8 research outputs found

    ๊ต์ˆ˜์ž์˜ ๋ชจ๋‹ˆํ„ฐ๋ง ๋ณ€ํ™”๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ์–ธ๋ก ์ •๋ณดํ•™๊ณผ, 2023. 2. ์ด์ค€ํ™˜.์ฝ”๋กœ๋‚˜19์˜ ์„ธ๊ณ„์  ์œ ํ–‰์œผ๋กœ 2020๋…„๋ถ€ํ„ฐ ์ดˆ, ์ค‘๋“ฑ, ๋Œ€ํ•™๊ต์œก ์ „๋ฐ˜์—์„œ ์˜จ๋ผ์ธ ์ˆ˜์—…์œผ๋กœ์˜ ์ „ํ™˜์ด ์ด๋ฃจ์–ด์กŒ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์˜จ๋ผ์ธ ์ˆ˜์—…์—์„œ ์†Œ์‹ค๋˜๋Š” ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ ๋‹จ์„œ์™€ ๊ทธ์— ๋”ฐ๋ผ ๊ต์ˆ˜์ž๊ฐ€ ์ ‘ํ•˜๊ฒŒ ๋˜๋Š” ๋ชจ๋‹ˆํ„ฐ๋ง์˜ ์–ด๋ ค์›€์— ์ฃผ๋ชฉํ•˜์˜€๋‹ค. ์˜จ๋ผ์ธ ์ˆ˜์—…์—์„œ ๊ต์ˆ˜์ž๋Š” ํ•™์ƒ์˜ ๋ฐ˜์‘์„ ํฌ์ฐฉํ•˜๋Š” ๋ชจ๋‹ˆํ„ฐ๋ง์— ๋Œ€ํ•ด ์–‘์ , ์งˆ์  ํ•œ๊ณ„๋ฅผ ๊ฒฝํ—˜ํ•˜๋ฉฐ ๊ต์ˆ˜ ํ–‰๋™์˜ ์ˆ˜ํ–‰์—๋„ ์ œํ•œ์„ ๋ฐ›๋Š”๋‹ค. ๋ชจ๋‹ˆํ„ฐ๋ง์˜ ์ œ์•ฝ์€ ํ•™์ƒ๋“ค์˜ ๋ถ€์ •์ ์ธ ํ•™์Šต๊ฒฝํ—˜ ๋ฐ ํ•™์ƒ์ฐธ์—ฌ์˜ ์ €ํ•˜๋ฅผ ์œ ๋„ํ•œ๋‹ค. ์ด์— ์˜จ๋ผ์ธ ์ˆ˜์—…์—์„œ ๊ต์ˆ˜์ž์˜ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ๋ณด์™„ํ•  ํ•„์š”์„ฑ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ์‹ค์‹œ๊ฐ„์œผ๋กœ ํ•™์ƒ์ฐธ์—ฌ๋ฅผ ์‹œ๊ฐํ™”ํ•˜์—ฌ ์ œ๊ณตํ•˜๋Š” ์‹ค์‹œ๊ฐ„ ํ•™์ƒ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ต์ˆ˜์ž์™€ ํ•™์Šต์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํƒ์ƒ‰์  ์ธํ„ฐ๋ทฐ๋ฅผ ์‹ค์‹œํ•˜์—ฌ ๋ชจ๋‹ˆํ„ฐ๋ง ๋ณด์กฐ ์‹œ์Šคํ…œ์˜ ํ•„์š”์„ฑ์„ ํŒŒ์•…ํ•˜๊ณ  ๊ตฌ์ฒด์ ์ธ ์‹œ์Šคํ…œ ์„ค๊ณ„๋ฅผ ์œ„ํ•œ ๋””์ž์ธ ๋ฐฉ์•ˆ์„ ๋„์ถœํ•˜์˜€๋‹ค. ์ดํ›„ 20๋ช…์˜ ๊ต์ˆ˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์—ฌ ๊ต์ˆ˜์ž์˜ ๋ชจ๋‹ˆํ„ฐ๋ง๊ณผ ๊ต์ˆ˜ ํ–‰๋™์— ๋Œ€ํ•œ ์‹ค์‹œ๊ฐ„ ํ•™์ƒ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ์˜ํ–ฅ์„ ์•Œ์•„๋ณด์•˜๋‹ค. ์‹คํ—˜ ์กฐ๊ฑด์€ ์‹œ์Šคํ…œ์„ ์‚ฌ์šฉํ•œ ์ˆ˜์—…๊ณผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์€ ์ˆ˜์—…์˜ ๋‘ ๊ฐ€์ง€๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ์ฐธ์—ฌ์ž๋Š” ๋‘ ์กฐ๊ฑด์„ ๋ชจ๋‘ ๊ฒฝํ—˜ํ•˜์˜€๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ, ์‚ฌ์šฉ์„ฑ์˜ ๋ถ€๋ฌธ์—์„œ ์‹ค์‹œ๊ฐ„ ํ•™์ƒ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ๋†’์€ ์ง๊ด€์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€์œผ๋ฉฐ, ์ธ์ง€ ๋ถ€ํ•˜์— ๋Œ€ํ•œ ์‹œ์Šคํ…œ ์‚ฌ์šฉ ์—ฌ๋ถ€์™€ ์กฐ์ž‘๋œ ํ•™์ƒ ์ฐธ์—ฌ๋„์˜ ์ƒํ˜ธ์ž‘์šฉ ํšจ๊ณผ๋ฅผ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ๋ชจ๋‹ˆํ„ฐ๋ง์˜ ๊ฒฝ์šฐ, ๋ชจ๋‹ˆํ„ฐ๋ง์˜ ์–‘๊ณผ ์งˆ์˜ ๋ชจ๋“  ์ธก๋ฉด์—์„œ ์‹œ์Šคํ…œ์˜ ๊ธ์ •์ ์ธ ํšจ๊ณผ๋ฅผ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ชจ๋‹ˆํ„ฐ๋ง์˜ ์–‘์—์„œ๋Š” ํ•™์ƒ ํ™”๋ฉด์„ ํ™•์ธํ•˜๋Š” ๋นˆ๋„์™€ ํ•œ ํ•™์ƒ์˜ ๋ฐ˜์‘์„ ํŒŒ์•…ํ•˜๋Š” ์†๋„๊ฐ€ ๋™์‹œ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ ๊ทธ์— ๋”ฐ๋ผ ์ด ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ๊ฐ„์—๋Š” ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š์•˜๋‹ค. ๋ชจ๋‹ˆํ„ฐ๋ง ์งˆ์€ ์ „์ฒด ๋ชจ๋‹ˆํ„ฐ๋ง๊ณผ ๊ฐœ๋ณ„ ๋ชจ๋‹ˆํ„ฐ๋ง์œผ๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ์ธก์ •ํ•˜์˜€๋‹ค. ์ „์ฒด ๋ชจ๋‹ˆํ„ฐ๋ง์—์„œ๋Š” ์‹œ์Šคํ…œ์„ ํ™œ์šฉํ•œ ๊ฒฝ์šฐ ํ•™์ƒ์ฐธ์—ฌ์— ๋Œ€ํ•œ ๊ต์ˆ˜์ž์˜ ์ˆ˜์—… ํ‰๊ฐ€ ์ •ํ™•๋„๊ฐ€ ์›”๋“ฑํžˆ ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. ๊ฐœ๋ณ„ ๋ชจ๋‹ˆํ„ฐ๋ง์—์„œ๋Š” ๊ต์ˆ˜์ž๊ฐ€ ์ธ์ง€ํ•œ ๋ชจ๋‹ˆํ„ฐ๋ง ์ˆ˜์ค€, ์ฐธ์—ฌ๋„๋ฅผ ์ธ์‹ํ•œ ํ•™์ƒ ์ˆ˜, ๊ธฐ์–ต์— ๋‚จ๋Š” ํ•™์ƒ ์ˆ˜์— ๋Œ€ํ•˜์—ฌ ์‹œ์Šคํ…œ์˜ ์‚ฌ์šฉ์ด ์งˆ์  ๊ฐœ์„ ์œผ๋กœ ์ด์–ด์กŒ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ชจ๋‹ˆํ„ฐ๋ง ๊ฐ•ํ™”๋Š” ๊ต์ˆ˜์ž์™€ ํ•™์Šต์ž ๊ฐ„์˜ ์—ฐ๊ฒฐ์„ ์ด‰์ง„ํ•˜์˜€๋‹ค. ๊ต์ˆ˜ ํ–‰๋™ ๋ณ€ํ™” ์˜์ง€๋Š” ์„ค๋ฌธ์—์„œ ์œ ์˜ํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜์œผ๋‚˜ ์ธํ„ฐ๋ทฐ ๊ฒฐ๊ณผ ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ํ•™์ƒ ๋ฐ˜์‘์ด ํ•ด์„ ๊ฐ€๋Šฅํ•œ ์ •๋ณด๋กœ ์žฌ์ •์˜๋จ์— ๋”ฐ๋ผ ๋ชจ๋‹ˆํ„ฐ๋ง ์˜๋„๊ฐ€ ์ฆ์ง„๋˜์—ˆ์Œ์„ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ต์ˆ˜ ํ–‰๋™์˜ ์ˆ˜ํ–‰์€ ์‹œ์Šคํ…œ ์‚ฌ์šฉ์— ๋”ฐ๋ผ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ ๊ต์ˆ˜์ž๋“ค์€ ์ „๋‹ฌ๋ฐฉ์‹ ์ˆ˜์ •, ์ˆ˜์—… ๊ตฌ์„ฑ ๋ณ€๊ฒฝ, ์ˆ˜์—… ์žฌ๊ตฌ์„ฑ ์˜์ง€ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๊ต์ˆ˜ ํ–‰๋™์˜ ๋ณ€ํ™”๋ฅผ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ์‹ค์‹œ๊ฐ„ ํ•™์ƒ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์ด ๊ธฐํš ์˜๋„์— ๋งž์ถ”์–ด ์˜จ๋ผ์ธ ์ˆ˜์—…์—์„œ์˜ ๊ต์ˆ˜์ž ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์–‘๊ณผ ์งˆ์˜ ์ธก๋ฉด์—์„œ ๋ณด์™„ํ•˜๋ฉฐ ๊ต์ˆ˜ ํ–‰๋™ ์ฆ์ง„์— ๊ธ์ •์ ์œผ๋กœ ๊ธฐ์—ฌํ•จ์„ ๋“œ๋Ÿฌ๋‚ธ๋‹ค.Since 2020, the global pandemic of COVID-19 has prompted the adoption of online courses in all areas of education. This study focused on the loss of communication cues and the difficulty of instructors' monitoring in online classes. In online classes, instructors have encountered significant challenges in monitoring students quantitatively and qualitatively, and teaching behavior has also been limited. This negatively affected students' understanding, concentration, and satisfaction. As a result, the need for a system that assists instructors with monitoring online classes arose, and the 'Real-time Student Monitoring System' was designed. Through exploratory interviews with teachers and students, we identified the necessity and perception of the real-time student monitoring system, and a specific system design was carried out. Thus, we designed a prototype of a real-time student monitoring system and conducted an experiment with 20 instructors to examine the effect on the improvement of monitoring practices in two conditions: the use of the real-time student monitoring system and not using it, and the participants experienced both conditions. A real-time student monitoring system demonstrated high intuition, and for cognitive load, an interaction effect was discovered based on system usage and manipulated student engagement. Although the salient visualization improved monitoring accuracy, it also affected participants' cognitive load and psychological pressure, particularly with low student engagement. In addition, the positive effects of the real-time student monitoring system were confirmed in both the quantity and quality of monitoring. For the quantity of monitoring, the checking frequency and speed have improved, leading to no significant difference in the total amount of monitoring. Monitoring quality was classified into overall monitoring and individual monitoring. The overall monitoring was significantly enhanced when the system was used, supported by the accuracy of participants' evaluation of class engagement compared to manipulated student engagement. In terms of individual monitoring, it was verified that the use of the system led to qualitative improvements in the perception of individual monitoring, the number of students whose instructors recognized their engagement level, and the number of memorable students. Improved monitoring promoted the connection between teachers and students and developed monitoring intentions. There was no significant change in attitudes toward teacher behavior in the survey. However, through interviews, it was observed that instructors wanted to check and use students' responses more actively as they are no longer incomprehensible information. In the case of behavior performance, it was found that instructors showed various changes in teacher behavior. These changes included modifying delivery methods, changing class composition, and reorganizing classes. These results mean that the real-time student monitoring system successfully supplemented teachers' monitoring in quantity and quality and improved teacher behavior. We propose implications for designing monitoring assistance systems for online classes based on the results.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 2 ์žฅ ์„ ํ–‰์—ฐ๊ตฌ 4 ์ œ 1 ์ ˆ ์˜จ๋ผ์ธ ์ˆ˜์—…์˜ ์–ด๋ ค์›€ 4 1. ์˜จ๋ผ์ธ ์ˆ˜์—…์œผ๋กœ์˜ ์ „ํ™˜๊ณผ ์–ด๋ ค์›€ 4 2. ์˜จ๋ผ์ธ ์ˆ˜์—…์—์„œ ๋ชจ๋‹ˆํ„ฐ๋ง๊ณผ ๊ต์ˆ˜ ํ–‰๋™ 6 3. ์˜จ๋ผ์ธ ์ˆ˜์—…์—์„œ ํ•™์ƒ์ฐธ์—ฌ 10 ์ œ 2 ์ ˆ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ 13 1. ๋ฐœํ‘œ ๋ณด์กฐ ์‹œ์Šคํ…œ 13 2. ๋ฐ˜์‘ํฌ์ฐฉ ๋ฐฉ์‹ 16 ์ œ 3 ์žฅ ์—ฐ๊ตฌ ๋ฌธ์ œ์™€ ๊ฐ€์„ค 18 ์ œ 4 ์žฅ ํƒ์ƒ‰์  ์ธํ„ฐ๋ทฐ 21 ์ œ 1 ์ ˆ ํƒ์ƒ‰์  ์ธํ„ฐ๋ทฐ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 21 ์ œ 2 ์ ˆ ์‹ค์‹œ๊ฐ„ ํ•™์ƒ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ํ•„์š”์„ฑ 24 1. ์˜จ๋ผ์ธ ์ˆ˜์—…์—์„œ ๋ชจ๋‹ˆํ„ฐ๋ง ๋‹จ์„œ ์†Œ์‹ค 27 2. ์˜จ๋ผ์ธ ์ˆ˜์—…์—์„œ ์ˆ˜์—… ๋ฐ ์ง€๋„ ๋ฐฉ์‹ ๋ณ€ํ™” 30 3. ์˜จ๋ผ์ธ ์ˆ˜์—…์—์„œ ํ•™์ƒ์ฐธ์—ฌ ๋ณ€ํ™” 32 ์ œ 3 ์ ˆ ์ฝ”๋””์ž์ธ ๋ถ„์„ 37 1. ํ•™์Šต์ž ๋ฐ˜์‘์˜ ์‹œ๊ฐํ™” 38 2. ๊ต์ˆ˜์ž์™€ ํ•™์Šต์ž์˜ ์ƒํ˜ธ์ž‘์šฉ ๊ฐ•ํ™” 40 3. ์ „์ฒด ์ฐธ์—ฌ๋„์™€ ๊ฐœ๋ณ„ ์ฐธ์—ฌ๋„์˜ ๊ฐ€์‹œํ™” 42 ์ œ 4 ์ ˆ ์‹ค์‹œ๊ฐ„ ํ•™์ƒ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์ธ์‹ 44 1. ๋ชจ๋‹ˆํ„ฐ๋ง ์งˆ์˜ ์ƒ์Šน๊ณผ ํ•™์ƒ์ฐธ์—ฌ ์œ ๋„ 45 2. ๊ต์ˆ˜์ž ์ž์ฒด ์ˆ˜์—… ํ‰๊ฐ€ ๋ฐ ์ˆ˜์—… ์žฌ๊ตฌ์„ฑ 47 3. ๋ชจ๋‹ˆํ„ฐ๋ง ์˜๋„ ๋ฐ ์–‘ ์ฆ๊ฐ€ 48 4. ์‹ ๋ขฐ๋„ ๋ฐ ํ”„๋ผ์ด๋ฒ„์‹œ ๋ฌธ์ œ 50 ์ œ 5 ์žฅ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 52 ์ œ 1 ์ ˆ ์‹œ์Šคํ…œ ๊ตฌ์„ฑ 52 1. ๊ธฐ๋Šฅ ๋ฐ ํ™”๋ฉด ๊ตฌ์„ฑ 52 2. ์‹œ์Šคํ…œ์˜ ๋ฐ˜์‘ํฌ์ฐฉ 54 ์ œ 2 ์ ˆ ์‹คํ—˜ 55 1. ์‹คํ—˜ ์„ค๊ณ„ 55 2. ์‹คํ—˜ ์ ˆ์ฐจ 58 ์ œ 3 ์ ˆ ์ธก์ • 59 ์ œ 6 ์žฅ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„ 62 ์ œ 1 ์ ˆ ์‹ค์‹œ๊ฐ„ ํ•™์ƒ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ์‚ฌ์šฉ์„ฑ 65 1. ์‹œ์Šคํ…œ ๋งŒ์กฑ๋„, ์ง๊ด€์„ฑ, ์šฉ์ด์„ฑ 65 2. ์ธ์ง€ ๋ถ€ํ•˜์™€ ์ˆ˜์—… ๋งŒ์กฑ๋„ 67 ์ œ 2 ์ ˆ ์‹ค์‹œ๊ฐ„ ํ•™์ƒ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ๊ณผ ๋ชจ๋‹ˆํ„ฐ๋ง 72 1. ๋ชจ๋‹ˆํ„ฐ๋ง์˜ ์–‘ 73 2. ๋ชจ๋‹ˆํ„ฐ๋ง์˜ ์งˆ 77 ์ œ 3 ์ ˆ ์‹ค์‹œ๊ฐ„ ํ•™์ƒ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ๊ณผ ๊ต์ˆ˜ ํ–‰๋™ 85 1. ๊ต์ˆ˜ ํ–‰๋™ ๋ณ€ํ™” ์˜์ง€ 85 2. ๊ต์ˆ˜ ํ–‰๋™ ๋ณ€ํ™” 86 ์ œ 7 ์žฅ ๋…ผ์˜ 90 ์ œ 8 ์žฅ ๊ฒฐ๋ก  98 ์ฐธ๊ณ ๋ฌธํ—Œ 100 ๋ถ€๋ก 114 Abstract 121์„

    ์ž์„ฑ ๋‚˜๋…ธ ์ž…์ž์— ํ˜•์„ฑ๋œ 3์ฐจ์› ์ž๊ธฐ ์†Œ์šฉ๋Œ์ด ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2013. 8. ๊น€์ƒ๊ตญ.์ด ๋…ผ๋ฌธ์€ ๊ฐ•์ž์„ฑ ๋‚˜๋…ธ ์ž…์ž์— ํ˜•์„ฑ๋œ 3์ฐจ์› ์ž๊ธฐ ์†Œ์šฉ๋Œ์ด ๊ตฌ์กฐ์˜ ๊ฑฐ๋™์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ์ตœ๊ทผ ๋‚˜๋…ธ ๊ตฌ์กฐ์— ์˜ํ•ด ์„œ๋กœ ๋‹ค๋ฅธ ๊ฒฐํ•ฉ์„ ๊ฐ€์ง€๋Š” ๋‚˜๋…ธ ์ž…์ž์˜ ํŠน์ง•์„ ์ด์šฉํ•˜๋Š” ์ž๊ธฐ ์กฐ๋ฆฝ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํ•˜๊ฒŒ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ํผ๋ฉ€๋กœ์ด ๋‚˜๋…ธ ํŒŒํ‹ฐํด์˜ ํŠน์ง•์ ์ธ ๋ฐฐ์—ด๊ณผ ๊ทธ ์›์ธ์œผ๋กœ ๋ฐํ˜€์ง„ 3์ฐจ์› ์ž๊ธฐ ์†Œ์šฉ๋Œ์ด ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์—ฐ๊ตฌํ•˜๋ฏ€๋กœ์„œ ์ž๊ธฐ ์กฐ๋ฆฝ์— ์ž๊ธฐ์—๋„ˆ๋‹ˆ๊ฐ€ ๋ผ์น˜๋Š” ์˜ํ–ฅ์„ ๊ฐ ๋ฐฐ์—ด์˜ ์ž๊ธฐ์—๋„ˆ์ง€๋ฅผ ์ „์‚ฐ๋ชจ์‚ฌ๋กœ ๊ณ„์‚ฐํ•˜๊ณ  ์ž์„ฑ๋‚˜๋…ธํŒŒํ‹ฐํด์„ ํ•ฉ์„ฑํ•˜์—ฌ ๊ทธ ๋ฐฐ์—ด์„ ๊ด€์ฐฐํ•˜๋ฏ€๋กœ์„œ ์ฆ๋ช…ํ•˜์˜€๋‹ค. 3์ฐจ์› ์ž๊ธฐ ์†Œ์šฉ๋Œ์ด ๊ตฌ์กฐ์˜ ๊ฑฐ๋™์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด LLG ๋ฐฉ์ •์‹์˜ ํ•ด๋ฅผ ์œ ํ•œ์š”์†Œ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๋„์ถœํ•˜๋Š” FEMME ํ”„๋กœ๊ทธ๋žจ์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ํด๋ฆฌ์˜ฌ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•œ ํผ๋ฉ€๋กœ์ด ๋‚˜๋…ธ ์ž…์ž๋ฅผ ํ•ฉ์„ฑํ•˜๊ณ  SEM, TEM, XRD๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•ฉ์„ฑ๋œ ์ž…์ž์˜ ๊ฒฐ์ •๊ตฌ์กฐ์™€ ๋ชจ์–‘์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค.This thesis deals with statics and dynamics of 3 dimensional magnetic vortices in soft ferromagnetic nanoparticles with micromagnetic simulations and synthesis of permalloy nano particles. For the numerical calculations, the Landau-Lifshitz-Gilbert equation is solved by finite element method (FEM) based micromagnetic simulations using FEMME. Permalloy nanoparticles are prepared by polyol method and analyzed SEM, TEM and XRD to confirm the material properties, such as morphology, crystalline structure of particles. Nanoparticles are used as the building blocks for different nanostructures such as spherical micelles, vesicles, and cylinders. However, these are not able to bond along specific directions as atoms and molecules. Self-assemble have been researched intensively within decades even though it is influenced by a number of factors[1]. We observed the arrangements of permalloy magnetic nanoparticle on carbon grid on specific direction by analysis of its models and repetition rate. Magnetic Energy of each arrangement model determine repetition rate of each arrangement. It is demonstrated with micromagnetic simulation result.Abstract 1 List of Figures 5 Chapter 1 Introduction 6 Chapter 2 Research Background 9 2.1. Micromagnetics 9 2.1.1. Effective fields in magnetic materials 11 2.1.1.1 Exchange field 11 2.1.1.2 Magnetocrystalline anisotropy field 11 2.1.1.3 Magnetostatic field 14 2.1.1.4 Zeeman field 14 2.1.2. Landau-Lifshitz-Gilbert (LLG) equation 15 2.1.3 . Micromagnetic Simulation Method 17 2.2.2-Dimensional Magnetic Vortex Structure 21 Chapter 3 Arrangement of Permalloy NanoParticles 26 3.1. Particle Preparation 26 3.1.1. Synthesis of Permalloy nanoparticles 26 3.1.2 Properties of nanoparticle 29 3.2. Sampling 31 3.3. SEM Images of Arrangements 33 3.4. Magnetization of Particles with Simulation Results 36 3.4.1. Ground Spin State of Single Magnetic Nano Particle 36 3.4.2. Ground Spin State of Arranged Magnetic Nano Particles 39 3.5. Analysis of Pattern Counts and Magnetic Energy 42 Chapter 4 Conclusion 44Maste

    ๋งŒ์„ฑํ์‡„์„ฑํ์งˆํ™˜๊ณผ Helicobacter pylori ํ˜ˆ์ฒญ์–‘์„ฑ๊ณผ์˜ ๊ด€๋ จ์„ฑ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜ํ•™๊ณผ, 2018. 8. ๊น€๋•๊ฒธ.Helicobacter pylori(H.pylori) ์™€ ์—ฌ๋Ÿฌ ์งˆํ™˜๊ณผ์˜ ๊ด€๋ จ์„ฑ์ด ์žˆ๋‹ค๋Š” ์—ฌ๋Ÿฌ ๋ณด๊ณ ๊ฐ€ ์žˆ์–ด, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋งŒ์„ฑํ์‡„์„ฑํ์งˆํ™˜(COPD) ์™€ H.pylori ํ˜ˆ์ฒญ์–‘์„ฑ์œจ๊ณผ์˜ ์—ฐ๊ด€์„ฑ์ด ์žˆ๋Š”์ง€ ์•Œ์•„๋ณด์•˜๋‹ค. ๋˜ํ•œ H.pylori ํ˜ˆ์ฒญ์–‘์„ฑ๊ณผ COPD ํ™˜์ž์˜ ํ๊ธฐ๋Šฅ ๊ฐ์†Œ์†๋„์™€ ๊ด€๋ จ์„ฑ์ด ์žˆ๋Š”์ง€ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ณด๋ผ๋งค๋ณ‘์› ๊ฒ€์ง„์„ผํ„ฐ์—์„œ H.pylori ํŠน์ด IgG ๊ฒ€์‚ฌ๋ฅผ ์‹œํ–‰ํ•˜๊ณ , 3ํšŒ ์ด์ƒ 1๋…„ ๊ฐ„๊ฒฉ์œผ๋กœ ํ๊ธฐ๋Šฅ ๊ฒ€์‚ฌ๋ฅผ ์‹œํ–‰ํ•œ ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•˜์˜€๋‹ค. ์ด 603๋ช…(COPD ํ™˜์ž 201๋ช…, ๋Œ€์กฐ๊ตฐ 402๋ช…)์ด ํฌํ•จ๋˜์—ˆ๋‹ค. COPD ํ™˜์ž์˜ 45.8% ๊ฐ€ H.pylori IgG ์–‘์„ฑ์ด์—ˆ์œผ๋ฉฐ, ๋Œ€์กฐ๊ตฐ์€ 52.5% ๋กœ ์–‘ ๊ตฐ์˜ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค(p=0.134). ์ •๋Ÿ‰์ ์œผ๋กœ, H.pylori IgG ์ˆ˜์ค€ ์—ญ์‹œ COPD๊ตฐ๊ณผ ๋Œ€์กฐ๊ตฐ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค(114.8 and 109.6 units/ml, respectivelyp=0.549). 1์ดˆ๊ฐ„ํ˜ธ๊ธฐ์†๋„ ๋ฐ ํ˜ธ๊ธฐ์šฉ์ ์„ ์ด์šฉํ•˜์—ฌ ์—ฐ๊ฐ„ ํ๊ธฐ๋Šฅ ๊ฐ์†Œ ์†๋„๋ฅผ ๋ถ„์„ํ•˜์˜€์œผ๋‚˜, H.pylori ์–‘์„ฑ๊ณผ ์Œ์„ฑ๊ตฐ์„ ๋น„๊ต์‹œ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, H.pylori ๊ฐ์—ผ์œจ์ด ๋†’์€ ๊ตญ๋‚ด ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•œ ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฝ์šฐ, COPD์™€ H.pylori ๊ฐ์—ผ๊ณผ์˜ ๊ด€๋ จ์„ฑ์„ ๋ณด์ด์ง€ ์•Š์•˜๋‹ค.์ œ 1 ์žฅ Introduction 1 ์ œ 2 ์žฅ Methods ๏ผ“ ์ œ 1 ์ ˆ Study population ๏ผ“ ์ œ 2 ์ ˆ Selection of cases and controls ๏ผ“ ์ œ 3 ์ ˆ Measurements ๏ผ” ์ œ 4 ์ ˆ Statistical analysis ๏ผ• ์ œ 3 ์žฅ Results ๏ผ– ์ œ 1 ์ ˆ Baseline characteristics of study population ๏ผ– ์ œ 2 ์ ˆ H. pylori seropositivity and COPD ๏ผ˜ ์ œ 3 ์ ˆ H. pylori seropositivity and severity of air flow limitationใ€€ใ€€ ๏ผ‘0 ์ œ 4 ์ ˆ Multivariate analysis of association between H. pylori infection and COPD ๏ผ‘๏ผ‘ ์ œ 5 ์ ˆ Impact of H. pylori seropositivity on lung function decline ใ€€ใ€€ใ€€ใ€€ใ€€ ๏ผ‘๏ผ“ ์ œ 4 ์žฅ Discussion 1๏ผ• ์ฐธ๊ณ ๋ฌธํ—Œ ๏ผ‘๏ผ™ Abstract ๏ผ’๏ผ“ ํ‘œ ๋ชฉ์ฐจ [ํ‘œ ๏ผ‘] ๏ผ— [ํ‘œ ๏ผ’] ๏ผ˜ [ํ‘œ ๏ผ“] ๏ผ™ [ํ‘œ ๏ผ”] ๏ผ‘๏ผ’ [ํ‘œ ๏ผ•] ๏ผ‘๏ผ“ ๊ทธ๋ฆผ ๋ชฉ์ฐจ [๊ทธ๋ฆผ 1] ๏ผ™ [๊ทธ๋ฆผ 2] ๏ผ‘๏ผ [๊ทธ๋ฆผ 2] ๏ผ‘๏ผ”Maste

    Traffic flow and 1f fluctuations

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋ฌผ๋ฆฌํ•™๊ณผ,1995.Maste

    ์˜ค๋ฏน์Šค ๋ถ„์„์„ ํ†ตํ•œ TNF-ฮฑ์— ์˜ํ•ด ์กฐ์ ˆ๋˜๋Š” ์Œ์„ฑ/์–‘์„ฑ ์œ ๋ฐฉ์•” ์„ธํฌ์ฃผ์˜ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ๋Œ€์‚ฌ ๋ฆฌํ”„๋กœ๊ทธ๋ž˜๋ฐ ๊ธฐ์ „ ๊ทœ๋ช…

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ๋ถ„์ž์˜ํ•™ ๋ฐ ๋ฐ”์ด์˜ค์ œ์•ฝํ•™๊ณผ,2020. 2. ์ด์œ ์ง„.The Warburg effect has long been considered as the metabolic process in cancer cells, however, now it has been revealed that the metabolism process differs according to types of cancers. Among the cell organelles, the mitochondrion not only modulates ATP production but also the oncogenesis by generating building blocks for tumor anabolism, controlling redox and metastasis. Here, we investigated the metabolism change of mitochondria in two different breast cancer cell lines, ER/PR receptorย positive and triple negative, inducing the reprogramming by tumor necrosis factor-ฮฑ (TNF-ฮฑ). TNF-ฮฑ is cytokine that increases in level at the very initial stage of the tumor microenvironment and is known to play dual role in onco-immunology either acting as an anti-cancer factor or behaving as an immunosuppressive cytokine depending upon the stage and type of cancer. Using proteomics and metabolomics approach, we have investigated the metabolism reprogramming on two different breast cancer cell lines, MCF7, ER/PR positive luminal cell line, and MDA-MB231, triple negative basal-like cell line, in presence of TNF-ฮฑ. The results here strongly suggest that the activation of mitochondria oxidative phosphorylation differs in two cell lines under the TNF-ฮฑ treated or untreated conditions, as the electron transport chain (ETC) complex alters their assembly state. Our research revealed the association between the metabolic state and the response to cytokines in two different cell lines, which can be the basis for future of identifying targets of therapeutic response in heterogenous of breast cancer.๊ทธ๋™์•ˆ ์•”์„ธํฌ ํŠน์ด์ ์ธ ๋Œ€์‚ฌ ๊ธฐ์ „์œผ๋กœ ์™€๋ฒ„๊ทธ ํšจ๊ณผ(Warburg effect)๊ฐ€ ๊ฐ€์žฅ ํฐ ๊ฐ€์„ค๋กœ ์ž๋ฆฌ ์žก๊ณ  ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ ์•”์„ธํฌ์˜ ์ข…๋ฅ˜๋ณ„ ๋Œ€์‚ฌ ๊ธฐ์ „์ด ๋‹ค๋ฅผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ณ‘๊ธฐ๋ณ„ ๋Œ€์‚ฌ์— ๋ฆฌํ”„๋กœ๊ทธ๋ž˜๋ฐ(reprogramming)์ด ์ผ์–ด๋‚œ ๋‹ค๋Š” ์‚ฌ์‹ค์ด ๋ฐํ˜€์กŒ๊ณ , ์ด์— ์•”์˜ ์ด์ข…์„ฑ(heterogeneity)์— ๋”ฐ๋ฅธ ๋Œ€์‚ฌ์˜ ์ฐจ์ด๋ฅผ ์ดํ•ดํ•˜๊ณ  ๊ทœ๋ช…ํ•˜๋ ค๋Š” ์—ฐ๊ตฌ๊ฐ€ ๊ณ„์†๋˜์–ด ์™”๋‹ค. ๋Œ€์‚ฌ์˜ ์ค‘์‹ฌ์— ์žˆ๋Š” ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„๋Š” ์•”์˜ ํ˜•์„ฑ๊ณผ ์ƒ์กด์— ํ•„์š”ํ•œ ์—๋„ˆ์ง€์™€ ๊ตฌ์„ฑ ์š”์†Œ(building block)๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ์‚ฐํ™”/ํ™˜์›์„ ์กฐ์ ˆํ•˜๋ฉฐ, ์ „์ด์—๋„ ์—ฐ๊ด€์ด ์žˆ๋‹ค๊ณ  ๋ฐํ˜€์กŒ๋‹ค. ์•”์˜ ์ดˆ๊ธฐ ๋‹จ๊ณ„์—์„œ ๋ฐœํ˜„๋Ÿ‰์ด ๋†’์•„์ง€๋Š” ์‚ฌ์ดํ† ์นด์ธ์ธ ์ข…์–‘๊ดด์‚ฌ์ธ์ž(TNF-ฮฑ)๋Š” ์ „์—ผ์ฆ์„ฑ ๋ฏธ์„ธํ™˜๊ฒฝ์˜ ์ƒ์„ฑ์„ ๋•๊ณ , ์•”์„ธํฌ์˜ ์ „์ด๋ฅผ ์œ ๋„ํ•œ๋‹ค๊ณ  ์•Œ๋ ค์กŒ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ TNF-ฮฑ๊ฐ€ ์•”์„ธํฌ์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ์–ด๋– ํ•œ ๋Œ€์‚ฌ์˜ ๋ณ€ํ™”๋ฅผ ์œ ๋„ํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ํ•ญ์ข…์–‘์„ฑ(anti-tumor)๊ณผ ํ•ญ์„ธํฌ์ฃฝ์Œ(anti-apoptosis)์˜ ๋‘ ๊ฐ€์ง€ ๊ธฐ์ „ ์ค‘ ์–ด๋Š ๊ฒƒ์„ ์œ ๋„ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๋‚ด์šฉ์€ ์•„์ง ๊ทœ๋ช…๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ER/PR ์–‘์„ฑ ์„ธํฌ์ธ MCF7๊ณผ ER/PR ์Œ์„ฑ ์„ธํฌ์ธ MDA-MB231, ๋‘ ๊ฐ€์ง€์˜ ์œ ๋ฐฉ์•” ์„ธํฌ์ฃผ๋ฅผ ์ด์šฉํ•˜์—ฌ, TNF-ฮฑ๋กœ ์ธํ•ด ๋Œ€์‚ฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ฆฌํ”„๋กœ๊ทธ๋ž˜๋ฐ๋˜๋Š”์ง€ ๊ทธ์˜ ๊ธฐ์ „์„ ์งˆ๋Ÿ‰๋ถ„์„๊ธฐ๋ฅผ ์ด์šฉํ•œ ๋‹จ๋ฐฑ์ฒด์™€ ๋Œ€์‚ฌ์ฒด์˜ ๋ถ„์„์œผ๋กœ ๊ทœ๋ช…ํ•˜๊ณ ์ž ํ–ˆ๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ, TNF-ฮฑ์— ์˜ํ•œ ๋Œ€์‚ฌ ๋ฆฌํ”„๋กœ๊ทธ๋ž˜๋ฐ์€ ๋‘ ์„ธํฌ์ฃผ์—์„œ ๋‹ค๋ฅด๊ฒŒ ์œ ๋„๋˜์—ˆ๊ณ , ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ ๋Œ€์‚ฌ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ „์ž์ „๋‹ฌ๊ณ„(ETC) ์ปดํ”Œ๋ž™์Šค์˜ ์‘์ง‘๊ณผ ํ™œ์„ฑ์— ๋ณ€ํ™”๋ฅผ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ETC ์‘์ง‘์˜ ํ˜•์„ฑ์„ ์ €ํ•ดํ•˜๋Š” ๋‹จ๋ฐฑ์งˆ ๋งˆ์ปค๋ฅผ ์ฐพ๊ณ ์ž ๋ณธ ์—ฐ๊ตฌ์ง„์€ ๋‹จ๋ฐฑ์งˆ์˜ ๊ตญ์†Œํ™”์™€ ๋ณ€์„ฑ์— ๊ด€์—ฌํ•˜๋Š” ์œ ๋น„ํ€ดํ‹ดํ™”์˜ ํ™œ์„ฑ ๋ณ€ํ™”๋ฅผ ๊ด€์ฐฐํ–ˆ๊ณ , ๋Œ€์‚ฌ ์ ์‘์„ ๋ฐฉํ•ดํ•˜์—ฌ ์•” ์น˜๋ฃŒ์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ›„๋ณด ๋งˆ์ปค๋ฅผ ๋ฐœ๊ตดํ–ˆ๋‹ค.Introduction 1 Materials and methods 5 1. Cell Culture, Pharmacological Treatments, and Transfection 5 2. Mitochondria isolation and western blot 5 3. Immunoprecipitation of HA-tagged proteins 6 4. Sample preparation and digestion 6 5. LC-MS/MS analysisย  7 6. Database search 7 7. Relative protein quantification and bioinformatics analysis 8 8. BN-PAGE separation 9 9. Spectrophotometric analysis of mitochondrial Complex I and Complex II assays 9 10. ATP Assay 10 11. Metabolite extraction 10 12. Analysis of metabolites by LC-MRM 11 13. Statistical analysis 12 Results 13 1. Proteomics Analysis of MCF7 and MDA-MB231 under TNF-ฮฑ treated and untreated conditions 13 2. Functional Analysis of MCF7 and MDA-MB231 under TNF-ฮฑ treated and untreated conditions 16 3. The targeted metabolomics analysis on metabolic pathways in MDA-MB231 and MCF7 under the TNF-ฮฑ treated and untreated conditions 20 4. Identification of change in oxidative phosphorylation differentially regulated by TNF-ฮฑ 24 5. Identification of change in ATP production differentially regulated by TNF-ฮฑ 29 6. The change of ubiquitin PTM in ETC complex is differentially regulated by TNF-ฮฑ 31 Discussion 35 Reference 48 ๊ตญ๋ฌธ์ดˆ๋ก 56Maste

    The Relationship between Family-related Factors, Age-friendly Environment and Intergenerational Interaction within the Family - A Comparison of Two Different Age Groups -

    No full text
    corecore