9,167 research outputs found

    The Weyl tensor two-point function in de Sitter spacetime

    Get PDF
    We present an expression for the Weyl-Weyl two-point function in de Sitter spacetime, based on a recently calculated covariant graviton two-point function with one gauge parameter. We find that the Weyl-Weyl two-point function falls off with distance like r^{-4}, where r is spacelike coordinate separation between the two points.Comment: 9 pages, no figure

    Stability of Massive Cosmological Gravitons

    Get PDF
    We analyze the physics of massive spin 2 fields in (A)dS backgrounds and exhibit that: The theory is stable only for masses m^2 >= 2\Lambda/3, where the conserved energy associated with the background timelike Killing vector is positive, while the instability for m^2<2\Lambda/3 is traceable to the helicity 0 energy. The stable, unitary, partially massless theory at m^2=2\Lambda/3 describes 4 propagating degrees of freedom, corresponding to helicities (+/-2,+/-1) but contains no 0 helicity excitation.Comment: 13 pages, LaTeX, version to appear in Phys. Lett.

    How entangled can two couples get?

    Full text link
    We describe a pure state of four qubits whose single-qubit density matrices are all maximally mixed and whose average entanglement as a system of two pairs of qubits appears to be maximal.Comment: 9 pages. Note added about the robustness of the entanglement in the four-qubit state described in the paper. Version to be published in Phys. Lett.

    Group quantization of parametrized systems II. Pasting Hilbert spaces

    Full text link
    The method of group quantization described in the preceeding paper I is extended so that it becomes applicable to some parametrized systems that do not admit a global transversal surface. A simple completely solvable toy system is studied that admits a pair of maximal transversal surfaces intersecting all orbits. The corresponding two quantum mechanics are constructed. The similarity of the canonical group actions in the classical phase spaces on the one hand and in the quantum Hilbert spaces on the other hand suggests how the two Hilbert spaces are to be pasted together. The resulting quantum theory is checked to be equivalent to that constructed directly by means of Dirac's operator constraint method. The complete system of partial Hamiltonians for any of the two transversal surfaces is chosen and the quantum Schr\"{o}dinger or Heisenberg pictures of time evolution are constructed.Comment: 35 pages, latex, no figure

    Electronic structure and the Fermi surface of UTGa_{5} (T=Fe, Co, Rh)

    Full text link
    The relativistic energy-band calculations have been carried out for UFeGa_{5}, UCoGa_{5} and URhGa_{5} under the assumption that 5f-electrons are itinerant. A hybridization between the U 5f state and Ga 4p state occurs in the vicinity of the Fermi level. The Fermi surface of UCoGa_{5} is quite similar to that of URhGa_{5}, which are all small in size and closed in topology. UFeGa_{5} has the quasi-two-dimensional Fermi surface which looks like a lattice structure.Comment: 2 pages, 3 figures, LT23auth.cls, elsart.cls. submitted to conference LT2

    Do static sources outside a Schwarzschild black hole radiate?

    Full text link
    We show that static sources coupled to a massless scalar field in Schwarzschild spacetime give rise to emission and absorption of zero-energy particles due to the presence of Hawking radiation. This is in complete analogy with the description of the bremsstrahlung by a uniformly accelerated charge from the coaccelerated observers' point of view. The response rate of the source is found to coincide with that in Minkowski spacetime as a function of its proper acceleration. This result may be viewed as restoration of the equivalence principle by the Hawking effect.Comment: 13 page

    SO(4) Invariant States in Quantum Cosmology

    Get PDF
    The phenomenon of linearisation instability is identified in models of quantum cosmology that are perturbations of mini-superspace models. In particular, constraints that are second order in the perturbations must be imposed on wave functions calculated in such models. It is shown explicitly that in the case of a model which is a perturbation of the mini-superspace which has S3S^3 spatial sections these constraints imply that any wave functions calculated in this model must be SO(4) invariant. (This replaces the previous corrupted version.)Comment: 15 page
    • …
    corecore