465 research outputs found
The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying
Nanophotonic technologies offer great promise for ultra-low power optical
signal processing, but relatively few nonlinear-optical phenomena have yet been
explored as bases for robust digital
modulation/switching~\cite{Yang07,Fara08,Liu10,Noza10}. Here we show that a
single two-level system (TLS) coupled strongly to an optical resonator can
impart binary phase modulation on a saturating probe beam. Our experiment
relies on spontaneous emission to induce occasional transitions between
positive and negative phase shifts---with each such edge corresponding to a
dissipated energy of just one photon ( aJ)---but an optical
control beam could be used to trigger additional phase switching at signalling
rates above this background. Although our ability to demonstrate controlled
switching in our atom-based experiment is limited, we discuss prospects for
exploiting analogous physics in a nanophotonic device incorporating a quantum
dot as the TLS to realize deterministic binary phase modulation with control
power in the aJ/edge regime.Comment: 7 pages, 4 figure
Reflective silicon binary diffraction grating for visible wavelengths
We introduce a new device based on sub-wavelength resonant gratings. We built a silicon-on-oxide reflective binary grating for visible light that mimics the functionality of a blazed diffraction grating in a flat geometry
Low-temperature tapered-fiber probing of diamond NV ensembles coupled to GaP microcavities
In this work we present a platform for testing the device performance of a
cavity-emitter system, using an ensemble of emitters and a tapered optical
fiber. This method provides high-contrast spectra of the cavity modes,
selective detection of emitters coupled to the cavity, and an estimate of the
device performance in the single- emitter case. Using nitrogen-vacancy (NV)
centers in diamond and a GaP optical microcavity, we are able to tune the
cavity onto the NV resonance at 10 K, couple the cavity-coupled emission to a
tapered fiber, and measure the fiber-coupled NV spontaneous emission decay.
Theoretically we show that the fiber-coupled average Purcell factor is 2-3
times greater than that of free-space collection; although due to ensemble
averaging it is still a factor of 3 less than the Purcell factor of a single,
ideally placed center.Comment: 15 pages, 6 figure
Properties of implanted and CVD incorporated nitrogen-vacancy centers: preferential charge state and preferential orientation
The combination of the long electron state spin coherence time and the optical coupling of the ground electronic states to an excited state manifold makes the nitrogen-vacancy (NV) center in diamond an attractive candidate for quantum information processing. To date the best spin and optical properties have been found in centers deep within the diamond crystal. For useful devices it will be necessary to engineer NVs with similar properties close to the diamond surface. We report on properties including charge state control and preferential orientation for near surface NVs formed either in CVD growth or through implantation and annealing
Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond
The zero-phonon transition rate of a nitrogen-vacancy center is enhanced by a
factor of ~70 by coupling to a photonic crystal resonator fabricated in
monocrystalline diamond using standard semiconductor fabrication techniques.
Photon correlation measurements on the spectrally filtered zero-phonon line
show antibunching, a signature that the collected photoluminescence is emitted
primarily by a single nitrogen-vacancy center. The linewidth of the coupled
nitrogen-vacancy center and the spectral diffusion are characterized using
high-resolution photoluminescence and photoluminescence excitation
spectroscopy
Quantum dots in photonic crystal cavities
During the past two decades, the development of micro- and nano-fabrication technologies
has positively impacted multiple areas of science and engineering. In the photonics community,
these technologies had numerous early adopters, which led to photonic devices that
exhibit features at the nano-scale and operate at the most fundamental level of light–matter
interaction [28, 39, 18, 29]. One of the leading platforms for these types of devices is
based on gallium arsenide (GaAs) planar photonic crystals (PC) with embedded indium
arsenide (InAs) quantum dots (QDs). The PC architecture is advantageous because it
enables monolithic fabrication of photonic networks for efficient routing of light signals
of the chip [26]. At the same time, PC devices have low loss and ultra-small optical
mode volumes, which enable strong light–matter interactions. The InAs quantum dots
are well suited for quantum photonic applications because they have excellent quantum
efficiencies, large dipole moments, and a variety of quantum states that can be optically
controlled [24, 3]
Dissipative dynamics of a qubit coupled to a nonlinear oscillator
We consider the dissipative dynamics of a qubit coupled to a nonlinear
oscillator (NO) embedded in an Ohmic environment. By treating the nonlinearity
up to first order and applying Van Vleck perturbation theory up to second order
in the qubit-NO coupling, we derive an analytical expression for the
eigenstates and eigenfunctions of the coupled qubit-NO system beyond the
rotating wave approximation. In the regime of weak coupling to the thermal
bath, analytical expressions for the time evolution of the qubit's populations
are derived: they describe a multiplicity of damped oscillations superposed to
a complex relaxation part toward thermal equilibrium. The long time dynamics is
characterized by a single relaxation rate, which is maximal when the qubit is
tuned to one of the resonances with the nonlinear oscillator.Comment: 24 pages, 7 figures, 1 table; in the text between Eq. (8) and (9)
there were misprints in the published version until 3rd Dec 2009: in the
second order correction for the nonlinear oscillator and in the corresponding
relative error. The correct expressions are given here. The results of the
paper are not changed, as we consider the nonlinearity up to first order
perturbation theor
Remnants of semiclassical bistability in the few-photon regime of cavity QED
Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity
containing a strongly-coupled Cs atom is used to probe the dynamic
optical response in a regime where semiclassical theory predicts bistability
but strong quantum corrections should apply. While quantum fluctuations
destabilize true equilibrium bistability, our observations confirm the
existence of metastable states with finite lifetimes and a hysteretic response
is apparent when the optical drive is modulated on comparable timescales. Our
experiment elucidates remnant semiclassical behavior in the attojoule (
photon) regime of single-atom cavity QED, of potential significance for
ultra-low power photonic signal processing.Comment: 14 pages, 7 figure
Photonic quantum technologies
The first quantum technology, which harnesses uniquely quantum mechanical
effects for its core operation, has arrived in the form of commercially
available quantum key distribution systems that achieve enhanced security by
encoding information in photons such that information gained by an eavesdropper
can be detected. Anticipated future quantum technologies include large-scale
secure networks, enhanced measurement and lithography, and quantum information
processors, promising exponentially greater computation power for particular
tasks. Photonics is destined for a central role in such technologies owing to
the need for high-speed transmission and the outstanding low-noise properties
of photons. These technologies may use single photons or quantum states of
bright laser beams, or both, and will undoubtably apply and drive
state-of-the-art developments in photonics
Diamond nitrogen-vacancy centers created by scanning focused helium ion beam and annealing
published_or_final_versio
- …
