1,524 research outputs found

    Neutralino Decays in the Complex MSSM at One-Loop: a Comparison of On-Shell Renormalization Schemes

    Get PDF
    We evaluate two-body decay modes of neutralinos in the Minimal Supersymmetric Standard Model with complex parameters (cMSSM). Assuming heavy scalar quarks we take into account all two-body decay channels involving charginos, neutralinos, (scalar) leptons, Higgs bosons and Standard Model gauge bosons. The evaluation of the decay widths is based on a full one-loop calculation including hard and soft QED radiation. Of particular phenomenological interest are decays involving the Lightest Supersymmetric Particle (LSP), i.e. the lightest neutralino, or a neutral or charged Higgs boson. For the chargino/neutralino sector we employ two different renormalization schemes, which differ in the treatment of the complex phases. In the numerical analysis we concentrate on the decay of the heaviest neutralino and show the results in the two different schemes. The higher-order corrections of the heaviest neutralino decay widths involving the LSP can easily reach a level of about 10-15%, while the corrections to the decays to Higgs bosons are up to 20-30%, translating into corrections of similar size in the respective branching ratios. The difference between the two schemes, indicating the size of unknown two-loop corrections, is less than order(0.1%). These corrections are important for the correct interpretation of LSP and Higgs production at the LHC and at a future linear e+e- collider. The results will be implemented into the Fortran code FeynHiggs.Comment: 49 pages, 27 figures, typos corrected. arXiv admin note: substantial text overlap with arXiv:1112.0760, arXiv:1111.7289, arXiv:1204.400

    Finite Unified Theories and the Higgs mass prediction

    Full text link
    Finite Unified Theories (FUTs) are N=1 supersymmetric Grand Unified Theories, which can be made all-loop finite, both in the dimensionless (gauge and Yukawa couplings) and dimensionful (soft supersymmetry breaking terms) sectors. This remarkable property provides a drastic reduction in the number of free parameters, which in turn leads to an accurate prediction of the top quark mass in the dimensionless sector, and predictions for the Higgs boson mass and the supersymmetric spectrum in the dimensionful sector. Here we examine the predictions of two FUTs taking into account a number of theoretical and experimental constraints. For the first one we present the results of a detailed scanning concerning the Higgs mass prediction, while for the second we present a representative prediction of its spectrum.Comment: 16 pages, 4 figure

    The Higgs Boson Production Cross Section as a Precision Observable?

    Get PDF
    We investigate what can be learned at a linear collider about the sector of electroweak symmetry breaking from a precise measurement of the Higgs boson production cross section through the process e+e- -> hZ. We focus on deviations from the Standard Model arising in its minimal supersymmetric extension. The analysis is performed within two realistic future scenarios, taking into account all prospective experimental errors on supersymmetric particle masses as well as uncertainties from unknown higher order corrections. We find that information on tan beta and M_A could be obtained from a cross section measurement with a precision of 0.5 - 1 %. Alternatively, information could be obtained on the gaugino mass parameters M_2 and mu if they are relatively small, M_2, mu approximately 200 GeV.Comment: 13 pages, 3 figures. Discussion on experimental errors enlarged, references added and updated. Version to appear in Phys. Rev.

    Direct Chargino-Neutralino Production at the LHC: Interpreting the Exclusion Limits in the Complex MSSM

    Full text link
    We re-assess the exclusion limits on the parameters describing the supersymmetric (SUSY) electroweak sector of the MSSM obtained from the search for direct chargino-neutralino production at the LHC. We start from published limits obtained in simplified models, where for the case of heavy sleptons the relevant branching ratio, BR(neu2->neu1 Z), is set to one. We show how the decay mode neu2->neu1 h, which cannot be neglected in any realistic model once kinematically allowed, substantially reduces the excluded parameter region. We analyze the dependence of the excluded regions on the phase of the gaugino soft SUSY-breaking mass parameter, M_1, on the mass of the light scalar tau, on tb as well as on the squark and slepton mass scales. Large reductions in the ranges of parameters excluded can be observed in all scenarios. The branching ratios of charginos and neutralinos are evaluated using a full NLO calculation for the complex MSSM. The size of the effects of the NLO calculation on the exclusion bounds is investigated. We furthermore assess the potential reach of the experimental analyses after collecting 100/fb at the LHC running at 13 TeV.Comment: 34 pages, 12 figures. Minor changes, matches published versio

    Heavy MSSM Higgs Bosons at CMS: "LHC wedge" and Higgs-Mass Precision

    Full text link
    The search for MSSM Higgs bosons will be an important goal at the LHC. In order to analyze the search reach of the CMS experiment for the heavy neutral MSSM Higgs bosons, we combine the latest results for the CMS experimental sensitivities based on full simulation studies with state-of-the-art theoretical predictions of MSSM Higgs-boson properties. The experimental analyses are done assuming an integrated luminosity of 30 or 60 fb^-1. The results are interpreted as 5 \si discovery contours in MSSM M_A-tan_beta benchmark scenarios. Special emphasis is put on the variation of the Higgs mixing parameter mu. While the variation of mu can shift the prospective discovery reach (and correspondingly the ``LHC wedge'' region) by about Delta tan_beta= 10, the discovery reach is rather stable with respect to the impact of other supersymmetric parameters. Within the discovery region we analyze the accuracy with which the masses of the heavy neutral Higgs bosons can be determined. An accuracy of 1-4% should be achievable, depending on M_A and tan_beta.Comment: Talk given by G.W. at EPS07 (Manchester, July 2007) and talk given by S.H. at SUSY07 (Karlsruhe, July 2007). 4 pages, 2 figure

    Z Pole Observables in the MSSM

    Full text link
    We present the currently most accurate prediction of Z pole observables such as sin^2 theta_eff, Gamma_Z, R_b, R_l, and sigma^0_had in the Minimal Supersymmetric Standard Model (MSSM). We take into account the complete one-loop results including the full complex phase dependence, all available MSSM two-loop corrections as well as the full SM results. We furthermore include higher-order corrections in the MSSM Higgs boson sector, entering via virtual Higgs boson contributions. For Gamma(Z -> neutralino{1} neutralino{1}) we present a full one-loop calculation. We analyse the impact of the different sectors of the MSSM with particular emphasis on the effects of the complex phases. The predictions for the Z boson observables and M_W are compared with the current experimental values. Furthermore we provide an estimate of the remaining higher-order uncertainties in the prediction of sin^2 theta_eff.Comment: 53 pages, 20 figures, journal versio

    The Road Towards the ILC: Higgs, Top/QCD, Loops

    Full text link
    The International Linear e+e- Collider (ILC) could go into operation in the second half of the upcoming decade. Experimental analyses and theory calculations for the physics at the ILC are currently performed. We review recent progress, as presented at the LCWS06 in Bangalore, India, in the fields of Higgs boson physics and top/QCD. Also the area of loop calculations, necessary to achieve the required theory precision, is included.Comment: 7 pages, 1 figure. Plenary talk given at the LCWS06 March 2006, Bangalore, India. Top part slightly enlarged, references adde
    corecore