10 research outputs found
IEEE 802.15.4 ๋คํธ์ํฌ์์ ๋์ผ ์ฑ๋ ๊ฐ์ญ ํํผ ๊ธฐ๋ฒ
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์ ๊ธฐยท์ปดํจํฐ๊ณตํ๋ถ, 2012. 2. ์ด์ฉํ.Demand for short-distance wireless services has dramatically increased the use of 2.4 GHz unlicensed industrial, scientific and medical (ISM) spectrum band, making the coexistence of heterogeneous communication systems much complicated. IEEE 802.15.4 is a standardized specification for low-rate wireless personal area networks (LR-WPANs) operating in the ISM band and is under consideration as a communication protocol for sensor networks. However, recent works have shown that IEEE 802.15.4 WPAN is quite susceptible to the presence of interference from coexisting radio systems such as IEEE 802.11x wireless local area networks (WLANs). Nevertheless, IEEE 802.15.4 and its variations do not employ an interference alleviation mechanism (e.g., channel hand-off).
In this thesis, we first investigate conventional interference avoidance schemes. It is shown that the conventional schemes may not work properly in the presence of multiple interference sources. We consider the performance improvement of IEEE 802.15.4 systems by means of channel hand-off in the presence of co-channel interference from other systems. To this end, the proposed scheme first detects the presence of co-channel interference by means of transmission performance testing and channel sensing in a distributed manner. The network coordinator can reliably notify the presence of co-channel interference to its child nodes by repeatedly broadcasting the channel hand-off command. The hand-off candidate channels are predetermined in consideration of the characteristics of interference signal. The proposed scheme finally determines the hand-off channel after the performance measurement of transmission through the hand-off candidate channels. The recovery time can be reduced by temporarily turning off the duty-cycling during the channel hand-off process. Simulation results show that the proposed scheme significantly outperforms conventional schemes even in the presence of heavy interferences.์ต๊ทผ ์ ๋น์ฟผํฐ์ค ๋ฌด์ ์๋น์ค์ ๋ํ ์์๋ 2.4 GHz ๋น๋ฉดํ ๋์ญ์ ํต์ ์ ๊ธ๊ฒฉํ ์ฆ๊ฐ์์ผ ์ด ๊ธฐ์ข
ํต์ ์์คํ
๊ฐ ๊ณต์กด ๋ฌธ์ ๋ฅผ ์ด๋ ต๊ฒ ๋ง๋ค๊ณ ์๋ค. IEEE 802.15.4๋ ISM ๋์ญ์์ ๋์ํ๋ ์ ์ ๋ฌด์ ๊ฐ์ธ ์์ญ ๋คํธ์ํฌ๋ฅผ ์ํ ํ์ค์ด๋ฉฐ ์ผ์ ๋คํธ์ํฌ๋ฅผ ์ํ ๊ฐ์ฅ ์ ํฉํ ํต์ ํ๋กํ ์ฝ ์ค ํ๋๋ก ๊ณ ๋ ค๋๊ณ ์๋ค. ๊ทธ๋ฌ๋ ๊ทผ๋์ ์ฐ๊ตฌ๋ค์ IEEE 802.15.4 ๋คํธ์ํฌ๊ฐ IEEE 802.11x ๊ธฐ๋ฐ์ ๋ฌด์ ๋๊ณผ ๊ฐ์ ์ด ๊ธฐ์ข
์์คํ
๊ฐ์ญ์ ๋งค์ฐ ์ทจ์ฝํจ์ ๋ฐํ๋ค. ๊ทธ๋ฌ๋ IEEE 802.15.4์ IEEE 802.15.4e๊ฐ ์ฑ๋ ๋ณ๊ฒฝ๊ณผ ๊ฐ์ ๊ฐ์ญ ์ํ ๊ธฐ๋ฅ์ ํฌํจํ์ง ์๊ณ ์์ผ๋ฉฐ IEEE 802.15.4g๋ ๋ฐ์ดํฐ ์จ์ ํฅ์์์ผ ์ฒ๋ฆฌ ์ด๋์ ์ ํ์์ผ ๊ฐ์ญ ์ ํธ์ ๋์ฑ ์ทจ์ฝํ๋ค.
๋ณธ ๋
ผ๋ฌธ์ ๋จผ์ ๊ธฐ์กด ๊ฐ์ญ ํํผ ๊ธฐ๋ฒ์ ์ฑ๋ฅ์ ๋ถ์ํ๋ค. ์๊ธฐ ์ฑ๋ฅ ๋ถ์์ ๋์ ํธ๋ํฝ ๋ถํ๋ฅผ ๊ฐ์ง ๊ฐ์ญ ์์ด ๋ค์ ์กด์ฌํ๋ ํ๊ฒฝ์์ ๊ธฐ์กด ๊ฐ์ญ ํํผ ๊ธฐ๋ฒ์ด ์ ์์ ์ผ๋ก ๋์ํ์ง ์์์ ๋ฐํ๋ค. ๋ณธ ๋
ผ๋ฌธ์์๋ WLAN๊ณผ ๊ฐ์ ์ด ๊ธฐ์ข
์์คํ
์ ์ํ ๋์ผ ์ฑ๋ ๊ฐ์ญ์ด ์กด์ฌํ๋ ํ๊ฒฝ์์ IEEE 802.15.4 ์์คํ
์ ์ฑ๋ฅ ๊ฐ์ ๋ฐฉ์์ ๊ณ ๋ คํ๋ค. ์ด๋ฅผ ์ํด ์ ์ ๊ธฐ๋ฒ์ ๋จผ์ ๋ถ์ฐ์ ์ธ ์ ์ก ์ฑ๋ฅ ํ๊ฐ์ ์ฑ๋ ์ผ์ฑ์ ์ด์ฉํ์ฌ ์ฌ์ฉ ์ค์ธ ์ฑ๋ ๋ด ๊ฐ์ญ์ ์กด์ฌ ์ ๋ฌด๋ฅผ ํ๋จํ๋ค. ๋คํธ์ํฌ ์ฝ๋๋ค์ดํฐ๋ ์ฑ๋ ๋ณ๊ฒฝ ์ปค๋งจ๋๋ฅผ ๋ฐ๋ณต์ ์ผ๋ก ๋ฐฉ์ก(broadcast)ํ์ฌ ๊ทธ ์๋
๊ธฐ๊ธฐ๋ค์๊ฒ ๊ฐ์ญ์ ์กด์ฌ๋ฅผ ์์ ํ๊ฒ ํต๋ณดํ๋ค. ์ ์ ๊ธฐ๋ฒ์ ์ฑ๋ ๋ณ๊ฒฝ ๋ฐฉ์์ ์ด์ฉํ์ฌ ๊ฐ์ญ์ ์ํฅ์ ๋น ๋ฅด๊ฒ ํํผํ๋ค. ๊ฐ์ญ์ ์กด์ฌ๊ฐ ํ์ธ๋๋ฉด, ์ฝ๋๋ค์ดํฐ๋ ๊ฐ์ญ ์ ํธ์ ํน์ฑ์ ๊ณ ๋ คํ์ฌ ๋ฏธ๋ฆฌ ์ฝ์๋ ๋ค์์ ํ๋ณด ์ฑ๋์ ์์ฐจ์ ์ผ๋ก ๋์ฝํ๋ฉฐ ์ ํธ๋ฅผ ์ ์กํ๋ค. ์ ์ ๊ธฐ๋ฒ์ ๊ฐ ํ๋ณด ์ฑ๋์ ์ ์ก ์ฑ๋ฅ์ ๋น๊ตํ์ฌ ํ๋์ ์ฑ๋์ ๊ฒฐ์ ํ๋ค. ๋คํธ์ํฌ ๋ด ๊ธฐ๊ธฐ๋ค์ ๊ฐ์ญ ํํผ ๊ณผ์ ๋์ duty-cycling์ ์์์ ์ผ๋ก ์ค์งํ์ฌ ํ๋ณต ์๊ฐ์ ์ต์ํํ ์ ์๋ค. ๋ชจ์์คํ ๊ฒฐ๊ณผ๋ ๋ค์์ WLAN์ด ์กด์ฌํ๋ ํ๊ฒฝ์์ ์ ์ ๊ธฐ๋ฒ์ ์ฑ๋ฅ์ด ๊ธฐ์กด ๊ธฐ๋ฒ๋ค์ ๋นํด ๋งค์ฐ ์ฐ์ํจ์ ๋ณด์ฌ์ค๋ค.Maste
How Long Should We Monitor the Patient for Bleeding after Percutaneous Renal Biopsy?
Purpose: Percutaneous renal biopsy (PRB) may become complicated by serious bleeding. Overnight observation after renal biopsy is a standard safety strategy. Although it was recently reported that outpatient observation is safe, appropriate observation time after the renal biopsy is still in debate. We evaluated prospectively the incidence, onset time and risk factors of hemorrhagic complications to determine the optimal duration of observation after PRB. Methods: We enrolled 100 patients who underwent renal biopsy from October 2009 to April 2010 using the standard strategy. The biopsy was performed by two experienced nephrologists using 16-gauge spring-loaded biopsy gun under real-time ultrasound guidance. Serial color Doppler ultrasound was done immediately, 8 hours, 24 hours and 1 week after the PRB. Results: The 32 patients experienced hemorrhagic complications (32.0%, 10 with gross hematuria, 26 with hematoma, and 4 with both), and 1 major complication occurred 3 days after PRB. Baseline serum creatinine of the patient with the major complication was 6.0 mg/dL. Serum creatinine and BMI were higher in complication group (p<0.05). Number of needle passes, blood pressure, and degree of edema and proteinuria were not related to the complication. In multivariate analysis, serum creatinine was the only significant risk factor of complication (p=0.007). Hemorrhagic complications developed in 9 patients (28.1%) between 8 and 24 hours after PRB, all of which were minor. Conclusion: The 8 hours observation time after renal biopsy may be deemed appropriate for stable patients with normal creatinine.Y