During the past two decades, the development of micro- and nano-fabrication technologies
has positively impacted multiple areas of science and engineering. In the photonics community,
these technologies had numerous early adopters, which led to photonic devices that
exhibit features at the nano-scale and operate at the most fundamental level of light–matter
interaction [28, 39, 18, 29]. One of the leading platforms for these types of devices is
based on gallium arsenide (GaAs) planar photonic crystals (PC) with embedded indium
arsenide (InAs) quantum dots (QDs). The PC architecture is advantageous because it
enables monolithic fabrication of photonic networks for efficient routing of light signals
of the chip [26]. At the same time, PC devices have low loss and ultra-small optical
mode volumes, which enable strong light–matter interactions. The InAs quantum dots
are well suited for quantum photonic applications because they have excellent quantum
efficiencies, large dipole moments, and a variety of quantum states that can be optically
controlled [24, 3]