166 research outputs found

    Theoretical investigation of TbNi_{5-x}Cu_x optical properties

    Full text link
    In this paper we present theoretical investigation of optical conductivity for intermetallic TbNi_{5-x}Cu_x series. In the frame of LSDA+U calculations electronic structure for x=0,1,2 and on top of that optical conductivities were calculated. Disorder effects of Ni for Cu substitution on a level of LSDA+U densities of states (DOS) were taken into account via averaging over all possible Cu ion positions for given doping level x. Gradual suppression and loosing of structure of optical conductivity at 2 eV together with simultaneous intensity growth at 4 eV correspond to increase of Cu and decrease of Ni content. As reported before [Knyazev et al., Optics and Spectroscopy 104, 360 (2008)] plasma frequency has non monotonic doping behaviour with maximum at x=1. This behaviour is explained as competition between lowering of total density of states on the Fermi level N(E_F) and growing of number of carriers. Our theoretical results agree well with variety of recent experiments.Comment: 4 pages, 3 figure

    Electronic structure, magnetic and optical properties of intermetallic compounds R2Fe17 (R=Pr,Gd)

    Full text link
    In this paper we report comprehensive experimental and theoretical investigation of magnetic and electronic properties of the intermetallic compounds Pr2Fe17 and Gd2Fe17. For the first time electronic structure of these two systems was probed by optical measurements in the spectral range of 0.22-15 micrometers. On top of that charge carriers parameters (plasma frequency and relaxation frequency) and optical conductivity s(w) were determined. Self-consistent spin-resolved bandstructure calculations within the conventional LSDA+U method were performed. Theoretical interpetation of the experimental s(w) dispersions indicates transitions between 3d and 4p states of Fe ions to be the biggest ones. Qualitatively the line shape of the theoretical optical conductivity coincides well with our experimental data. Calculated by LSDA+U method magnetic moments per formula unit are found to be in good agreement with observed experimental values of saturation magnetization.Comment: 16 pages, 5 figures, 1 tabl

    Specific features of the electronic structure and spectral properties of NdNi5 - xCux compounds

    Full text link
    The spectral properties of the intermetallic compounds NdNi5 - xCux (x = 0, 1, 2) have been studied using optical ellipsometry in the wavelength range 0.22-16 μm. It has been established that substitution of copper atoms for nickel leads to noticeable changes in the optical absorption spectra, plasma frequencies, and relaxation frequencies of conduction electrons. Spin-polarized calculations of the electronic structure of these compounds have been performed in the local spin density approximation allowing for strong electron correlations (LSDA + U method) in the 4f shell of the rare-earth ion. The calculated electron densities of states have been used to interpret the experimental dispersion curves of optical conductivity in the interband light absorption region. © 2013 Pleiades Publishing, Ltd

    Optical spectroscopy and electronic structure of compounds HoNi 5-x Alx (x = 0, 1, 2)

    Full text link
    The optical properties of the compounds HoNi5 - x Al x (x = 0, 1, 2) have been investigated using the ellipsometric method in the wavelength range from 0.22 to 16 μm. The electronic structure of these intermetallic compounds has been calculated in the local electron-spin density approximation with the correction for strong electronic interactions in the 4f shell of the holmium ions. The experimental dispersion dependences of optical conductivity in the region of interband light absorption have been interpreted based on the results of the calculation of the electron density of states. The plasma and relaxation frequencies of electrons have been determined. © 2013 Pleiades Publishing, Ltd

    Ab initio exchange interactions and magnetic properties of Gd2Fe17 iron sublattice: rhombohedral vs. hexagonal phases

    Full text link
    In the framework of the LSDA+U method electronic structure and magnetic properties of the intermetallic compound Gd2Fe17 for both rhombohedral and hexagonal phases have been calculated. On top of that, ab initio exchange interaction parameters within the Fe sublattice for all present nearest and some next nearest Fe ions have been obtained. It was found that for the first coordination sphere direct exchange interaction is ferromagnetic. For the second coordination sphere indirect exchange interaction is observed to be weaker and of antiferromagnetic type. Employing the theoretical values of exchange parameters Curie temperatures Tc of both hexagonal and rhombohedral phases of Gd2Fe17 within Weiss mean-field theory were estimated. Obtained values of Tc and its increase going from the hexagonal to rhombohedral crystal structure of Gd2Fe17 agree well with experiment. Also for both structures LSDA+U computed values of total magnetic moment coincide with experimental ones.Comment: 20 pages, 2 figures; V2 as published in PR

    Influence of aluminum impurity on the electronic structure and optical properties of the TbNi5 intermetallic compound

    Full text link
    The electronic structure of the TbNi5 - xAlx intermetallic compounds (x = 0, 1, 2) is calculated in the local electron density approximation with the correction to strong electron correlations in 4f shell of terbium ions. Spectral properties of these compounds are measured by ellipsometry in a wavelength range of 0. 22-16 μm. Frequency dependences of optical conductivity in the region of interband optical absorption are interpreted based on the results of calculations of electron densities of states. The relaxation and plasma frequencies of conduction electrons are determined. © 2013 Pleiades Publishing, Ltd

    A crystallographic phase transition within the magnetically ordered state of Ce_2Fe_17

    Full text link
    X-ray diffraction experiments were performed on polycrystalline and single-crystal specimens of Ce2_{2}Fe17_{17} at temperatures between 10 K and 300 K. Below TtT_{\mathrm{t}} = 118±\pm2 K, additional weak superstructure reflections were observed in the antiferromagnetically ordered state. The superstructure can be described by a doubling of the chemical unit cell along the c\mathbf{c} direction in hexagonal notation with the same space group R3ˉmR \bar{3} m as the room-temperature structure. The additional antiferromagnetic satellite reflections observed in earlier neutron diffraction experiments can be conclusively related to the appearance of this superstructure.Comment: 8 pages, figures, submitted for publication in Phys. Rev.

    Copper-doping effects in electronic structure and spectral properties of SmNi5

    Get PDF
    The electronic structure and optical properties of the SmNi5-xCux (x = 0, 1, 2) compounds are studied. The band spectra of the studied intermetallics were calculated with LDA + U + SO method supplementing the local density approximation with a correction for strong electron interaction on the shell of the rare-earth element. Optical properties were studied by ellipsometry method in the wide wavelength range. It was found that the substitution of copper for nickel leads to local changes in the optical conductivity spectra. Both the spectroscopic measurements and theoretical calculations demonstrate the presence of a broad absorption band around 4 eV associated with the Cu 3d → Ni 3d electron transitions and increasing with the grown of copper content. The experimental dispersion curves of optical conductivity in the interband absorption region were interpreted using the results of the calculations. © 2015 AIP Publishing LLC

    Magnetic properties of the GdFeSi - GdTiSi solid solutions

    Full text link
    The GdFe1-xTixSi, x=0-0.2 intermetallic compounds with a tetragonal crystal structure of the CeFeSi (P4/nmm)-type have been studied. It was obtained that the lattice parameter c and the Curie temperature increase quickly, whereas the lattice parameter a is almost unchanged in the system with increasing of Ti content. The GdFeSi compound is easily magnetized along the [001] axis, the field of magnetic anisotropy equals to ∼3.8 kOe at T = 90 K. The saturation magnetization does not change in the GdFe1-xTi x Si system. © Published under licence by IOP Publishing Ltd.Russian Science Foundation, RSF: 18-72-10098Support by RSF (Project No. 18-72-10098) is acknowledged

    The Total Synthesis of Convolutamydine a in the Conditions of the Catalysis by β-Aminoalcohols of Pinane and Carane Structure

    Full text link
    This work was supported by the Russian Foundation of Basic Research (grant № 15-03-09352 A)
    corecore