with the solar value. Nitrogen left in the He
envelope from CNO-burning gives strong [N II] 6548, 6583 emission lines that
dominate over H-alpha emission in our models. The hydrogen envelopes of Type
IIb SNe are too small and dilute to produce any noticeable H-alpha emission or
absorption after ~150 days, and nebular phase emission seen around 6550 A is in
many cases likely caused by [N II] 6548, 6583. Finally, the influence of
radiative transport on the emergent line profiles is investigated...(abridged)Comment: Published versio
Spectra of supernovae in the nebular phase
When supernovae enter the nebular phase after a few months, they reveal
spectral fingerprints of their deep interiors, glowing by radioactivity
produced in the explosion. We are given a unique opportunity to see what an
exploded star looks like inside. The line profiles and luminosities encode
information about physical conditions, explosive and hydrostatic
nucleosynthesis, and ejecta morphology, which link to the progenitor properties
and the explosion mechanism. Here, the fundamental properties of spectral
formation of supernovae in the nebular phase are reviewed. The formalism
between ejecta morphology and line profile shapes is derived, including effects
of scattering and absorption. Line luminosity expressions are derived in
various physical limits, with examples of applications from the literature. The
physical processes at work in the supernova ejecta, including gamma-ray
deposition, non-thermal electron degradation, ionization and excitation, and
radiative transfer are described and linked to the computation and application
of advanced spectral models. Some of the results derived so far from
nebular-phase supernova analysis are discussed.Comment: Book chapter for 'Handbook of Supernovae,' edited by Alsabti and
Murdin, Springer. 51 pages, 14 figure
Using late-time optical and near-infrared spectra to constrain Type Ia supernova explosion properties
The late-time spectra of Type Ia supernovae (SNe Ia) are powerful probes of
the underlying physics of their explosions. We investigate the late-time
optical and near-infrared spectra of seven SNe Ia obtained at the VLT with
XShooter at 200 d after explosion. At these epochs, the inner Fe-rich ejecta
can be studied. We use a line-fitting analysis to determine the relative line
fluxes, velocity shifts, and line widths of prominent features contributing to
the spectra ([Fe II], [Ni II], and [Co III]). By focussing on [Fe II] and [Ni
II] emission lines in the ~7000-7500 \AA\ region of the spectrum, we find that
the ratio of stable [Ni II] to mainly radioactively-produced [Fe II] for most
SNe Ia in the sample is consistent with Chandrasekhar-mass delayed-detonation
explosion models, as well as sub-Chandrasekhar mass explosions that have
metallicity values above solar. The mean measured Ni/Fe abundance of our sample
is consistent with the solar value. The more highly ionised [Co III] emission
lines are found to be more centrally located in the ejecta and have broader
lines than the [Fe II] and [Ni II] features. Our analysis also strengthens
previous results that SNe Ia with higher Si II velocities at maximum light
preferentially display blueshifted [Fe II] 7155 \AA\ lines at late times. Our
combined results lead us to speculate that the majority of normal SN Ia
explosions produce ejecta distributions that deviate significantly from
spherical symmetry.Comment: 17 pages, 12 figure, accepted for publication in MNRA
The host galaxy and late-time evolution of the Super-Luminous Supernova PTF12dam
Super-luminous supernovae of type Ic have a tendency to occur in faint host
galaxies which are likely to have low mass and low metallicity. PTF12dam is one
of the closest and best studied super-luminous explosions that has a broad and
slowly fading lightcurve similar to SN 2007bi. Here we present new photometry
and spectroscopy for PTF12dam from 200-500 days (rest-frame) after peak and a
detailed analysis of the host galaxy (SDSS J142446.21+461348.6 at z = 0.107).
Using deep templates and image subtraction we show that the full lightcurve can
be fit with a magnetar model if escape of high-energy gamma rays is taken into
account. The full bolometric lightcurve from -53 to +399 days (with respect to
peak) cannot be fit satisfactorily with the pair-instability models. An
alternative model of interaction with a dense CSM produces a good fit to the
data although this requires a very large mass (~ 13 M_sun) of hydrogen free
CSM. The host galaxy is a compact dwarf (physical size ~ 1.9 kpc) and with M_g
= -19.33 +/- 0.10, it is the brightest nearby SLSN Ic host discovered so far.
The host is a low mass system (2.8 x 10^8 M_sun) with a star-formation rate
(5.0 M_sun/year), which implies a very high specific star-formation rate (17.9
Gyr^-1). The remarkably strong nebular lines provide detections of the [O III]
\lambda 4363 and [O II] \lambda\lambda 7320,7330 auroral lines and an accurate
oxygen abundance of 12 + log(O/H) = 8.05 +/- 0.09. We show here that they are
at the extreme end of the metallicity distribution of dwarf galaxies and
propose that low metallicity is a requirement to produce these rare and
peculiar supernovae.Comment: 20 pages, 12 figures, 8 tables, accepted for publication to MNRA
The multi-faceted Type II-L supernova 2014G from pre-maximum to nebular phase
We present multi-band ultraviolet, optical, and near-infrared photometry,
along with visual-wavelength spectroscopy, of supernova (SN) 2014G in the
nearby galaxy NGC 3448 (25 Mpc). The early-phase spectra show strong emission
lines of the high ionisation species He II/N IV/C IV during the first 2-3 d
after explosion, traces of a metal-rich CSM probably due to pre-explosion mass
loss events. These disappear by day 9 and the spectral evolution then continues
matching that of normal Type II SNe. The post-maximum light curve declines at a
rate typical of Type II-L class. The extensive photometric coverage tracks the
drop from the photospheric stage and constrains the radioactive tail, with a
steeper decline rate than that expected from the Co decay if
-rays are fully trapped by the ejecta. We report the appearance of an
unusual feature on the blue-side of H after 100 d, which evolves to
appear as a flat spectral feature linking H and the O I doublet. This
may be due to interaction of the ejecta with a strongly asymmetric, and
possibly bipolar CSM. Finally, we report two deep spectra at ~190 and 340 d
after explosion, the latter being arguably one of the latest spectra for a Type
II-L SN. By modelling the spectral region around the Ca II, we find a
supersolar Ni/Fe production. The strength of the O I 6300,6363
doublet, compared with synthetic nebular spectra, suggests a progenitor with a
zero-age main-sequence mass between 15 and 19 M.Comment: 24 pages, 14 figure
- …