9,995 research outputs found

    A search for water maser emission toward obscured post-AGB star and planetary nebula candidates

    Full text link
    Water maser emission at 22 GHz is a useful probe to study the transition between the nearly spherical mass-loss in the AGB to a collimated one in the post-AGB phase. In their turn, collimated jets in the post-AGB phase could determine the shape of planetary nebulae (PNe) once photoionization starts. We intend to find new cases of post-AGB stars and PNe with water maser emission, including water fountains or water-maser-emitting PNe. We observed water maser emission in a sample of 133 objects, with a significant fraction being post-AGB and young PN candidate sources with strong obscuration. We detected this emission in 15 of them, of which seven are reported here for the first time. We identified three water fountain candidates: IRAS 17291-2147, with a total velocity spread of ~96 km/s in its water maser components and two sources (IRAS 17021-3109 and IRAS 17348-2906) that show water maser emission outside the velocity range covered by OH masers. We have also identified IRAS 17393-2727 as a possible new water-maser-emitting PN. The detection rate is higher in obscured objects (14%) than in those with optical counterparts (7%), consistent with previous results. Water maser emission seems to be common in objects that are bipolar in the near-IR (43% detection rate). The water maser spectra of water fountain candidates like IRAS 17291-2147 show significantly less maser components than others (e.g., IRAS 18113-2503). We speculate that most post-AGBs may show water maser emission with wide enough velocity spread (> 100 km/s) when observed with enough sensitivity and/or for long enough periods of time. Therefore, it may be necessary to single out a special group of "water fountains", probably defined by their high maser luminosities. We also suggest that the presence of both water and OH masers in a PN is a better tracer of its youth, rather than the presence of just one of these species.Comment: To be published in Astronomy & Astrophysics. 16 pages, 1 figure (spanning 5 pages). This version includes some minor language corrections and fixes some errors in Table

    Control of Theta Oscillatory Activity Underlying Fear Expression by mGlu5 Receptors

    Get PDF
    Metabotropic glutamate 5 receptors (mGlu5) are thought to play an important role in mediating emotional information processing. In particular, negative allosteric modulators (NAMs) of mGlu5 have received a lot of attention as potential novel treatments for several neuropsychiatric diseases, including anxiety-related disorders. The aim of this study was to assess the influence of pre- and post-training mGlu5 inactivation in cued fear conditioned mice on neuronal oscillatory activity during fear retrieval. For this study we used the recently developed mGlu5 NAM Alloswicth-1 administered systemically. Injection of Alloswicth-1 before, but not after, fear conditioning resulted in a significant decrease in freezing upon fear retrieval. Mice injected with Alloswicth-1 pre-training were also implanted with recording microelectrodes into both the medial prefrontal cortex (mPFC) and ventral hippocampus (vHPC). The recordings revealed a reduction in theta rhythmic activity (4–12 Hz) in both the mPFC and vHPC during fear retrieval. These results indicate that inhibition of mGlu5 signaling alters local oscillatory activity in principal components of the fear brain network underlying a reduced response to a predicted threat

    Preservação de acessos de cucurbitåceas no Banco Ativo de Germoplasma (BAG) da Embrapa Semi-Árido - condicÔes atuais.

    Get PDF
    Como objetivo inicial testar a viabilidade do uso da sĂ­lico gel azul como dessecante em sementes de acessos previamente armazenados

    Use of 2-dimensional speckle-tracking echocardiography to assess left ventricular systolic function in dogs with systemic inflammatory response syndrome

    Get PDF
    Background: Early identification of systolic dysfunction in dogs with systemic inflammatory response syndrome (SIRS) potentially could improve the outcome and decrease mortality. Objective: To compare 2-dimensional speckle tracking (2D-STE) with 2-dimensional (2D) and M-mode echocardiography in the evaluation of systolic function in SIRS dogs. Animals: Seventeen SIRS and 17 healthy dogs. Methods: Prospective observational case-control study. Each dog underwent physical examination, conventional echocardiography, 2D-STE, and C-reactive protein measurement. Results: Dogs with SIRS had lower 2D-STE ejection fraction (X4D-EF; 44 ± 8 versus 53 ± 8; P =.003), endocardial global longitudinal strain (ENDO-G-Long-St; -14.6 ± 3.2 versus -18.5 ± 4.1; P =.003), and normalized left ventricular diameter in diastole (1.38 ± 0.25 versus 1.54 ± 0.17; P =.04) and systole (0.85 ± 0.18 versus 0.97 ± 0.11; P =.03) as compared to healthy dogs. Simpson method of disks (SMOD) right parasternal EF (55 ± 9 versus 60 ± 6; P =.07) and end systolic volume index (ESVI; 23 ± 10 versus 21 ± 6; P =.61), SMOD left apical EF (59 ± 9 versus 59 ± 6; P =.87) and ESVI (20 ± 8 versus 22 ± 6; P =.25), fractional shortening (FS; 34 ± 5 versus 33 ± 4; P =.39), M-mode EF (64 ± 7 versus 62 ± 5; P =.35), and ESVI (23 ± 11 versus 30 ± 9; P =.06) were not significantly different between SIRS and control group, respectively. Conclusion and Clinical Importance: Speckle tracking X4D-EF and ENDO-G-Long-St are more sensitive than 2D and M-Mode FS, EF, and ESVI in detecting systolic impairment in dogs with SIRS

    Possible Patient Early Diagnosis by Ultrasonic Noninvasive Estimation of Thermal Gradients into Tissues Based on Spectral Changes Modeling

    Get PDF
    To achieve a precise noninvasive temperature estimation, inside patient tissues, would open promising research fields, because its clinic results would provide early-diagnosis tools. In fact, detecting changes of thermal origin in ultrasonic echo spectra could be useful as an early complementary indicator of infections, inflammations, or cancer. But the effective clinic applications to diagnosis of thermometry ultrasonic techniques, proposed previously, require additional research. Before their implementations with ultrasonic probes and real-time electronic and processing systems, rigorous analyses must be still made over transient echotraces acquired from well-controlled biological and computational phantoms, to improve resolutions and evaluate clinic limitations. It must be based on computing improved signal-processing algorithms emulating tissues responses. Some related parameters in echo-traces reflected by semiregular scattering tissues must be carefully quantified to get a precise processing protocols definition. In this paper, approaches for non-invasive spectral ultrasonic detection are analyzed. Extensions of author's innovations for ultrasonic thermometry are shown and applied to computationally modeled echotraces from scattered biological phantoms, attaining high resolution (better than 0.1°C). Computer methods are provided for viability evaluation of thermal estimation from echoes with distinct noise levels, difficult to be interpreted, and its effectiveness is evaluated as possible diagnosis tool in scattered tissues like liver

    PANIC: the new panoramic NIR camera for Calar Alto

    Full text link
    PANIC is a wide-field NIR camera, which is currently under development for the Calar Alto observatory (CAHA) in Spain. It uses a mosaic of four Hawaii-2RG detectors and covers the spectral range from 0.8-2.5 micron(z to K-band). The field-of-view is 30x30 arcmin. This instrument can be used at the 2.2m telescope (0.45arcsec/pixel, 0.5x0.5 degree FOV) and at the 3.5m telescope (0.23arcsec/pixel, 0.25x0.25 degree FOV). The operating temperature is about 77K, achieved by liquid Nitrogen cooling. The cryogenic optics has three flat folding mirrors with diameters up to 282 mm and nine lenses with diameters between 130 mm and 255 mm. A compact filter unit can carry up to 19 filters distributed over four filter wheels. Narrow band (1%) filters can be used. The instrument has a diameter of 1.1 m and it is about 1 m long. The weight limit of 400 kg at the 2.2m telescope requires a light-weight cryostat design. The aluminium vacuum vessel and radiation shield have wall thicknesses of only 6 mm and 3 mm respectively.Comment: This paper has been presented in the SPIE of Astronomical Telescopes and Instrumentation 2008 in Marseille (France

    One-dimensional migration of olfactory ensheathing cells on synthetic materials: Experimental and numerical characterization

    Full text link
    Olfactory ensheathing cells (OECs) are of great interest for regenerative purposes since they are believed to aid axonal growth. With the view set on the strategies to achieve reconnection between neuronal structures, it is of great importance to characterize the behaviour of these cells on long thread-like structures that may efficiently guide cell spread in a targeted way. Here, rat OECs were studied on polycaprolactone (PCL) long monofilaments, on long bars and on discs. PCL turns out to be an excellent substrate for OECs. The cells cover long distances along the monofilaments and colonize completely these struc- tures. With the help of a one-dimensional (1D) analytical model, a migration coefficient, a net proliferation rate constant and the fraction of all cells which undergo migration were obtained. The separate effect of the three phenomena summarized by these parameters on the colo- nization patterns of the 1D path was qualitatively dis- cussed. Other features of interest were also determined, such as the speed of the advance front of colonization and the order of the kinetics of net cell proliferation. Charac- terizing migration by means of these quantities may be useful for comparing and predicting features of the colo- nization process (such as times, patterns, advance fronts and proportion of motile cells) of different cell substrate combinations.Support of the Spanish Science & Innovation Ministery through project MAT2008-06434 is acknowledged. MMP and CMR acknowledge partial funding through the "Convenio de Colaboracion para la Investigacion Basica y Traslacional en Medicina Regenerativa" between the Instituto Nacional de Salud Carlos III, the Conselleria de Sanidad of the Generalitat Valenciana and the Foundation Centro de Investigacion Principe Felipe.Perez Garnes, M.; MartĂ­nez Ramos, C.; Barcia, JA.; Escobar Ivirico, JL.; Gomez Pinedo, UA.; VallĂ©s Lluch, A.; MonleĂłn Pradas, M. (2013). One-dimensional migration of olfactory ensheathing cells on synthetic materials: Experimental and numerical characterization. Cell Biochemistry and Biophysics. 65:21-36. https://doi.org/10.1007/s12013-012-9399-1S213665Stokols, S., Sakamoto, J., Breckon, C., Holt, T., Weiss, J., & Tuszynski, M. H. (2006). Templated agarose scaffolds support linear axonal regeneration. Tissue Engineering, 12(10), 2777–2787.Wei, Y. T., Tian, W. M., Yu, X., Cui, F. Z., Hou, S. P., Xu, Q. Y., et al. (2007). Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain. Biomedical Materials, 2(3), 142–146.Yao, L., Wang, S., Cui, W., Sherlock, R., O’Connell, C., Damodaran, G., et al. (2009). Effect of functionalized micropatterned PLGA on guided neurite growth. Acta Biomaterialia, 5(2), 580–588.Chehrehasa, F., Windus, L. C. E., Ekberg, J. A. K., Scott, S. E., Amaya, D., Mackay-Sim, A., et al. (2010). Olfactory glia enhance neonatal axon regeneration. Molecular and Cellular Neuroscience, 45(3), 277–288.Chen, B. K., Knight, A. M., de Ruiter, G. C., Spinner, R. J., Yaszemski, M. J., Currier, B. L., et al. (2009). Axon regeneration through scaffold into distal spinal cord after transection. Journal of Neurotrauma, 26(10), 1759–1771.Goto, E., Mukozawa, M., Mori, H., & Hara, M. (2010). A rolled sheet of collagen gel with cultured Schwann cells: Model of nerve conduit to enhance neurite growth. Journal of Bioscience and Bioengineering, 109(5), 512–518.Lietz, M., Dreesmann, L., Hoss, M., Oberhoffner, S., & Schlosshauer, B. (2006). Neuro tissue engineering of glial nerve guides and the impact of different cell types. Biomaterials, 27(8), 1425–1436.Radtke, C., Sasaki, M., Lankford, K. L., Vogt, P. M., & Kocsis, J. D. (2008). Potential of olfactory ensheathing cells for cell-based therapy in spinal cord injury. Journal of Rehabilitation Research and Development, 45(1), 141–151.Wei, Y., Miao, X., Xian, M., Zhang, C., Liu, X., Zhao, H., et al. (2008). Effects of transplanting olfactory ensheathing cells on recovery of olfactory epithelium after olfactory nerve transection in rats. Medical Science Monitor, 14(10), 198–204.Tennent, R., & Chuah, M. I. (1996). Ultrastructural study of ensheathing cells in early development of olfactory axons. Brain Research, Developmental Brain Research, 95(1), 135–139.Doucette, R. (1990). Glial influences on axonal growth in the primary olfactory system. Glia, 3(6), 433–449.Field, P., Li, Y., & Raisman, G. (2003). Ensheathment of the olfactory nerves in the adult rat. Journal of Neurocytology, 32(3), 317–324.Boyd, J. G., Doucette, R., & Kawaja, M. D. (2005). Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. Faseb Journal, 19(7), 694–703.Franklin, R. J., Gilson, J. M., Franceschini, I. A., & Barnett, S. C. (1996). Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia, 17(3), 217–224.Imaizumi, T., Lankford, K. L., Waxman, S. G., Greer, C. A., & Kocsis, J. D. (1998). Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. Journal of Neuroscience, 18(16), 6176–6185.Raisman, G. (2001). Olfactory ensheathing cells - another miracle cure for spinal cord injury? Nature Reviews Neuroscience, 2(5), 369–375.RamĂłn-Cueto, A., Cordero, M. I., Santos-Benito, F. F., & Avila, J. (2000). Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron, 25(2), 425–435.Chuah, M. I., Choi-Lundberg, D., Weston, S., Vincent, A. J., Chung, R. S., Vickers, J. C., et al. (2004). Olfactory ensheathing cells promote collateral axonal branching in the injured adult rat spinal cord. Experimental Neurology, 185(1), 15–25.Bellamkonda, R. V. (2006). Peripheral nerve regeneration: An opinion on channels, scaffolds and anisotropy. Biomaterials, 27(19), 3515–3518.Liu, Y., Gong, Z., Liu, L., & Sun, H. (2010). Combined effect of olfactory ensheathing cell transplantation and glial cell line-derived neurotrophic factor (GDNF) intravitreal injection on optic nerve injury in rats. Molecular Vision, 16, 2903–2910.Zhu, Y., Cao, L., Su, Z., Mu, L., Yuan, Y., Gao, L., et al. (2010). Olfactory ensheathing cells: Attractant of neural progenitor migration to olfactory bulb. Glia, 58(6), 716–729.Basiri, M., & Doucette, R. (2010). Sensorimotor cortex aspiration: A model for studying Wallerian degeneration-induced glial reactivity along the entire length of a single CNS axonal pathway. Brain Research Bulletin, 81(1), 43–52.Li, Y., Carlstedt, T., Berthold, C.-H., & Raisman, G. (2004). Interaction of transplanted olfactory-ensheathing cells and host astrocytic processes provides a bridge for axons to regenerate across the dorsal root entry zone. Experimental Neurology, 188(2), 300–308.Li, Y., Yamamoto, M., Raisman, G., Choi, D., & Carlstedt, T. (2007). An experimental model of ventral root repair showing the beneficial effect of transplanting olfactory ensheathing cells. Neurosurgery, 60(4), 734–741.RamĂłn-Cueto, A., Plant, G. W., Avila, J., & Bunge, M. B. (1998). Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. The Journal of Neuroscience, 18(10), 3803–3815.GĂłmez-Pinedo, U., Vidueira, S., Sancho, F. J., GarcĂ­a-Verdugo, J. M., MatĂ­as-Guiu, J., & Barcia, J. A. (2011). Olfactory ensheathing glia enhances reentry of axons into the brain from peripheral nerve grafts bridging the substantia nigra with the striatum. Neuroscience Letters, 494(2), 104–108.Graziadei, P. P., Levine, R. R., & Graziadei, G. A. (1978). Regeneration of olfactory axons and synapse formation in the forebrain after bulbectomy in neonatal mice. Proceedings of the National academy of Sciences of the United States of America, 75(10), 5230–5234.Cao, L., Liu, L., Chen, Z. Y., Wang, L. M., Ye, J. L., Qiu, H. Y., et al. (2004). Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair. Brain, 127(3), 535–549.Cao, L., Su, Z., Zhou, Q., Lv, B., Liu, X., Jiao, L., et al. (2006). Glial cell line-derived neurotrophic factor promotes olfactory ensheathing cells migration. Glia, 54(6), 536–544.Woodhall, E., West, A. K., & Chuah, M. I. (2001). Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Research. Molecular Brain Research, 88(1–2), 203–213.Cao, L., Zhu, Y. L., Su, Z., Lv, B., Huang, Z., Mu, L., et al. (2007). Olfactory ensheathing cells promote migration of Schwann cells by secreted nerve growth factor. Glia, 55(9), 897–904.Doucette, R. (1996). Immunohistochemical localization of laminin, fibronectin and collagen type IV in the nerve fiber layer of the olfactory bulb. International Journal of Developmental Neuroscience, 14(7–8), 945–959.Franceschini, I. A., & Barnett, S. C. (1996). Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Developmental Biology, 173(1), 327–343.Runyan, S. A., & Phelps, P. E. (2009). Mouse olfactory ensheathing glia enhance axon outgrowth on a myelin substrate in vitro. Experimental Neurology, 216(1), 95–104.Shen, Y., Qian, Y., Zhang, H., Zuo, B., Lu, Z., Fan, Z., et al. (2010). Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds. Cell Transplantation, 19(2), 147–157.Li, B.-C., Jiao, S.-S., Xu, C., You, H., & Chen, J.-M. (2010). PLGA conduit seeded with olfactory ensheathing cells for bridging sciatic nerve defect of rats. Journal of Biomedical Materials Research, Part A, 94(3), 769–780.Clements, I. P., Kim, Y. T., English, A. W., Lu, X., Chung, A., & Bellamkonda, R. V. (2009). Thin-film enhanced nerve guidance channels for peripheral nerve repair. Biomaterials, 30(23–24), 3834–3846.MartĂ­n-LĂłpez, E., Nieto-DĂ­az, M., & Nieto-Sampedro, M. (2012). Differential adhesiveness and neurite-promoting activity for neural cells of chitosan, gelatin, and poly-l-lysine films. Journal of Biomaterials Applications, 26(7), 791–809.Cai, J., Peng, X., Nelson, K. D., Eberhart, R., & Smith, G. M. (2005). Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation. Journal of Biomedical Material Research Part A, 75(2), 374–386.Novikova, L. N., Mosahebi, A., Wiberg, M., Terenghi, G., Kellerth, J. O., & Novikov, L. N. (2006). Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. Journal of Biomedical Materials Research, Part A, 77(2), 242–252.Tang, Z. P., Liu, N., Li, Z. W., Xie, X. W., Chen, Y., Shi, Y. H., et al. (2010). In vitro evaluation of the compatibility of a novel collagen-heparan sulfate biological scaffold with olfactory ensheathing cells. Chinese Medical Journal (English), 123(10), 1299–1304.Wang, B., Zhao, Y., Lin, H., Chen, B., Zhang, J., Zhang, J., et al. (2006). Phenotypical analysis of adult rat olfactory ensheathing cells on 3-D collagen scaffolds. Neuroscience Letters, 401(1–2), 65–70.Guarnieri, D., De Capua, A., Ventre, M., Borzacchiello, A., Pedone, C., Marasco, D., et al. (2010). Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomaterialia, 6(7), 2532–2539.Ngo, T. T., Waggoner, P. J., Romero, A. A., Nelson, K. D., Eberhart, R. C., & Smith, G. M. (2003). Poly(l-lactide) microfilaments enhance peripheral nerve regeneration across extended nerve lesions. Journal of Neuroscience Research, 72(2), 227–238.Schnell, E., Klinkhammer, K., Balzer, S., Brook, G., Klee, D., Dalton, P., et al. (2007). Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-e-caprolactone and a collagen/poly-e-caprolactone blend. Biomaterials, 28(19), 3012–3025.Lim, S. H., Liu, X. Y., Song, H., Yarema, K. J., & Mao, H. Q. (2010). The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials, 31(34), 9031–9039.Wong, D. Y., Hollister, S. J., Krebsbach, P. H., & Nosrat, C. (2007). Poly(epsilon-caprolactone) and poly (l-lactic-co-glycolic acid) degradable polymer sponges attenuate astrocyte response and lesion growth in acute traumatic brain injury. Tissue Engineering, 13(10), 2515–2523.Wong, D. Y., Krebsbach, P. H., & Hollister, S. J. (2008). Brain cortex regeneration affected by scaffold architectures. Journal of Neurosurgery, 109(4), 715–722.Wong, D. Y., Leveque, J. C., Brumblay, H., Krebsbach, P. H., Hollister, S. J., & Lamarca, F. (2008). Macro-architectures in spinal cord scaffold implants influence regeneration. Journal of Neurotrauma, 25(8), 1027–1037.Pierucci, A., de Duek, E. A., & de Oliveira, A. L. (2008). Peripheral nerve regeneration through biodegradable conduits prepared using solvent evaporation. Tissue Engineering Part A, 14(5), 595–606.Vleggeert-Lankamp, C. L., de Ruiter, G. C., Wolfs, J. F., Pego, A. P., van den Berg, R. J., Feirabend, H. K., et al. (2007). Pores in synthetic nerve conduits are beneficial to regeneration. Journal of Biomedical Material Research Part A, 80(4), 965–982.Cai, A. Q., Landman, K. A., & Hughes, B. D. (2007). Multi-scale modeling of a wound-healing cell migration assay. Journal of Theoretical Biology, 245(3), 576–594.Maini, P. K., McElwain, D. L., & Leavesley, D. I. (2004). Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Engineering, 10(3–4), 475–482.Dokukina, I. V., & Gracheva, M. E. (2010). A model of fibroblast motility on substrates with different rigidities. Biophysical Journal, 98(12), 2794–2803.Schneider, I. C., & Haugh, J. M. (2004). Spatial analysis of 3â€Č phosphoinositide signaling in living fibroblasts: II. Parameter estimates for individual cells from experiments. Biophysical Journal, 86(1), 599–608.Marcy, Y., Prost, J., Carlier, M.-F., & Sykes, C. C. (2004). Forces generated during actin-based propulsion: A direct measurement by micromanipulation. Proceedings of the National academy of Sciences of the United States of America, 101(16), 5992–5997.Mogilner, A., & Oster, G. (2003). Polymer motors: Pushing out the front and pulling up the back. Current Biology, 13(18), R721–R733.Cheng, G., Youssef, B. B., Markenscoff, P., & Zygourakis, K. (2006). Cell population dynamics modulate the rates of tissue growth processes. Biophysical Journal, 90(3), 713–724.Galbusera, F., Cioffi, M., Raimondi, M. T., & Pietrabissa, R. (2007). Computational modeling of combined cell population dynamics and oxygen transport in engineered tissue subject to interstitial perfusion. Computer Methods Biomechanics and Biomedical Engineering, 10(4), 279–287.Hatzikirou, H., & Deutsch, A. (2008). Cellular automata as microscopic models of cell migration in heterogeneous environments. Current Topics in Developmental Biology, 81, 401–434.Reffay, M., Petitjean, L., Coscoy, S., Grasland-Mongrain, E., Amblard, F., Buguin, A., et al. (2011). Orientation and polarity in collectively migrating cell structures: Statics and dynamics. Biophysical Journal, 100(11), 2566–2575.Chung, C. A., Yang, C. W., & Chen, C. W. (2006). Analysis of cell growth and diffusion in a scaffold for cartilage tissue engineering. Biotechnology and Bioengineering, 94(6), 1138–1146.Dunn, J. C., Chan, W. Y., Cristini, V., Kim, J. S., Lowengrub, J., Singh, S., et al. (2006). Analysis of cell growth in three-dimensional scaffolds. Tissue Engineering, 12(4), 705–716.Harms, B. D., Bassi, G. M., Horwitz, A. R., & Lauffenburger, D. A. (2005). Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophysical Journal, 88(2), 1479–1488.Lemon, G., & King, J. (2007). Travelling-wave behaviour in a multiphase model of a population of cells in an artificial scaffold. Journal of Mathematical Biology, 55(4), 449–480.Fisher, R. (1937). The wave of advance of advantageous genes. Annals of Eugenics, 7, 355–369.Graner, F.o., & Glazier, J. A. (1992). Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical Review Letters, 69(13), 2013–2016.Ouaknin, G. Y., & Bar-Yoseph, P. Z. (2009). Stochastic collective movement of cells and fingering morphology: No maverick cells. Biophysical Journal, 97(7), 1811–1821.Savill, N. J., & Hogeweg, P. (1997). Modelling morphogenesis: From single cells to crawling slugs. Journal of Theoretical Biology, 184(3), 229–235.Brockes, J. P., Fields, K. L., & Raff, M. C. (1979). Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Research, 165, 105–118.Selinummi, J., Seppala, J., Yli-Harja, O., & Puhakka, J. A. (2005). Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques, 39(6), 859–863.Gupta, D., Venugopal, J., Prabhakaran, M. P., Dev, V. R., Low, S., Choon, A. T., et al. (2009). Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomaterialia, 5(7), 2560–2569.Nisbet, D. R., Yu, L. M., Zahir, T., Forsythe, J. S., & Shoichet, M. S. (2008). Characterization of neural stem cells on electrospun poly(epsilon-caprolactone) submicron scaffolds: Evaluating their potential in neural tissue engineering. Journal of Biomaterials Science, Polymer Edition, 19(5), 623–634.Huang, Z. H., Wang, Y., Cao, L., Su, Z. D., Zhu, Y. L., Chen, Y. Z., et al. (2008). Migratory properties of cultured olfactory ensheathing cells by single-cell migration assay. Cell Research, 18, 479–490.Ekberg, J. A. K., Amaya, D., Mackay-Sim, A., & St. John, J. A. (2012). The migratory of olfactory ensheathing cells during development and regeneration. Neurosignals. doi: 10.1159/000330895 .Ruitenberg, M. J., Vukovic, J., Sarich, J., Busfield, S. J., & Plant, G..W. (2006). Olfactory ensheathing cells: characteristics, genetic engineering, and therapeutic potential. Journal of Neurotrauma, 23, 468–478.Chaikin, P. M., & Lubensky, T. C. (1995). Principles of condensed matter physics (p. 371). Cambridge, UK: Cambridge University Press.Simpson, M. J., Landman, K. A., & Hughes, B. D. (2010). Cell invasion with proliferation mechanisms motivated by time-lapse data. Physica A, 389, 3779–3790

    Clinically Determined and Self-Reported Dental Caries Status During and After Pregnancy Among Low-Income Hispanic Women

    Get PDF
    This analysis assessed, during and one-year after pregnancy: 1) the prevalence of and relationship between self-reported and clinically determined dental caries and oral health status, and whether self-reports are a potential proxy for professional determination; 2) factors associated with high levels of professionally determined or self-reported oral disease
    • 

    corecore