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Abstract 

Study of 3-Dimensional Magnetic Vortex State in Magnetic Nano 
Particles 

Ha-youn Lee 

Department of Materials Science and Engineering 

Seoul National University 

 

This thesis deals with statics and dynamics of 3 dimensional 

magnetic vortices in soft ferromagnetic nanoparticles with micromagnetic 

simulations and synthesis of permalloynano particles. For the 

numericalcalculations, the Landau-Lifshitz-Gilbert equation is solved 

byfinite element method (FEM) based micromagnetic simulations using 

FEMME.Permalloy nanoparticles are prepared by polyol method and 

analyzed SEM, TEM and XRD to confirm the material properties, such as 

morphology, crystalline structure of particles. 

Nanoparticles are used as the building blocks for different 

nanostructures such as spherical micelles, vesicles, and cylinders. However, 

these are notable to bond along specific directions as atoms and molecules. 

Self-assemble have been researchedintensively within decades even 

though it is influenced by a number of factors[1]. 

We observed the arrangements of permalloy magnetic nanoparticle 

on carbon grid on specific direction by analysis of its models and repetition 

rate. Magnetic Energy of each arrangement model determine repetition rate 



 

2 

 

of each arrangement. It is demonstrated with micromagnetic simulation 

result. 

 

Keywords: magnetic nanoparticles, magnetic vortex, dipolar interaction,  

 

Student number: 2011-20664 
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Chapter 1 

Introduction 

 

Fine magnetic particles find extensive application in various fields 

Specially, the interest on ferromagneticmetal particles in biology field has 

been increases, such as nanobiomagnetic applications, including 

magneticresonance imaging contrast-enhancement agents, targeted 

drugdelivery, bioseparation and magnetically induced hyperthermia.[2-4] 

However, since ferromagnetic particles may agglomerate owing to the 

localized magnetic stray field around particles. Most experimental work so 

far has used superparamagneticparticles (that is, those with zero magnetic 

moment at remanence)and their bioconjugates[5] 

Magnetic Vortex structure stands out as a solution of this challenge 

by forming uniform magnetic stray field. The magnetic vortex has been 

attracted much attention in 2-dimensional disks for its static and dynamic 

characteristics, i.e. for its gyro-motions and reversal behavior under various 

conditions[6-13] In contrary, the studies on vortex in 3-dimensional object is 

limited in (quasi-)statics[14-19] and theoretical study in simplified 

systems[20, 21]. 

Spin configuration of a magnetic sphere is one of the fundamental 

questions concerning the single domain size in various materials[22]. In 
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submicron-sized ferromagnetic elements, the geometrical confinement in 

nanomagnets alters their energeticsfrom the competition among several 

magnetic energies: the exchange energy resulting from the wave function of 

indistinguishable particles being subject to exchange symmetry, the 

magnetostatic energy due to the classical dipole-dipole interaction between 

magnetic moments, the magneto-crystalline anisotropy energy from the 

spin-orbit interaction, and additional energies induced by external forces, 

such as Zeeman energy, As a result of the competition between these 

energies, it is known that the spins in a sphere forms a vortex state when the 

particle size is between the single domain size and multi-domain size[14, 15, 

22]. A magnetic vortex ischaracterized by an in-plane flux-closure spin 

distribution withnet zero magnetization in the absence of a magnetic field 

and out-of-plane spin distribution [23-27]. This vortex core plays a 

meaningful role in the arrangement of nanoparticles and dynamic motion of 

the magnetic vortex structure. 

In this paper, we are going to report on the magnetic behavior of 

soft magnetic spherical particles. Ferromagnetic nanoparticles have strong 

magnetic energy which governs the arrangement of magnetic nanoparticles. 

Specially, magnetic vortex spin structure and its vortex core perform as key 

mechanism of arrangement of magnetic nanoparticles. This statistic study 

on 3D magnetic vortex would influence to dispersion and arranging method 

of magnetic nanoparticles.  
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This thesis is organized as follows. In Chapter 1, the magnetic 

vortex structure and its static and dynamic properties are introduced. In 

Chapter 2, we provide the theoretical background to magnetic vortex 

structrure. In Chapter 3 intensive static properties of 3D magnetic vortex 

with detailed description of 3D magnetic vortex and the interaction between 

multi- magnetic vortices will be explained. Chapter 4 is about dynamic 

property of magnetic vortex in magnetic nanoparticle. Finally, chapter 5 is a 

conclusion of this study. 
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Chapter 2 

Research Background 

 

2.1. Micromagnetics 

Micromangetism is continuum model of magnetic moments in 

ferromagnetic body[28]In any realistic theory of magnetization processes, 

all three energy terms: exchange, anisotropy, and magnetostatic, must be 

taken into account. Until a better theory is developed, the only way to solve 

the magnetization processes is to neglect quantum mechanics and to use 

classical physics in a continuous medium. Such a classical theory has been 

developed in parallel with the quantum-mechanical studies with rough 

approximation. W.F Brown gave this theory the name micromagnetics. 

Some crystals of specific 3d transition metal such as Fe, Ni and Co 

have spontaneous magnetic moment even in the absence of magnetic field.  

These metals easily showsferromagnetic property. Micromagnetics 

describes the magnetic behavior of ferromagnetic systems by a continuous 

vector field of classicalmagnetization vectors [29]. Magnetization vectors 

are spatial averages of discrete elementary magnetic moments of electron 

spins. The micromagneticmodel is used to describe ferromagnetism 

semiclassically on length scales of fewhundred microns, because of the 

complexity of calculation onquantum mechanics. Micromagnetism is 
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considered as it may model not only the static structure of ferromagnets,the 

formation of magnetic domains and domain walls, but also the dynamics of 

magnetic structures. The interaction between the magnetization vectors is 

modeled byeffective fields, which is combination of both external applied 

fields( such as Zeeman field) and internal fields, such as the 

demagnetization field, exchange field and the magneto-crystalline 

anisotropy field. 
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2.1.1. Effective fields in magnetic materials 

In the Landau-Lifshitz-Gilbert equation, the effective field Heff Performed as 

key element which is a sum of internal effective fields like the exchange Hex, 

the anisotropy field Hanisotropy, and the magnetostatic field Hd as well as 

external fields like the Zeeman field HZeeman. 

2.1.1.1 Exchange field 

The exchange energy, a quantum mechanical effect between 

identical particles,is responsible for ferromagnetism and for the volume of 

matter. Exchange interaction effects were discovered independently by 

physicists Werner Heisenbergand P. A. M. Diracin 1926.[30, 31] 

The exchange energy between two magnetization vectors can be 

derived by startingfrom the Heisenberg Hamiltonian of two spins Si and Sj. 

     22 2

ex ex x y zV
E A m m m dV                 (2.1.1) 

As exchange constant Aex is expressed as Aex=JS2/a,and the effective field is 

the negative variational derivation of the energy,where Jij is the exchange 

integral, which can be calculated using quantum mechanics.[32, 33] 

, 1

M

exch ij i j
i j

H J S S


   (2.1.2) 

 

2.1.1.2Magnetocrystalline anisotropy field 
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The spin-orbit interaction is the primary source of magnetocrystalline 

anisotropy field and it can be driven by Maxwell equations. 

An instructive way is to expand the free energy in the derection 

cosines 1 , 2 and 3 of the magnetization along the tree coordinate axes 

and apply symmetry operations to reduce the number of independent terms. 

[34, 35] 

2 2 2 2 2 2 2 2 2
0 1 1 2 2 3 3 1 2 1 2 3( ) ( )aniE K K K             (2.1.3) 
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Fig 2.1 First-order anisotropy energy surfaces for(a)uniform anisotropy (b)cubic 

anisotropy on <0 0 1> (c) ) cubic anisotropy on <1 1 1> 
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2.1.1.3Magnetostaticfield 

Starting from Maxwell's equations and assuming that charges are 

either fixed or move as a steady current. The magnetostatic equations, in 

both differential and integral forms, are shown as, 

0 0d dH and B    (2.1.4) 

Accordingly, the typical magnetiostatic field on magnetic dipole is 

expressed as, 

3 3

( ') ( ') ( ') ( ')
( ) ' '

' '
d V S

r r M r r r M r n
H r dV dS

r r r r

    
 

   (2.1.5) 

2.1.1.4Zeeman field 

The Zeeman effect, named after the Dutch physicist Pieter Zeeman, is the 

effect of splitting a spectral line into several components in the presence of a 

static magnetic field. When magnetic material under external field, either 

electric and magnetic, the external field affects as Zeeman field. 

0Zeeman ZeemanE H MdV   (2.1.6) 
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2.1.2. Landau-Lifshitz-Gilbert (LLG) equation 

In 1935, Landau &Lifshitz[29] introduced an equation to model the 

precessional motion of magnetization of uniform feroomagnetic element 

with an effective magnetic field where   is the electron gyromagnetic ratio 

and SM is the saturation value of the magnetizationM..  

    (2.1.7)  

The magnetic moment is linked to the angular momentum by the 

gyromagnetic ratio, 

0 52.210173 10
2 e

g e m

m As


              (2.1.8)  

Gilbert proposed a phenomenological damping which encountersthe 

gyration for example due to crystal impurities. In the Gilbert form of 

theLandau-Lifshitz equation, the damping term leads to a motion of the 

magnetization, perpendicular to the velocity ofthe magnetization due to the 

gyration.[34] 

            (2.1.9) 

Inequation (2.1.9), an ordinary differential equation, the Gilbert 

phenomenological damping parameter α determines the strength of the 

damping. Atequilibrium both terms vanish to get a vanishing torque, which 

is the case for a collinearalignment of magnetization and effective field. 

eff

d

dt
  

M
M H

eff
s

d d

dt M dt

    
M M

M H M
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Fig 2.2Schematic illustration of magnetization precession motion around the 

effective field with damping. 

 

 

 

  



 

17 

 

2.1.3. Micromagnetic Simulation Method 

2.1.3.1Finite element method 

The finite element method (FEM) is a numerical technique for 

solving problemswhich are described by partial differential equations or can 

be formulated as functionalminimization. A domain of interest is 

represented as an assembly of finiteelements. Approximating functions in 

finite elements are determined in terms ofnodal values of a physical field 

which is sought. A continuous physical problemis transformed into a 

discretized finite element problem with unknown nodal values. 

For a linear problem a system of linear algebraic equations should 

be solved.Values inside finite elements can be recovered using nodal 

values.Two features of the FEM are worth to be mentioned: 

1) Piece-wise approximation of physical fields on finite elements provides 

goodprecision even with simple approximating functions (increasing the 

number of elementswe can achieve any precision).2) Locality of 

approximation leads to sparse equation systems for a discretizedproblem. 

This helps to solve problems with very large number of nodal unknowns. 

How the finite element method works we list mainsteps of the finite 

element solution procedure below. 

1. Discretize the continuum. The first step is to divide a solution region into 

finite elements. The finite element mesh is typically generated by a 

preprocessorprogram. The description of mesh consists of several arrays 
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main of which arenodal coordinates and element connectivities. 

2. Select interpolation functions. Interpolation functions are used to 

interpolatethe field variables over the element. Often, polynomials are 

selected as interpolationfunctions. The degree of the polynomial depends on 

the number of nodesassigned to the element. 

3. Find the element properties. The matrix equation for the finite 

elementshould be established which relates the nodal values of the unknown 

function toother parameters. For this task different approaches can be used; 

the most convenientare: the variational approach and the Galerkin method. 

4. Assemble the element equations. To find the global equation system for 

thewhole solution region we must assemble all the element equations. In 

other wordswe must combine local element equations for all elements used 

for discretization.Element connectivities are used for the assembly process. 

Before solution, boundaryconditions (which are not accounted in element 

equations) should be imposed. 

5. Solve the global equation system. The finite element global equation 

systemis typically sparse, symmetric and positive definite. Direct and 

iterative methodscan be used for solution. The nodal values of the sought 

function are produced asa result of the solution. 

6. Compute additional results. In many cases we need to calculate 

additionalparameters. For example, in mechanical problems strains and 

stresses are of interestin addition to displacements, which are obtained after 
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solution of the globalequation system. 

2.1.3.2Micromagnetic Simulation Method 

Precise analytical calculation of the magnetization state is possivle 

only for ferromagnetic bodies of high rotational symmetry[36].  For the 

case of a complex shape, the magnetization state can be solved using 

numerical computations.  

There are three major procedures for numerical computation on 

magnetic state. First, the ferromagnetic elements are spatially discretized. 

Second, the effective field is calculated. Third, the main equation- LLG 

equation is numerically solved. 

Magnetic state in spherical magnetic particles, expected by analytic 

approach is confirmed by inite element method (FEM) based micromagnetic 

simulations using FEMME[37]. The finite element models made up of 

surface triangles and volume tetrahedrons let us deal with the precessional 

motion of the spins in spherical shape properly compared with finite 

difference method (FDM)[16]. Diameter of the spheres (D) is 80 nm, with 

the material properties of Permalloy (Py: saturation magnetization MS = 860 

emu/cc, crystalline anisotropy K = 0, exchange coefficient A = 13 pJ/m). 

The maximum edge length of the tetrahedron was less than 5 nm, which 

consider the exchange length of Permalloy[38] and is precise sufficient to 

describe the 3-dimensional vortex cores. Ground spin configurations of the 

spherical magnetic particles were obtained by relaxing the saturated spheres 
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to the ground state without external field within considerably enough time 

(100ns).  
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2.2. 2-DimensionalMagnetic Vortex Structure 

2-dimensional Magnetic vortices are typically observed in patterned 

or continuous soft magnetic thin films. The magnetic vortex structure 

consists of in-plane curling and out-of-plane magnetizationsat the core 

region [24, 25, 28, 39]. This out-of-plane magnetization structure is called 

the ‘vortex core’. 

2-dimenstional magnetic vortex formation mechanism can be 

explained by understanding of effective field terms on ferromagnetism. In 

the absence of any external forces in a soft magnetic nanoelement, Zeeman 

energy and magnetocrystalline anisotropy energy are negligible. Therefore, 

the spin configurations are dominantly determined by the competition 

between the exchange energy and magnetostatic energy. The exchange 

energy favors electrons with parallel spins. The magnetostatic energy favors 

closed spin structure to prevent magnetic free poles from generating a stray 

magnetic field. As a result, magnetizations in the soft magnetic nanoelement 

are formed with an in-plane curling magnetization along the circular 

boundary, as shown in Fig. 2.3. The exchange energy will be immeasurable 

at the disk center because the variation of magnetization will be infinite. To 

avoid this singularity, a few-nm-scale magnetization structure at the disk 

center has out-of-plane magnetization as shown in Fig. 2.3. Fig 2.4 shows 

direct measurement results of various vortex structures in nano-films.  
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This vortex state can discrete not only two discrete states of up- and 

down-core orientations and two rotation senses (clockwise or counter-

clockwise) of the in-plane magnetizations, but also the vortex state is stable 

in sufficiently small lateral sizes (> 20 nm) and thicknesses (> 2 nm) of 

nanoelements[40]. 

As mentioned above, the magnetic vortex structure is characterized 

by an in-plane curling magnetization of either counter-clockwise (c = +1) or 

clockwise (c = –1) orientation (denoted by chirality c) along with an out-of-

plane core magnetization of either upward (p = +1) or downward (p = –1) 

orientation (represented by polarization p). Combinations of chirality and 

polarization of a vortex represent the fourfold degenerate state as shown in 

Fig. 2.6.  
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Fig. 2.3.Schematic illustration of the magnetic vortex structure. The 

magnetizations in a soft magnetic nanoelement are aligned along its circular 

boundary, forming an in-plane curling magnetization structure around the disk 

center to prevent magnetic free poles 

 

 

 

Fig. 2.4.Schematic illustration of the magnetic vortex core. A few-nm-scale out-of-

plane magnetization structure at the center of the curling in-plane magnetization 

structure was developed. 
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Fig. 2.5 direct measurements of a magnetic vortex structure. (a) Fe L3 edge 

XMCD images of paired disks, where initial ground states are represented by 

perspective-view simulation results.[41] (b) Vortex core structure using MFM [24]. 

(c) Magnetic phase mapping from electron holography: from white to red the 

magnetisation is rotating from fully out-of-plane (white) to totally in-plane (red). 
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Fig. 2.6 Energetically equivalent four different states of a magnetic vortex 

according to the vortex core polarization p, and the chirality c. The height and color 

indicate the local out-of-plane magnetization components. 
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Chapter 3 

Arrangement of PermalloyNanoParticles 

 

3.1. Particle Preparation 

3.1.1. Synthesis of Permalloy nanoparticles 

SphericalNi80Fe20 permalloynanoparticleshavebeenprepared by 

the process known as polyol method. Polyol method is the synthesis of 

metal-containing compounds in poly(ethylene glycol)s. In this synthesis, the 

ethylene glycol acts as both the solvent and reducing agent[42]. Even 

though it is known that the solvents itselfhave 

noreductionabilitybutitchangeintopropanalduringheating.[43-45] 

2 0
3 2 3 3 22 2 4CH CHOH CH OH M CH CHCOCOCHCH H O H M        

(3.1.1)  

Magnetic nanoparticles have also been frequently synthesized by 

the reduction of metal salts using reducing agents in the presence of 

surfactant molecules.[46] 

In this polyol process to synthesis Permalloy nanoparticles, Fe,Ni 

precursorsdissolvedinpropylene 

glycolatanoptimizedpHandtemperature.Typically0.1MFeCl2, 0.1MNiCl2 and 

NaOHweredissolvedin100mLpropyleneglycol(PG)at80 °C in Ar atmosphere 

andthenheatedto180°C for2h.[47]Same composition of FeCl2andNiCl2are 
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participating on this process. Disproportion of iron hydroxide needs to 

happen since polyols are too weak to reduce Fe ions[44] where Ni reduction 

occurred easily because of thermodynamic preference. However, 

disproportionation of ferrous hydroxide happens in reaction, so that Fe 

particles produced even though iron is too electropositive to be reduced by 

ployols[48] 

 Also, it is necessary to note that pH condition acts critically on this 

synthesis as it is related in metal reduction. As a result of this pH 

controllingpolyol method, the final product has different ratio(1:4=Fe:Ni). 

Finally, from this synthesis, narrowsizedistributionofthefinalPy 

nanoparticles with 300nm diameter is obtained (Fig.3.1) 
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Fig 3.2 SEM examination of the Py Nanoparticles  
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3.1.2 Properties of nanoparticle 

To verify the vortex phenomena in permalloy nanoparticles, 

SEM/TEM analysis was performed. As previously stated, synthesized 

particles tend to aggregate in solution. We, therefore, tried to make 

dispersable particles instantaneously by vortexing machine and sonication. 

Partially dispersed solution was loaded by drop-casting on Si wafer/carbon 

grid for SEM, TEM analysis, respectively and dried at room temperature. 

Two unique behaviors of the synthesized permalloy nanoparticles 

were revealed by the HRTEM (High Resolution Transmission Electron 

Microscope) and SAED (Selective Area Electron Diffraction) analysis. 

Firstly the particles had poly-crystal features and secondly, the particles had 

certain assembling patterns during aggregation on the substrate. We believe 

that these are originated from its own magnetic vortex phenomenon. 

Also the crystal structures of Py nanoparticles were determined by 

X-rayspectrometry(XRD, D8 advance)withCuK radiation at40kV and  

40mA. It confirms they have typical FCC structures without any other 

inclusions 
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Fig 3.2Properties of synthesized nano\particle. (a) Magnetic attraction of 

nanoparitles by earth magnet. (b)TEM patterns (c) XRDpattern,showing 

they areoftypicalFCCstructure. 
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3.2. Sampling 

To understand the arrangement mechanism of magnetic nano \particles, the 

sampling method needs to be stressed. When magnetic particles interacting 

each other in the medium without external forces, such as flow of medium 

occurred by mechanical stirring, Among numerous forced which effect to 

the arrangements, it is easily imaged that magnetic force acts as key fact of 

arrangement of ferromagnetic nanoparticles. 

In order to observe and research this phenomenon, whole sampling process 

is performed on the following conditions; 

When a drop of medium with magnetic nanoparticle are pose on the 

substrate, in this research carbon grid, arrangement would occurs 

immediately and the magnet under the substrate freeze the arranged state of 

magnetic nanoparticles while avoiding other incidental forces. We then 

carried out statistical analysis from SEM data to study the ensemble of 

particles in detail. For the data collection, dispersed permalloy particles 

were loaded on each ten Si wafers with the same preparation condition. In 

each samples, 5~60 SEM images were taken randomly. Finally, total 875 

images of assembled particles were gathered. The images were classified 

into small groups with vortex configured criterions. 
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Fig 3.3Schematic illustration of SEM sample on earth magnet 
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3.3. SEM Images of Arrangements 

Prepared sample is observed by SEM(JSM 5410LV) and specific 

arrangements are shown on sample. 50~60 samples are analyzed and total 

875 arrangements are found and there are, of course, multi-particle 

aggregation of particles, more than 6 particles are participating, is observed. 

However, in order to study magnetic vortex state effects on magnetic 

nanoparticle arrangement, this complex aggregation, more than 6 particles 

are participating, is not considered. 

Representative images of each arrangement are classified with 

number of particles which are participating on arrangement and its shape(A 

to G). Not only the observed arrangement but also all the possible 

arrangements are considered. The possible arrangements of the magnetic 

nanoparticles which are not observed are schematically illustrated as 5-E to 

5-G model. 

As shown in Fig 3.4,A-models indicate line-up arrangement. Each 

arrangeents may not form straight line but the diminutive displacement of 

the particles is ignored and considered as line. 

The rest of models are described from 3-B model. For example, 4-B, 

4-C,4-E models are the models, which are 3-B model plus a particle and 5-B 

to 5-D models are the models, which are 3-B model plus 2 particles. On the 
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other hands, 4-D model is 3-A model plus one and 5-E mole is 3-A model 

plus 2 particles. 
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Fig 3.4SEM image of some of the arrangements. Arrangement of MNPs classified 

with pattern shape and number of MNPs participating in each pattern. For example, 

the case of 2-A model, 2 magnetic particles are participating while it clearly forms 

line shape. 
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3.4. Magnetization of Particles with Simulation Results 

3.4.1. Ground Spin State of Single Magnetic Nano Particle 

Magnetic vortex state is formed when reduction of demagnetization 

energy by circulating spins exceeds gain of exchange energy. According to 

theoretical calculation(3.1.2), the threshold diameter of Py spheres between 

the two states(rc) are known as 25 nm ~ 45 nm, depending on the material 

parameters,such as A(exchange stiffness), Ms(Saturation magnetization).[14, 

16, 22] 
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From our simulations, at D = 40 nm the spins at equator of the particle starts 

to lay down on xy-plane from the vortex core direction along the z axis(Fig. 

3.5(a), the colors on spheres denotes mz). The z-component of the equator 

surface is getting decreased in larger particle, even has negative values when 

D≥ 80 nm. Contrary to the other parts, the spins at the center of the particle 

are strongly aligned in a direction perpendicular to the rest regions. For D = 

150 nm the spins inside of the sphere are visualized using streamlines and 

arrowheads, with the color key for x-component of the spins. The vortex 

core is shown by iso-surface of mz = 0.8. The interaction between the 
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magnetostatic energy and exchange energy made the diameter of vortex 

cores are small at the exposed surfaces (visualized as red dots in Fig. 

3.5(a),for D≥ 50 nm), and their center thick. The diameter of the vortex core 

is defined as the full width at half maximum (FWHM) of mZ profile across 

the equator. Except for the vortex states near the boundary with SD states, 

the vortex core is proportional to the diameter of particle, as shown in Fig. 

3.5(c). 

By studying of ground state of Py nanoparticles, particles bigger 

than D=80nm can be considered as forming same 3-dimenstional magnetic 

vortex state. 
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Fig 3.5Spin configuration at ground state of Py spherical particles for different 

diameters D (nm) as indicated. The color on the spherical particles indicates mz as 

noted by the color bar scale. The arrows inside the sphere D = 150 nm represent the 

direction 
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3.4.2. Ground Spin State of Arranged Magnetic Nano Particles 

All of SEM patterns in Fig 3.4are simplified asmodel, for examples, 

2-A and 4-B model in Fig 3.6.Micromagnetic simulation performed with 

this models in conditions that, the particles cannot move after formation of 

each patterns and the particles in each patterns are having same size, 

diameter 80nm. Even though synthesized and observed Py magnetic 

nanoparticles are 300nm, the simulation result with magnetic particles with 

diameter 80nm can match to the SEM observation with those with diameter 

300nm since both of the cases are forming magnetic vortex spin state which 

acts as key mechanism of formation of particle arrangement. 

Number of particles is making the patterns while each of particles 

maintains magnetic vortex state. Partial spin state changes are shown, on 

magnetic vortex cores. The magnetic vortex core tends to widen where the 

magnetic vortex cores are connected.  It causes even stronger interaction 

between the particles. 

 Among the magnetic energies, those effects on magnetic spin state, 

demagnetization energy and exchange energy act as more important terms to 

consider. 

A-models, lining arrangement, shows this tendency clearly as all the 

cores are connected to each other. The direction of magnetic vortex core is 

parallel to the lined direction to minimize demagnetization energy. On these 

cases, the magnetic vortex cores can be imagined as bar magnets which has 
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N,S pole and each N, S pole are connected. However the rotating 

configuration of spins around vortex core of every particle has same 

chirality, either CCW or CW, in order to minimize exchange energy of 

system. When there is particle which is not on the same line than the other 

particles in the system, as shown in Fig3. 6 (b) particle K, the magnetic 

vortex core of that particle directs opposite direction to the rest of magnetic 

vortex core. Also the chirality of rotating spin configuration around vortex 

core is opposite to the other particles. 

While A-models form the line-up configuration of magnetic vortex 

core and same chirality, models from 4-C is forming rotating configuration 

of magnetic vortex core and different chirality of rotating spin configuration 

as shown in Fig3.6 (c). Magnetic vortex cores on 4-C, same as A-models, 

tend to form tail to tail shape however, since the particles are not linearly 

located, the magnetic vortex cores cannot line up but rotating. 
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Fig 3.6 (a)Micromagneticsimulation(FEMME) result of 2-A pattern. The color on 

the half sphere is indicating mz value, where the red is +z direction and the blue is 

–z direction. The stream line arround magnetic vortex core is colored by mx value. 

(b)Micromagneticsimulation(FEMME) result of 4-B pattern. It shows two oriented 

vortex core and the other core heads opposite direction. (c) 

Micromagneticsimulation(FEMME) result of 4-C pattern. The magnetic vortex 

core rotates to make tail-to tail formation. 
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3.5. Analysis of Pattern Counts and Magnetic Energy 

Formation of magnetic vortex state in nanoparticles effects on the 

arrangement of particles. As the magnetic vortex core tents to appear tail to tail 

direction to minimizeexchange energy of the system, the particles highly prefer to 

form a line, like shown in Fig 3.6 (a).Meanwhile,4-C patterns also formed by 

making tail to tail direction of magnetic vortex core but rotating not lining. 

Micromagnetic simulation results not only show spin configuration of 

magnetic nanoparticles but also the magnetic energy of each patterns 

It is necessary to stress that the magnetic energy of ground state of models shows 

that the model which have smaller magnetic energy have more possibility to be 

observed. This tendency simply implies that magnetic energy acts as the most 

effective term on formation of arrangement of magnetic nanoparticles.  
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Fig. 3.7Comparison energy with histogram of assembled pattern models. 
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Chapter 4 

Conclusion 

 

In this thesis, we investigated the 3-dimensional magnetic vortex 

statics and dynamics in soft magnetic nanoelementsexperimentally and 

numerically. To understand the underlying mechanism of these interesting 

properties of the vortex structure, we conducted finite element method 

(FEM) based micromagnetic simulations using FEMME. 

Comparison of SEM image data analysis and magnetic energy of 

each system proves that dipolar magnetic energy governs the arrangement 

of magnetic nanoparticles with stable magnetic vortex spin state. This would 

be demonstrated relation between the magnetic vortex core and arrangement 

of magnetic nanoparticles. 

This thesis not only explains the properties of magnetic vortex 

states but also as get a foothold of totally different application of 

ferromagnetic nanoparticles using magnetic vortex, contributes on the future 

researches on ferromagnetic nanoparticles .  
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초록 

 

자성나노입자에 형성된  

3차원 자기소용돌이 구조에 대한 연구 

 

이 논문은 강자성 나노 입자에 형성된 3차원 자기 

소용돌이 구조의 거동에 대한 것이다. 최근 나노 구조에 의해 

서로 다른 결합을 가지는 나노 입자의 특징을 이용하는 자기 

조립에 대한 연구가 활발하게 연구되고 있다.  

퍼멀로이 나노 파티클의 특징적인 배열과 그 원인으로 

밝혀진 3차원 자기 소용돌이 구조에 대한 연구하므로서 자기 

조립에 자기에너니가 끼치는 영향을 각 배열의 자기에너지를 

전산모사로 계산하고 자성나노파티클을 합성하여 그 배열을 

관찰하므로서 증명하였다. 

3차원 자기 소용돌이 구조의 거동을 예측하기 위해 LLG 

방정식의 해를 유한요소법을 이용하여 도출하는 FEMME 

프로그램을 사용하였으며, 폴리올 방법을 이용한 퍼멀로이 나노 

입자를 합성하고 SEM, TEM, XRD를 이용하여 합성된 입자의 

결정구조와 모양을 증명하였다.  

 

 

주요어 : 자성나노입자,  자기 소용돌이, 쌍극자 상호작용 

학 번 : 2011-20664 
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