160 research outputs found

    ์ธ๊ฐ„ ๋ฐฉ๊ด‘์•” ์„ธํฌ์ฃผ์—์„œ MutT homolog1 inhibitors์˜ ํ•ญ์•” ํšจ๊ณผ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜๊ณผ๋Œ€ํ•™ ์˜ํ•™๊ณผ,2020. 2. ์ด์€์‹.Introduction: We investigated the antitumor effects and the possible molecular mechanisms of MutT homolog 1 (MTH1) inhibitors, TH588 or TH287, in cisplatin-sensitive (T24) and -resistant (T24R2) human bladder cancer cell lines. Methods: Cell Counting Kit-8 (CCK-8) and clonogenic assays were performed to assess the anti-proliferative effect of TH588 or TH287 on T24 and T24R2 cells. The generation of reactive oxygen species (ROS) in T24 and T24R2 cells was evaluated with 2,7-dichlorofluorescein diacetate using the IncuCyteยฎ ZOOM System. Flow cytometry was performed to analyze the changes in cell cycle and apoptosis. The expression of proteins related to apoptosis and cell cycle was determined by western blotting. Results: The CCK-8 and clonogenic assays demonstrated the dose-dependent antitumor effects of TH588 or TH287 on T24 and T24R2 cells. Treatment with TH588 or TH287 increased the relative level of reactive oxygen species in both cell lines. MTH1 expression was not dependent on the treatment dose of TH588 or TH287. TH588 or TH287 treatment induced apoptosis via increased expression of fragmented poly (ADP-ribose) polymerase, caspase-3, -8, -9, and cytochrome c. Cell cycle arrest induced by TH588 or TH287 was accompanied by decreased expression of cyclin A. Conclusions: Our results suggest that TH588 or TH287 may induce cancer cell suppression by off-target effects rather than MTH1 inhibition in cisplatin-sensitive and โ€“resistant bladder cancer cells. Further investigations or clinical trials are needed to confirm the antitumor effects and underlying molecular mechanisms of MTH1 inhibitors in human bladder cancer cells.์„œ๋ก : ์ธ๊ฐ„ ๋ฐฉ๊ด‘์•” ์„ธํฌ์ฃผ์—์„œ MutT homolog (MTH)1 inhibitor์˜ ํ•ญ์•”ํšจ๊ณผ์™€ ๊ทธ ๊ธฐ์ „์„ ๋ถ„์ž์ƒ๋ฌผํ•™์  ์ˆ˜์ค€์—์„œ ๋ถ„์„ํ•จ์œผ๋กœ์จ ์ „์ด์„ฑ ๋ฐฉ๊ด‘์•”์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ•ญ์•” ํ›„๋ณด๋ฌผ์งˆ๋กœ์„œ์˜ MTH1 inhibitor๋ฅผ ๊ทœ๋ช…ํ•˜๊ณ , ๋‚˜์•„๊ฐ€ cisplatin ๋‚ด์„ฑ ๋ฐฉ๊ด‘์•”์— ๋Œ€ํ•œ 2์ฐจ ํ•ญ์•”ํ™”ํ•™์š”๋ฒ•์˜ ๊ทผ๊ฐ„์œผ๋กœ์จ MTH1 inhibitor์˜ ์ž„์ƒ์  ํ™œ์šฉ์— ๋Œ€ํ•œ ๊ธฐ์ดˆ์ž๋ฃŒ๋ฅผ ํ™•๋ณดํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ฐฉ๋ฒ•: ์นจ์œค์„ฑ ๋ฐฉ๊ด‘์•” ์„ธํฌ์ฃผ T24์™€ cisplatin ๋‚ด์„ฑ ๋ฐฉ๊ด‘์•” ์„ธํฌ์ฃผ T24R2์— ๋Œ€ํ•œ MTH1 inhibitors (TH588, TH287)์˜ ํ•ญ์•”ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด Cell Counting Kit-8 (CCK-8)๊ณผ ํด๋ก ์›์„ฑ ๋ถ„์„ (clonogenic assay)์„ ์‹œํ–‰ํ•˜์˜€๋‹ค. T24์™€ T24R2์— TH588๋˜๋Š” TH287์„ ์šฉ๋Ÿ‰๋ณ„๋กœ ์ฒ˜๋ฆฌํ•œ ํ›„ IncuCyteยฎ ZOOM System์„ ์ด์šฉํ•˜์—ฌ reactive oxygen species (ROS)์˜ ๋ฐœํ˜„์„ ๋ถ„์„ํ•˜์˜€๋‹ค. TH588๊ณผ TH287 ์ฒ˜๋ฆฌ ํ›„ T24์™€ T24R2์˜ ์„ธํฌ์ฃผ๊ธฐ ๋ณ€ํ™”๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์œ ์„ธํฌ ๋ถ„์„ (flow cytometry)์„ ์‹œํ–‰ํ•˜์˜€๊ณ , ์„ธํฌ์ฃผ๊ธฐ ๋ฐ ์„ธํฌ๊ณ ์‚ฌ ๊ด€๋ จ ๋‹จ๋ฐฑ์งˆ ๋ฐœํ˜„์˜ ๋ณ€ํ™”๋ฅผ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด Western blot์„ ์‹œํ–‰ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: CCK-8๊ณผ ํด๋ก ์›์„ฑ ๋ถ„์„ ๊ฒฐ๊ณผ TH588๊ณผ TH287์€ T24์™€ T24R2์—์„œ ์šฉ๋Ÿ‰ ์˜์กด์  ํ•ญ์•” ํšจ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. T24์™€ T24R2์— TH588 ๋˜๋Š” TH287์„ ์ฒ˜๋ฆฌํ•˜์˜€์„ ๋•Œ, ๋‘ ์„ธํฌ์ฃผ ๋ชจ๋‘์—์„œ ROS๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ์œ ์„ธํฌ ๋ถ„์„ ๊ฒฐ๊ณผ 24์‹œ๊ฐ„ ๋™์•ˆ TH588 ๋˜๋Š” TH287์„ ์ฒ˜๋ฆฌํ•˜์˜€์„ ๋•Œ T24์™€ T24R2 ๋‘ ์„ธํฌ์ฃผ์—์„œ ์šฉ๋Ÿ‰ ์˜์กด์ ์œผ๋กœ G1 phase๋Š” ๊ฐ์†Œํ•˜์˜€๊ณ , sub-G1๊ณผ G2/M phase๋Š” ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. Western blot ๊ฒฐ๊ณผ, MTH1 ๋ฐœํ˜„์€ TH588 ๋˜๋Š” TH287์˜ ์ฒ˜๋ฆฌ ์šฉ๋Ÿ‰์— ์˜์กดํ•˜์ง€ ์•Š์•˜๋‹ค. TH588 ๊ณผ TH287์€ fragmented poly (ADP-ribose) polymerase, caspase-3, -8, -9, cytochrome c์˜ ๋ฐœํ˜„์„ ์ฆ๊ฐ€์‹œ์ผœ ์„ธํฌ์‚ฌ๋ฉธ์„ ์œ ๋„ํ•˜์˜€๊ณ , cyclin A์˜ ๋ฐœํ˜„ ๊ฐ์†Œ๋ฅผ ํ†ตํ•ด ์„ธํฌ์ฃผ๊ธฐ ์ •์ง€๋ฅผ ์œ ๋„ํ•˜์˜€๋‹ค. ๊ฒฐ๋ก : ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ MTH1 inhibitor์ธ TH588๊ณผ TH287์€ ์‹œ์Šคํ”Œ๋ผํ‹ด ๋ฏผ๊ฐ์„ฑ ๋ฐ ๋‚ด์„ฑ ๋ฐฉ๊ด‘์•” ์„ธํฌ์—์„œ MTH1์–ต์ œ๊ฐ€ ์•„๋‹Œ ํ‘œ์  ์™ธ ํšจ๊ณผ๋กœ ํ•ญ์•”ํšจ๊ณผ๋ฅผ ์œ ๋„ํ•˜์˜€๋‹ค. ๊ทธ ๊ธฐ์ „์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค.Introduction 1 Materials and Methods 3 Results 6 Discussion 15 References 19 ๊ตญ๋ฌธ์ดˆ๋ก 23 ๊ฐ์‚ฌ์˜ ๊ธ€ 25Docto

    ์„ธํฌ ๋ถ„๋น„ ๊ฒฝ๋กœ ๋‹จ๋ฐฑ์งˆ๊ณผ Ralstonia solanacearum ์ดํŽ™ํ„ฐ ๋‹จ๋ฐฑ์งˆ์˜ ์ƒํ˜ธ์ž‘์šฉ ๊ตฌ๋ช…

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†๋ฆผ์ƒ๋ฌผ์ž์›ํ•™๋ถ€, 2021. 2. Segonzac Cecile Marie Helene.Plants have innate immune responses against pathogens. Many bacterial pathogens secrete type III effectors (T3Es) to promote their growth. Thus, many T3Es target host defense-related components. Therefore, it is important to identify and characterize T3E interactors in the host plant. One bacterial pathogen, Ralstonia solanacearum (R. solanacearum) causes severe wilt in a wide range of horticultural crops. One of R. solanacearum T3E, RipAO, suppresses a defense response, namely flg22-triggered ROS production in Nicotiana benthamiana. Here, I screened Arabidopsis thaliana total cDNA library using RipAO to identify its interactors and test whether candidate interactors are required for the RipAO role to suppress flg22-ROS production. Using yeast two-hybrid screening, three candidate interactors, exocyst complex component SEC3A (SEC3A), SNF1 related protein kinase (KIN10), and Arabidopsis thaliana homolog of yeast oxidase assembly 1 (OXA1) were identified. Interestingly, SEC3A could not accumulate in the presence of RipAO. Moreover, RipAO could not or not fully suppress flg22-triggered ROS production in N. benthamiana plants silenced for SEC3A homologs. Taken together, these results suggest that RipAO targets the exocyst component SEC3A and that SEC3A is required for RipAO suppression of flg22-ROS production. Hence, this study uncovers a possible role of the vesicle trafficking machinery as the target of pathogen effectors to impair the host defense response.์‹๋ฌผ์€ ๋ณ‘์›๊ท ์— ๋Œ€ํ•ญํ•˜์—ฌ ๋‚ด์žฌ๋œ ๋ฉด์—ญ์ฒด๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ, ๋งŽ์€ ์„ธ๊ท ์„ฑ ๋ณ‘์›๊ท ๋“ค์€ ์ฆ์‹์„ ์œ„ํ•ด ์ดํŽ™ํ„ฐ(type III effectors, T3E) ๋‹จ๋ฐฑ์งˆ์„ ์ฃผ์ž…ํ•˜๋ฉฐ, ์ดํŽ™ํ„ฐ๋Š” ๊ธฐ์ฃผ์‹๋ฌผ์˜ ๋ฐฉ์–ด์™€ ๊ด€๋ จ๋œ ์š”์†Œ๋“ค์„ ํƒ€๊ฒŸ์œผ๋กœ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ, ๊ธฐ์ฃผ ์‹๋ฌผ์—์„œ ์ดํŽ™ํ„ฐ ๋‹จ๋ฐฑ์งˆ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋‹จ๋ฐฑ์งˆ์„ ๊ทœ๋ช…ํ•˜๋Š” ๊ฒƒ์€ ์ค‘์š”ํ•˜๋‹ค. ์„ธ๊ท ์„ฑ ๋ณ‘์›๊ท ์˜ ํ•˜๋‚˜์ธ R. solanacearum์€ ๋‹ค์–‘ํ•œ ์›์˜ˆ์ž‘๋ฌผ์— ์‹ฌ๊ฐํ•œ ์„ธ๊ท ์„ฑ ํ’‹๋งˆ๋ฆ„๋ณ‘์„ ์ผ์œผํ‚จ๋‹ค. R. solanacearum์˜ ์ดํŽ™ํ„ฐ ์ค‘ ํ•˜๋‚˜์ธ RipAO๋Š” ๋‹ด๋ฐฐ (Nicotiana benthamiana) ์—์„œ ์‹๋ฌผ์˜ ๋ฐฉ์–ด ์ž‘์šฉ์˜ ํ•˜๋‚˜์ธ ํ™œ์„ฑ์‚ฐ์†Œ์ข… (reactive oxygen species) ์ƒ์„ฑ์„ ์–ต์ œํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์• ๊ธฐ์žฅ๋Œ€(A. thaliana) cDNA ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์—์„œ RipAO์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋‹จ๋ฐฑ์งˆ์„ ์„ ๋ณ„ํ•˜์—ฌ ์ด ๋‹จ๋ฐฑ์งˆ๋“ค์ด RipAO์˜ ๋‹ด๋ฐฐ์˜ ํ™œ์„ฑ์‚ฐ์†Œ์ข… ์ƒ์„ฑ์„ ์–ต์ œํ•˜๋Š” ๊ฒƒ๊ณผ ์—ฐ๊ด€์„ฑ์ด ์žˆ๋Š”์ง€ ์‹คํ—˜ํ•˜์˜€๋‹ค. ํšจ๋ชจ ๋‹จ๋ฐฑ์งˆ ์žก์ข…๋ฒ•(yeast two-hybrid) ์Šคํฌ๋ฆฌ๋‹ ๊ฒฐ๊ณผ, ์„ธ๊ฐ€์ง€์˜ ๋‹จ๋ฐฑ์งˆ, exocyst complex component SEC3A (SEC3A), SNF1 related protein kinase (KIN10) ๊ทธ๋ฆฌ๊ณ  Arabidopsis thaliana homolog of yeast oxidase assembly 1 (OXA1)๋“ค์ด RipAO์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ํ›„๋ณด ๋‹จ๋ฐฑ์งˆ๋“ค๋กœ ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ํฅ๋ฏธ๋กญ๊ฒŒ๋„, ๋‹ด๋ฐฐ์—์„œ RipAO ์กด์žฌ ํ•˜์— SEC3A ๋‹จ๋ฐฑ์งˆ์˜ ์ถ•์ ์ด ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์ด ๋ฐœ๊ฒฌ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์• ๊ธฐ์žฅ๋Œ€์˜ SEC3A์˜ homolog ๋‹จ๋ฐฑ์งˆ(NbSEC3A)๋“ค์˜ ๋ฐœํ˜„์ด ์–ต์ œ๋œ ๋‹ด๋ฐฐ์—์„œ RipAO๊ฐ€ ํ™œ์„ฑ์‚ฐ์†Œ์ข…์˜ ์ƒ์„ฑ์„ ์–ต์ œํ•˜์ง€ ๋ชปํ•˜๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋“ค์„ ์ข…ํ•ฉํ•ด ๋ณผ ๋•Œ RipAO๋Š” SEC3A ๋‹จ๋ฐฑ์งˆ์„ ํƒ€๊ฒŸ์œผ๋กœ ํ•˜๋ฉฐ, SEC3A ๋‹จ๋ฐฑ์งˆ์ด RipAO๊ฐ€ ํ™œ์„ฑ์‚ฐ์†Œ์ข…์„ ์–ต์ œํ•˜๋Š”๋ฐ ํ•„์š”ํ•œ ์š”์†Œ๋กœ ๋ฐํ˜€์กŒ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์ฃผ ์‹๋ฌผ์˜ ๋ฐฉ์–ด ์ž‘์šฉ์„ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•ด ๋ง‰ ์ˆ˜์†ก ์กฐ์ง์„ ํƒ€๊ฒŸ์œผ๋กœ ํ•˜๋Š” ์ดํŽ™ํ„ฐ ๋‹จ๋ฐฑ์งˆ์„ ๊ทœ๋ช…ํ•˜์˜€๋‹ค.CONTENTS ABSTRACT i CONTENTS iii LIST OF TABLES vi LIST OF FIGURES vii LIST OF ABBREVIATIONS x INTRODUCTION 1 MATERIAL AND METHODS 5 Plant and yeast strain culture 5 Molecular cloning 5 Yeast two-hybrid system 7 Agrobacterium tumefaciens-mediated transient expression in N. benthamiana 9 Immunoprecipitation and immunoblotting 9 Virus induced gene silencing (VIGS) assay 11 Measurement of ROS production 11 Semi-quantitative RT-PCR 11 RESULTS 15 Selection of NLS-containing type III effectors 15 Cloning, expression and activity of the three selected effectors in yeast 16 Some Arabidopsis thaliana genes can activate MEL1 gene with GAL4 DNA-binding domain 20 Yeast two-hybrid screening of A. thaliana cDNA library for RipAO interactors 23 Re-transformation of the original fished-out plasmids 27 Cloning of full-length and truncated cDNA for candidate interactors of RipAO 29 Full-length and truncated candidate genes cannot activate MEL1 gene with GAL4 DNA-activation domain 30 RipAO fused with GAL4 DNA binding-domain interacts with the full-length candidate fused with GAL4 DNA-activation domain 32 SEC3A-YFP accumulates less in the presence of RipAO-FLAG in N. benthamiana 35 Co-expression and co-IP assay of RipAO with KIN10 and OXA1 37 RipAO suppresses flg22-triggered ROS production in N. benthamiana 39 Design silencing fragment to knock-down candidate interactor homolog in N. benthamiana 41 ROS measurement in N. benthamiana silenced for SEC3A homolog and confirmation of silencing efficiency by semi-quantitative RT-PCR 45 Reactive oxygen species (ROS) measurement in N. benthamiana silenced for KIN10 homolog and confirmation of silencing efficiency by semi-quantitative RT-PCR 48 DISCUSSION 52 REFERENCES 59 ABSTRACT IN KOREAN 68Maste

    A Heuristic Method for Container Loading on Considering Routing Sequence

    Get PDF
    The Three-Dimensional Bin packing problem (3BP) consists of allocating, without overlapping, a given set of three dimensional rectangular items to the minimum number of three dimensional identical finite bins. This paper presents a heuristic solution for the three dimensional container loading problem on considering routing sequence. The container loading problem on considering routing sequence is formulated as a zero-one mixed integer programming model whose objective is to minimize number of vehicle. Due to its problem complexity, I propose a heuristic algorithm based on tower loading technique.์ œ 1 ์žฅ ์„œ๋ก  = 5 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ = 5 1.2 ๊ด€๋ จ ๋ฌธํ—Œ ์—ฐ๊ตฌ = 6 1.2.1 ์ ์žฌ ๋ฌธ์ œ์— ๊ด€ํ•œ ์—ฐ๊ตฌ = 6 1.3 ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ = 8 ์ œ 2 ์žฅ ๋ชจํ˜•์˜ ์ˆ˜๋ฆฝ = 9 2.1 ๋ฌธ์ œ์˜ ์„ค์ • = 9 2.2.1 ๊ธฐ๋ณธ ๋ฌธ์ œ ์ •์˜ = 9 2.2 ์ˆ˜๋ฆฌ์  ๋ชจ๋ธ = 10 2.3 ๋ชจํ˜•์˜ ํŠน์„ฑ = 14 ์ œ 3 ์žฅ ๋ฐœ๊ฒฌ์  ํ•ด๋ฒ• ๋ฐ ์ ์šฉ = 15 3.1 ๋ฐœ๊ฒฌ์  ํ•ด๋ฒ• = 15 3.1.1 Tower์˜ ์ •์˜ = 16 3.1.2 ๋ฐœ๊ฒฌ์  ๊ธฐ๋ฒ•์˜ ๊ฐœ๊ด„์  ํ๋ฆ„ = 19 3.1.3 ๋ฐœ๊ฒฌ์  ๊ธฐ๋ฒ•์˜ ์ƒ์„ธํ•œ ํ๋ฆ„ = 20 3.2 ์˜ˆ์ œ์˜ ์ˆ˜ํ–‰ = 23 ์ œ 4 ์žฅ ๊ฒฐ๋ก  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ๋ฐฉํ–ฅ = 27 ์ฐธ๊ณ ๋ฌธํ—Œ = 2

    Origin of Satellite Ganglion Cysts with Effusion in the Flexor Hallucis Longus Tendon Sheath around the Hallux

    Get PDF
    Background: To describe the clinical and magnetic resonance imaging findings of ganglion cysts with effusion in the flexor hallucis longus tendon sheath around the hallux to evaluate their origin. Methods: Patients with recurrent or painful ganglion cysts around the hallux with effusion in the flexor hallucis longus tendon sheath who underwent surgical treatment at St. Vincent's Hospital from February 2007 to August 2016 were investigated. Surgical indication was a painful or recurrent mass caused by the cystic lesions. Those without effusion of the flexor hallucis longus tendon sheath were excluded. We assessed the clinical and magnetic resonance imaging findings. Results: Magnetic resonance imaging findings in all patients showed several ganglion cysts around the hallux and large fluid accumulations within the flexor hallucis longus tendon sheath. Regarding the location, six ganglion cysts were on the dorsomedial aspect, one on the plantar medial aspect, seven on the plantar lateral aspect, and one in the toe pulp. Ten patients showed joint effusions in both the metatarsophalangeal and interphalangeal joints, two in the metatarsophalangeal joints, and three in the interphalangeal joints. There were communication stalks with a tail shape or abutment between ganglion cysts with surrounding joint effusions. Intraoperatively, connections between ganglion cysts, the synovial cyst of the flexor hallucis longus tendon sheath, and surrounding joints were seen. Conclusions: Synovial fluid accumulation in the metatarsophalangeal or interphalangeal joint supplies the synovial cyst of the flexor hallucis longus tendon sheath and subsequently ganglion cysts in the hallux. In clinical practice, the surgeon should carefully check surrounding joints with tendon sheaths to prevent recurrence of the ganglion cysts around the hallux.ope

    Analysis of Chemical Components and Biological Activities of Roots and Leaves from Stachys sieboldii Miq.

    Get PDF
    This study analyzed flavonoid and phenol contents and fatty acid composition of Stachys sieboldii Miq. and investigated biological activities of crude extracts and fractions of S. sieboldii Miq. The flavonoid and phenol contents of the methanol (MeOH) extract were greater than those of the acetone+methylene chloride (A+M) extract. Among fractions, the flavonoid and phenol contents of the n-buthanol (n-BuOH) fraction were highest in root of S. sieboldii Miq., while the flavonoid and phenol contents of the 85% aqueous methanol (85% aq. MeOH) fraction were highest in leaves of S. sieboldii Miq. In fatty acid composition of root of S. sieboldii Miq., the percentages of linoleic acid (LA, 18:2n-6), linolenic acid (LNA, 18:3n-3) and oleic acid (OA, 18:1n-9) were 54.27%, 20.82% and 2.28%, respectively. Leaves of S. sieboldii Miq. showed that the percentages of LA, LNA and OA were 11.27%, 16.37% and 5.45%, respectively. In anticancer activity, treatments of crude extracts and fractions from S. sieboldii Miq. significantly inhibited the growth of HT-29, AGS and HT-1080 human cancer cell lines (p<0.05). Both A+M and MeOH extracts from roots and leaves showed inhibitory effects on growth by more than 50% at the concentrations of 0.5 mg/mL in AGS and HT-1080 cancer cells. Among the fractions, the 85% aq. MeOH and n-Hexane fractions exhibited a higher inhibitory effect on proliferation of three types of cancer cells. In antioxidant activity, all tested extracts and fractions of S. sieboldii Miq. dose-dependently decreased cellular reactive oxygen species (ROS) production induced by H202 in comparison with that produced by exposure to the extract-free control. The A+M extract of roots showed a higher inhibitory effect on cellular ROS producing than that of the MeOH extract at all concentrations tested. On the other hand, MeOH extract of leaves showed a higher inhibitory effect on cellular ROS producing than that of the A+M extract at all concentrations tested. Among the fractions, both BuOH fraction (0.1 mg/mL concentration) from roots and leaves showed a higher inhibitory effect on cellular ROS production. In DPPH and ABTS radical scavenging assay, the A+M extract from roots showed a greater scavenging effect than that of the MeOH extract of roots(p<0.05). Among extracts from leaves, MeOH extract showed a greater scavenging effect than that of the A+M extract (p<0.05). The n-BuOH fraction showed a stronger radical inhibitory effect than dibutyl hydroxy toluene (BHT). The A+M and MeOH extracts from S. sieboldii Miq. significantly inhibited genomic DNA oxidation (p<0.05). The 85% aq. MeOH fraction showed a higher inhibitory effect against DNA oxidation compared with control (p<0.05). In addition, the extracts and fractions from S. sieboldii Miq. increased levels of intracellular glutathione (GSH) in a dose manner. In anti-inflammatory activity, the productions of nitric oxide (NO) assay showed that the extracts and fractions significantly reduced NO production induced by lipopolysaccharide (LPS) (p<0.05). The n-BuOH fraction from roots of S. sieboldii Miq. showed the highest reduction of NO production by 75.4% and then A+M and MeOH extracts showed reduced NO production by 67.9% and 78.4%. The n-BuOH fraction from leaves of S. sieboldii Miq. showed the highest reduction of NO production by 61.4% and then A+M and MeOH extracts showed reduced NO production by 57.7% and 61.1%. respectively (p<0.05). These results suggested that 85% aq. MeOH and n-BuOH fractions from roots and leaves of S. sieboldii Miq. inhibited cellular oxidation and growth of human cancer cells, suggesting that their biological activity may be associated with the contents of flavonoids and phenols. Thus, S. sieboldii Miq. might be useful for providing valuable materials to the pharmaceutical, cosmetic nutraceutical and food industries.1. ์„œ ๋ก  4 2. ์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ• 7 2.1. ์žฌ๋ฃŒ 7 2.2. ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์™€ ์žŽ ์ถ”์ถœ ๋ฐ ๋ถ„ํš 7 2.3. ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์™€ ์žŽ์˜ ํ™œ์„ฑ ์„ฑ๋ถ„ ๋ถ„๋ฆฌ 8 2.4. ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์™€ ์žŽ์˜ ์ด ํ”Œ๋ผ๋ณด๋…ธ์ด๋“œ ํ•จ๋Ÿ‰ ์ธก์ • 10 2.5. ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์™€ ์žŽ์˜ ์ด ํŽ˜๋†€ ํ•จ๋Ÿ‰ ์ธก์ • 11 2.6. ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์™€ ์žŽ์˜ ์ง€์งˆ ๋ฐ ์ง€๋ฐฉ์‚ฐ ์ถ”์ถœ 12 2.7. Gas chromatography๋ฅผ ์ด์šฉํ•œ ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์™€ ์žŽ์˜ ์ง€๋ฐฉ์‚ฐ ๋ถ„์„ 14 2.8. ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์™€ ์žŽ ์ƒ๋ฆฌํ™œ์„ฑ ์ธก์ • 15 2.8.1. ํ•ญ์•” ์‹คํ—˜ 15 โ‘  ์„ธํฌ ๋ฐฐ์–‘ 15 โ‘ก MTT assay 16 2.8.2. ํ•ญ์‚ฐํ™” ์‹คํ—˜ 18 โ‘  ์„ธํฌ ๋ฐฐ์–‘ 18 โ‘ก ์„ธํฌ ๋‚ด ํ™œ์„ฑ์‚ฐ์†Œ์ข… (Reactive oxygen species) ์ธก์ • 19 โ‘ข 1,1-diphenyl-2-picrylhydrazly (DPPH) ๋ผ๋””์นผ ์†Œ๊ฑฐ ํ™œ์„ฑ ์ธก์ • 21 โ‘ฃ 2.2'-azino-bis(3-ethybenzthiazoline-6-sulphonic acid) diammonium salt radical cation (ABTS+) ๋ผ๋””์นผ ์†Œ๊ฑฐํ™œ์„ฑ ์ธก์ • 23 โ‘ค Genomic DNA ์ถ”์ถœ ๋ฐ DNA ์‚ฐํ™” ์ƒ์„ฑ๋ฌผ ์ธก์ • 25 โ‘ฅ ์„ธํฌ ๋‚ด Glutathione (GSH) ํ•จ๋Ÿ‰ ์ธก์ • 25 2.8.3. ํ•ญ์—ผ์ฆ ์‹คํ—˜ 25 โ‘  ์„ธํฌ ๋‚ด Nitric oxide (NO) ์ƒ์„ฑ ์ธก์ • 25 2.9. ํ†ต๊ณ„ ๋ถ„์„ 26 3. ๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 27 3.1. ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์™€ ์žŽ์˜ ์ด ํ”Œ๋ผ๋ณด๋…ธ์ด๋“œ ๋ฐ ์ด ํŽ˜๋†€ ํ•จ๋Ÿ‰ 27 3.1.1 ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์˜ ์ด ํ”Œ๋ผ๋ณด๋…ธ์ด๋“œ ๋ฐ ์ด ํŽ˜๋†€ ํ•จ๋Ÿ‰ 27 3.1.2 ์ดˆ์„์ž  ์žŽ์˜ ์ด ํ”Œ๋ผ๋ณด๋…ธ์ด๋“œ ๋ฐ ์ด ํŽ˜๋†€ ํ•จ๋Ÿ‰ 29 3.2. ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์™€ ์žŽ์˜ ์ง€๋ฐฉ์‚ฐ ์กฐ์„ฑ 31 3.2.1 ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์˜ ์ง€๋ฐฉ์‚ฐ ์กฐ์„ฑ 31 3.2.2 ์ดˆ์„์ž  ์žŽ์˜ ์ง€๋ฐฉ์‚ฐ ์กฐ์„ฑ 33 3.3. ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์™€ ์žŽ์˜ ์ถ”์ถœ๋ฌผ ๋ฐ ๋ถ„ํš๋ฌผ์˜ ์ƒ๋ฆฌํ™œ์„ฑ 35 3.3.1. ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์™€ ์žŽ ์ถ”์ถœ๋ฌผ ๋ฐ ๋ถ„ํš๋ฌผ์˜ ํ•ญ์•” ํšจ๊ณผ 35 3.3.1.1 ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ ์ถ”์ถœ๋ฌผ ๋ฐ ๋ถ„ํš๋ฌผ์˜ ํ•ญ์•” ํšจ๊ณผ 35 3.3.1.2 ์ดˆ์„์ž  ์žŽ ์ถ”์ถœ๋ฌผ ๋ฐ ๋ถ„ํš๋ฌผ์˜ ํ•ญ์•” ํšจ๊ณผ 45 3.3.2. ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์™€ ์žŽ ์ถ”์ถœ๋ฌผ ๋ฐ ๋ถ„ํš๋ฌผ์˜ ํ•ญ์‚ฐํ™” ํšจ๊ณผ 55 3.3.2.1 ์ดˆ์„ฌ์ž  ๋ฟŒ๋ฆฌ ์ถ”์ถœ๋ฌผ ๋ฐ ๋ถ„ํš๋ฌผ์˜ ํ•ญ์‚ฐํ™” ํšจ๊ณผ 55 โ‘  ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ๊ฐ€ ์„ธํฌ ๋‚ด ํ™œ์„ฑ์‚ฐ์†Œ์ข… (Reactive oxygen species) ์ƒ์„ฑ ์–ต์ œํšจ๊ณผ 55 โ‘ก ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์˜ DPPH ๋ผ๋””์นผ ์†Œ๊ฑฐํ™œ์„ฑ 58 โ‘ข ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์˜ ABTS+ ๋ผ๋””์นผ ์†Œ๊ฑฐํ™œ์„ฑ 60 โ‘ฃ ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ์˜ Genomic DNA ์‚ฐํ™” ์–ต์ œํšจ๊ณผ 62 โ‘ค ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ๊ฐ€ Glutathione (GSH) ์ƒ์„ฑ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ 64 3.3.2.2 ์ดˆ์„์ž  ์žŽ ์ถ”์ถœ๋ฌผ ๋ฐ ๋ถ„ํš๋ฌผ์˜ ํ•ญ์‚ฐํ™” ํšจ๊ณผ 67 โ‘  ์ดˆ์„์ž  ์žŽ์˜ ์„ธํฌ ๋‚ด ํ™œ์„ฑ์‚ฐ์†Œ์ข… (Reactive oxygen species) ์ƒ์„ฑ ์–ต์ œํšจ๊ณผ 67 โ‘ก ์ดˆ์„์ž  ์žŽ์˜ DPPH ๋ผ๋””์นผ ์†Œ๊ฑฐํ™œ์„ฑ 70 โ‘ข ์ดˆ์„์ž  ์žŽ์˜ ABTS+ ๋ผ๋””์นผ ์†Œ๊ฑฐํ™œ์„ฑ 72 โ‘ฃ ์ดˆ์„์ž  ์žŽ์˜ Genomic DNA ์‚ฐํ™” ์–ต์ œํšจ๊ณผ 74 โ‘ค ์ดˆ์„์ž  ์žŽ์˜ Glutathione (GSH) ์ƒ์„ฑ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ 76 3.3.3.1 ์ดˆ์„์ž  ๋ฟŒ๋ฆฌ ์ถ”์ถœ๋ฌผ ๋ฐ ๋ถ„ํš๋ฌผ์˜ ํ•ญ์—ผ์ฆ ํšจ๊ณผ 67 โ‘  ์„ธํฌ ๋‚ด Nitric oxide (NO) ์ƒ์„ฑ ์ €ํ•ดํšจ๊ณผ 67 3.3.3.2 ์ดˆ์„์ž  ์žŽ ์ถ”์ถœ๋ฌผ ๋ฐ ๋ถ„ํš๋ฌผ์˜ ํ•ญ์—ผ์ฆ ํšจ๊ณผ 67 โ‘  ์„ธํฌ ๋‚ด Nitric oxide (NO) ์ƒ์„ฑ ์ €ํ•ดํšจ๊ณผ 67 4. ์š”์•ฝ ๋ฐ ๊ฒฐ๋ก  93 ์ฐธ๊ณ ๋ฌธํ—Œ 96 ๊ฐ์‚ฌ์˜ ๊ธ€ 103Maste

    Surgical Treatment of Patellar Instability in Children and Adolescents

    Get PDF
    Patellar instability in children and adolescents is caused by abnormalities of various knee structures. Instability of the patellofemoral joint can manifest as an acute dislocation, recurrent dislocation, habitual dislocation, and congenital dislocation. Patellar instability is associated with abnormalities in the anatomical structures around the knee, and a comprehensive analysis of the cause should be undertaken. Surgery can be performed to reconstruct any abnormal musculo-skeletal alignment. Considerable progress has been made in the treatment of patellar instability in recent years, and surgical methods include lateral release, soft tissue realignment procedure, transfer of the autologous tendon, trochleaplasty, and reconstruction of the medial patellofemoral ligament.ope

    A Comparison of the Device-Related Complications of Intramedullary Lengthening Nails Using a New Classification System

    Get PDF
    The purpose of this study was to understand the pros and cons of the lengthening nails which have their own mechanical mechanism; we propose a classification for "device-related complications" arising from mechanical properties of the nail itself. From March 2010 to March 2014, 115 segments of lower limb lengthening were performed using intramedullary lengthening nails (35 ISKD, 34 PRECICE1, and 46 PRECICE2). Device-related complications were sorted into three categories according to a new classification: distraction control-related (type I), stability related (type II), and other device-related (type III); these were subdivided using Paley's concept of problems (a), obstacles (b), and sequel (c). Most common complications were distraction mechanism issues (type I) in ISKD and mechanical strength related ones (type II) in PRECICE1 and PRECICE2. Sixty percent (21/35) of ISKD had device-related problems. In PRECICE1 group, 8.8% (3/34) had device-related problems, and 8.8% (3/34) showed device-related obstacle. In PRECICE2, forty-four percent (20/46) had device-related problems. In conclusion, a new classification showed more clearly the differences of mechanical characteristics of different nails. The most essential thing of future lengthening nail development is minimizing the types I and II complications. Further study is necessary to compare the mechanical strength and stability of lengthening nails.ope

    ้Ÿ“ๅœ‹์˜ ๅˆ†้…ๅ•้กŒ: ็พๆณ, ๅ•้กŒ้ปž๊ณผ ๆ”ฟ็ญ–ๆ–นๅ‘

    No full text
    ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์†Œ๋“๋ถ„๋ฐฐ๋ฌธ์ œ์— ๋Œ€ํ•ด์„œ ์ข…๋ž˜์—๋Š” ์ ์–ด๋„ 1980๋…„๋Œ€ ์ดํ›„ ๊ฐœ์„ ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ตญ์ œ๋น„๊ต์—์„œ๋„ ๋‹ค๋ฅธ ๋‚˜๋ผ์— ๋น„ํ•ด ๊ฒฐ์ฝ” ๋‚˜์˜์ง€ ์•Š๋‹ค๋Š” ํ‰๊ฐ€๊ฐ€ ์ฃผ๋ฅ˜๋ฅผ ์ด๋ฃจ๊ณ  ์žˆ์—ˆ์œผ๋‚˜, ์ตœ๊ทผ์—๋Š” ๊ทธ์— ๋Œ€ํ•œ ๋ฐ˜๋ก ์ด ๋งŒ๋งŒ์น˜ ์•Š๊ฒŒ ์ „๊ฐœ๋˜์–ด ์žˆ๋‹ค. ๋ณธ๊ณ ์—์„œ๋Š” ใ€Ž๋„์‹œ๊ฐ€๊ณ„์—ฐ๋ณดใ€์˜ ์›์ž๋ฃŒ๋ฅผ ์ด์šฉํ•œ ์ƒˆ๋กœ์šด ์ถ”๊ณ„๋ฅผ ์‹œ๋„ํ•˜์—ฌ 1980๋…„๋Œ€์˜ ์†Œ๋“๋ถ„๋ฐฐ๊ฐ€ ์ง€๊ธˆ๊นŒ์ง€์˜ ํ†ต์„ค์ฒ˜๋Ÿผ ๊ทธ๋ ‡๊ฒŒ ๋งŽ์ด ๊ฐœ์„ ๋œ ๊ฒƒ์€ ์•„๋‹ˆ๋ผ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ผ๋ถ€์˜ ๋ฐ˜๋ก ์ฒ˜๋Ÿผ 1980๋…„๋Œ€์˜ ์†Œ๋“๋ถ„๋ฐฐ๊ฐ€ ์‹ค์ œ๋กœ ์•…ํ™”๋˜์—ˆ๋‹ค๋Š” ์ฃผ์žฅ๋„ ๊ณผ์žฅ์ผ ๊ฐ€๋Šฅ์„ฑ์ด ํฌ๋‹ค๋Š” ์ ๋„ ์ง€์ ํ•˜์˜€๋‹ค. ๋‹จ, ๊ทผ๋กœ์†Œ๋“์˜ ๋ถ„๋ฐฐ๊ฐ€ ๊ฐœ์„ ๋˜๊ณ  ์žˆ์Œ์€ ๋ถ„๋ช…ํ•˜๋‚˜ ํ† ์ง€๋‚˜ ์ฃผ์‹ ๋“ฑ์— ์˜ํ•œ ๋ถˆ๋กœ์†Œ๋“๊นŒ์ง€ ํฌํ•จํ•˜๋ฉด ๊ฒฐ๊ณผ๋Š” ํฌ๊ฒŒ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ๋‹ค. ์ด ๋ฌธ์ œ์˜ ๊ฒ€์ฆ์€ ์•„์ง ๋๋‚œ๊ฒƒ์ด ์•„๋‹ˆ๋ฉฐ, ์˜ฌ๋ฐ”๋ฅธ ๊ฒฐ๋ก ์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์•ž์œผ๋กœ ๋ณด๋‹ค ๋งŽ์€ ์ž๋ฃŒ๋“ค์ด ๋ฐœ๊ตด, ๋ถ„์„๋˜์–ด์•ผ ํ•  ๊ฒƒ์ด๋‹ค. ํ•œ๊ตญ์˜ ์ž์‚ฐ๋ถ„๋ฐฐ์— ๋Œ€ํ•ด์„œ๋Š” ์ง€๊ธˆ๊นŒ์ง€ ์ž๋ฃŒ๊ฐ€ ๋ณ„๋กœ ์—†์–ด์„œ ๋…ผ์˜ ์ž์ฒด๊ฐ€ ์–ด๋ ค์šด ์ƒํƒœ์˜€๋‹ค. ์ตœ๊ทผ ๋Œ€์šฐ๊ฒฝ์ œ์—ฐ๊ตฌ์˜ ํŒจ๋„ ์ž๋ฃŒ๋ฅผ ๋ถ„์„ํ•ด๋ณธ ๊ฒฐ๊ณผ, ํ•œ๊ตญ์˜ ๋ถ€์˜ ๋ถ„๋ฐฐ๋Š” ์ง€๊ธˆ๊นŒ์ง€ ์•Œ๋ ค์ง„ ๊ฒƒ๋ณด๋‹ค ํ›จ์”ฌ ๋” ๋ถˆํ‰๋“ฑํ•˜๋ฉฐ, ํŠนํžˆ ํ† ์ง€ ๋“ฑ ์‹ค๋ฌผ์ž์‚ฐ์˜ ๋ถˆํ‰๋“ฑ์ด ์‹ฌ๊ฐํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ•œํŽธ ํ•œ๊ตญ์˜ ๋นˆ๊ณค์€ ๋งŽ์ด ์ค„์–ด๋“  ๊ฒƒ์ด ์‚ฌ์‹ค์ด๋ฉฐ, ๋‹ค๋ฅธ ํ›„์ง„๊ตญ๊ณผ ๋น„๊ตํ•ด์„œ ๋นˆ๊ณค ์ถ•์†Œ์— ํฐ ์„ฑ๊ณผ๋ฅผ ๊ฑฐ๋‘” ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋œ๋‹ค. ๋ณธ๊ณ ์—์„œ ์ข€๋” ํ˜„์‹ค์ ์ธ ์ตœ์ €์ƒ๊ณ„๋น„๋ฅผ ๊ฐ€์ •ํ•˜์—ฌ ๋ถ„์„ํ•ด๋ณธ ๊ฒฐ๊ณผ ํ•œ๊ตญ์˜ ๋นˆ๊ณค์€ ๋ฌผ๋ก  ๋งŽ์ด ์ค„์–ด๋“ค์—ˆ์ง€๋งŒ ์•„์ง ์ƒ๋‹นํžˆ ๋‚จ์•„ ์žˆ์œผ๋ฉฐ, ๋นˆ๊ณค์˜ ํฌ๊ธฐ ์ž์ฒด(๋นˆ๊ณค ๊ฐญ)๋Š” ๊ทธ๋‹ค์ง€ ํฌ์ง€ ์•Š์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ณธ๊ณ ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๊ฒฐ๊ณผ์— ๊ธฐ์ดˆํ•ด์„œ ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ๋ถ„๋ฐฐ๋ฌธ์ œ์— ๋Œ€ํ•œ ํ‰๊ฐ€๋ฅผ ๋‚ด๋ฆฌ๊ณ  ํšจ์œจ์„ฑ๊ณผ ํ˜•ํ‰์„ฑ์˜ ์กฐํ™”๋ผ๋Š” ๊ด€์ ์—์„œ ์ •์ฑ…์˜ ๊ธฐ๋ณธ๋ฐฉํ–ฅ์„ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ์กฐ์„ธ์ •์ฑ…๊ณผ ์žฌ๋ฒŒ์ •์ฑ…์— ์ดˆ์ ์„ ๋งž์ถ”์–ด์„œ ์ •์ฑ…๋ฐฉํ–ฅ์„ ๋…ผ์˜ํ•˜์˜€๋‹ค. ๋ถ„๋ฐฐ์ •์˜์˜ ๊ด€์ ์—์„œ, ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์„ธ์ œ๋Š” ์ง์ ‘์„ธ ๋น„์ค‘์„ ๋†’์ด๊ณ , ์ข…ํ•ฉํ† ์ง€์„ธ, ์ƒ์†โ€ค์ฆ์—ฌ์„ธ ๋“ฑ ์žฌ์‚ฐ๊ด€๋ จ ์„ธ์ œ์˜ ๊ธฐ๋Šฅ์„ ๊ฐ•ํ™”ํ•˜๋ฉฐ, ๊ทผ๋กœ์ž์™€ ๋น„๊ทผ๋กœ์ž๊ฐ„ ์„ธ๋ถ€๋‹ด์˜ ํ˜•ํ‰์„ฑ์„ ์ œ๊ณ ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๊ฐœํŽธ๋˜์–ด์•ผ ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์žฌ๋ฒŒ์˜ ์†Œ์œ ๋ถ„์‚ฐ ์ž์ฒด๋Š” ์žฌ๋ฒŒ์ด ์žํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ์ œ๋ ฅ ๋ถ€์กฐ๋ฆฌ๋ฅผ ๋ง‰๊ธฐ ์œ„ํ•œ ์žฅ์น˜๋ฅผ ๊ฐ•ํ™”ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ์ƒ์†โ€ค์ฆ์—ฌ์„ธ์ œ ๋“ฑ์˜ ๊ฐ•ํ™”๋‚˜ ๊ธฐ์—…๊ฒฝ์˜์˜ ํˆฌ๋ช…์„ฑ์„ ์ œ๊ณ ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ์‹œ์žฅ์น˜๊ฐ€ ๊ฐ•ํ™”๋˜์–ด์•ผ ํ•  ๊ฒƒ์ด๋‹ค. ํŠนํžˆ ์ž์œ ์ฃผ์˜์ž๊ฐ€ ๊ฐ•์กฐํ•˜๋Š” &lsquo;์ •๋‹นํ•œ ๊ถŒ๋ฆฌ์˜ ์›์น™&rsquo;์œผ๋กœ์„œ &lsquo;๋ถ€์ •์˜์˜ ์‹œ์ •&rsquo;์˜ ์›์น™์ด ๋ณด๋‹ค ์ ๊ทน์ ์œผ๋กœ ๋ฐ˜์˜๋  ์ˆ˜ ์žˆ์–ด์•ผ ํ•˜๋ฉฐ, ์ด๋Ÿฌํ•œ ์ฃผ์žฅ ์ž์ฒด๊ฐ€ ์‹œ์žฅ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์˜นํ˜ธํ•˜๋Š” ์ง„์ •ํ•œ ์ž์œ ์ฃผ์˜ ์›์น™์— ์ž…๊ฐํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์ด ๊ฐ•์กฐ๋˜์–ด์•ผ ํ•  ๊ฒƒ์ด๋‹ค

    ้Ÿ“ๅœ‹็”ฃยทไธญๅœ‹็”ฃ ์ž”๋‚˜๋น„๊ฑธ์ƒ๋ฒ„์„ฏ์˜ ๆŠ—่…ซ็˜ๆˆๅˆ†์— ๊ด€ํ•œ ๆฏ”่ผƒ ็ก็ฉถ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธๅคงๅญธๆ ก ๅคงๅญธ้™ข :่พฒ็”Ÿ็‰ฉๅญธ็ง‘ ๅŸบ็คŽ่พฒ็”Ÿ็‰ฉๅฐˆๆ”ป,1995.Maste

    The Influence of Tournament Experience in Golf Gallery on Pleasure, Satisfaction, and Re-spectating Intention: Focus on the Experience Economy Theory

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ฒด์œก๊ต์œก๊ณผ, 2015. 2. ๊น€๊ธฐํ•œ.์Šคํฌ์ธ  ๊ฒฝ๊ธฐ์—์„œ ๊ฒฝ๊ธฐ์žฅ์„ ์ง์ ‘ ๋ฐฉ๋ฌธํ•˜๋Š” ๊ด€๋žŒ๊ฐ์€ ๊ด€๋žŒ ์Šคํฌ์ธ ์—์„œ ์•„์ฃผ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋ฉฐ, ๊ฒฝ๊ธฐ์žฅ์„ ์ฐพ์•„ ์Šคํฌ์ธ  ๊ฒฝ๊ธฐ๋ฅผ ๊ด€๋žŒํ•˜๋Š” ํ–‰์œ„๋Š” ์ผ์ข…์˜ ์†Œ๋น„ ํ–‰๋™์ด๋‹ค. ๊ด€์ค‘์ด ์Šคํฌ์ธ  ๊ฒฝ๊ธฐ๊ด€๋žŒ์„ ๊ฒฐ์ •ํ•˜๋Š”๋ฐ ์žˆ์–ด ์ง์ ‘์ ์œผ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์„ ๊ฒฝ๊ธฐ ๊ด€๋žŒ์š”์ธ์ด๋ผ๊ณ  ํ•˜๋ฉฐ, ๊ณจํ”„ ์ข…๋ชฉ์€ ์—ฌํƒ€ ํŒ€์Šคํฌ์ธ  ์ข…๋ชฉ๊ณผ๋Š” ๊ด€๋žŒ ํ˜•ํƒœ์—์„œ ํ™•์—ฐํ•œ ์ฐจ์ด๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ์ฆ‰, ๊ณจํ”„ ๊ด€๋žŒ๊ฐ(gallery)์€ ์ด๋Ÿฌํ•œ ์ „ํ†ต์ ์ธ ์Šคํฌ์ธ  ์ด๋ฒคํŠธ ๊ด€๋žŒ๊ฐ๊ณผ๋Š” ๋‹ค๋ฅธ ๋…ํŠนํ•˜๊ณ  ๊ณ ์œ ํ•œ ํŠน์„ฑ๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณจํ”„ ๋Œ€ํšŒ ๊ฐค๋Ÿฌ๋ฆฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ•˜์—ฌ ์ด๋“ค์ด ์™œ ๋Œ€ํšŒ์žฅ์„ ์ฐพ๋Š”๊ฐ€๋ฅผ ํŒŒ์•…ํ•˜๊ณ  ํŒŒ์ธ๊ณผ ๊ธธ๋ชจ์–ด(Pine & Gilmore)๊ฐ€ ์ œ์‹œํ•œ ์ฒดํ—˜ ๊ฒฝ์ œ์˜ ๊ฐœ๋…๋“ค์ด ์–ด๋–ป๊ฒŒ ๊ณจํ”„ ๊ฐค๋Ÿฌ๋ฆฌ๋“ค์—๊ฒŒ ์ ์šฉ๋˜๊ณ  ์žˆ๋Š”๊ฐ€๋ฅผ ๋ถ„์„ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ณจํ”„๋Œ€ํšŒ ๊ฐค๋Ÿฌ๋ฆฌ๋“ค์˜ ๋Œ€ํšŒ ์ฒดํ—˜์š”์ธ์„ ๊ทœ๋ช…ํ•˜์—ฌ, ์ฆ๊ฐ€ํ•˜๋Š” ๊ณจํ”„ ์ธ๊ตฌ์™€ ๊ณจํ”„ ํŒฌ๋“ค์˜ ๋ณด๋‹ค ๋งŽ์€ ๋Œ€ํšŒ ๊ด€๋žŒ์„ ์œ ์น˜ ํ•  ์ˆ˜ ์žˆ๋Š” ํ† ๋„ˆ๋จผํŠธ ๋งˆ์ผ€ํŒ… ํ™œ๋™์— ๋„์›€์„ ์ฃผ๊ณ ์ž ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ๋ชฉ์ ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Pine & Gilmore์˜ ์ฒดํ—˜๊ฒฝ์ œ์ด๋ก ์— ๊ทผ๊ฑฐํ•œ 4๊ฐ€์ง€ ์ฒดํ—˜์š”์ธ์ธ ์—”ํ„ฐํ…Œ์ธ๋จผํŠธ ์ฒดํ—˜, ๊ต์œก ์ฒดํ—˜, ํ˜„์‹ค๋„ํ”ผ ์ฒดํ—˜, ๋ฏธ์  ์ฒดํ—˜์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ณจํ”„๋Œ€ํšŒ ๊ด€๋žŒ๊ฐ(gallery)์˜ ํŠน์„ฑ์— ๋งž๊ฒŒ ๋Œ€ํšŒ ๊ด€๋žŒ ์ฒดํ—˜์„ ์—”ํ„ฐํ…Œ์ธ๋จผํŠธ ์ฒดํ—˜, ๊ต์œก ์ฒดํ—˜, ํ˜„์‹ค๋„ํ”ผ ์ฒดํ—˜, ๋ฏธ์  ์ฒดํ—˜, ํŽธ์˜์„ฑ ์ฒดํ—˜์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ์„ ํ–‰์—ฐ๊ตฌ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ตฌ์„ฑ๋œ 5๊ฐ€์ง€ ๊ณจํ”„๋Œ€ํšŒ ์ฒดํ—˜์š”์ธ์ด ๊ฐ๊ฐ ์ฆ๊ฑฐ์›€๊ณผ ๋งŒ์กฑ๋„, ์žฌ๊ด€๋žŒ์˜๋„๋ผ๋Š” ๋ณ€์ธ์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ ์ค„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋Œ€์ƒ์€ KLPGAํˆฌ์–ด ๋งคํŠธ๋ผ์ดํ”„ยทํ•œ๊ตญ๊ฒฝ์ œ ์ œ36ํšŒ KLPGA ์ฑ”ํ”ผ์–ธ์‹ญ ๋Œ€ํšŒ ๊ด€๋žŒ์— ์ฐธ๊ฐ€ํ•œ ๊ฐค๋Ÿฌ๋ฆฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ํ˜„์žฅ์—์„œ ์„ค๋ฌธ์„ ์‹ค์‹œํ•˜์—ฌ ์ด 535๋ช…์˜ ์ž๋ฃŒ๋ฅผ ํ™•๋ณดํ•˜์˜€๋‹ค. ์ด๋“ค ๊ฐ€์šด๋ฐ ๋ถˆ์„ฑ์‹คํ•œ ์‘๋‹ต์„ ๋ณด์ธ ์„ค๋ฌธ์ง€๋ฅผ ์ œ์™ธํ•œ 493๊ฐœ์˜ ์ž๋ฃŒ๋ฅผ ๋ถ„์„์— ํ™œ์šฉํ•˜์˜€๋‹ค. ์ž๋ฃŒ ๋ถ„์„์€ SPSS 18.0๊ณผ AMOS 18.0 ํ†ต๊ณ„ ๋ถ„์„ ํ”„๋กœ๊ทธ๋žจ์„ ์ด์šฉํ•˜์—ฌ, ํ™•์ธ์  ์š”์ธ๋ถ„์„๊ณผ ๊ตฌ์กฐ๋ฐฉ์ •์‹ ๋ชจํ˜• ๊ฒ€์ฆ์„ ํ†ตํ•ด ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฐ€์„ค์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ, ๊ณจํ”„๋Œ€ํšŒ ๊ฐค๋Ÿฌ๋ฆฌ๋“ค์˜ ์ฒดํ—˜์š”์ธ ์ค‘์—์„œ ๊ต์œก ์ฒดํ—˜์„ ์ œ์™ธํ•œ ์—”ํ„ฐํ…Œ์ธ๋จผํŠธ ์ฒดํ—˜, ํ˜„์‹ค๋„ํ”ผ ์ฒดํ—˜, ๋ฏธ์  ์ฒดํ—˜ ๊ทธ๋ฆฌ๊ณ  ํŽธ์˜์„ฑ ์ฒดํ—˜์ด ๊ฐค๋Ÿฌ๋ฆฌ๋“ค์˜ ์ฆ๊ฑฐ์›€์— ๊ฐ๊ฐ ์ •(+)์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด์™€ ํ•จ๊ป˜ ๊ด€๋žŒ๊ฐ๋“ค์˜ ์ฆ๊ฑฐ์›€์€ ๋งŒ์กฑ๋„์— ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ๋งŒ์กฑ๋„ ์—ญ์‹œ ์žฌ๊ด€๋žŒ์˜๋„์— ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜๋ฏธํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ•˜์ง€๋งŒ ๊ต์œก ์ฒดํ—˜์€ ์ฆ๊ฑฐ์›€์— ๊ทธ๋ฆฌ๊ณ  ์ฆ๊ฑฐ์›€์€ ์žฌ๊ด€๋žŒ์˜๋„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.โ… . ์„œ๋ก  1. ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ 2. ์—ฐ๊ตฌ์˜ ๋ชฉ์  โ…ก. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 1. ๊ด€๋žŒ์š”์ธ 1) ๊ด€๋žŒ์š”์ธ์˜ ๊ฐœ๋… 2) ์ฃผ์š” ์ข…๋ชฉ๋ณ„ ๊ด€๋žŒ์š”์ธ์— ๋Œ€ํ•œ ์„ ํ–‰์—ฐ๊ตฌ 2. ๊ณจํ”„๋Œ€ํšŒ ๊ด€๋žŒ 1) ๊ณจํ”„ ๊ด€๋žŒ์˜ ํŠน์„ฑ 2) ๊ณจํ”„๋Œ€ํšŒ ๊ด€๋žŒ์š”์ธ 3. ์ฒดํ—˜๊ฒฝ์ œ์ด๋ก ๊ณผ ๊ณจํ”„๋Œ€ํšŒ ๊ฐค๋Ÿฌ๋ฆฌ ์ฐธ์—ฌ 1) Pine & Gilmore์˜ ์ฒดํ—˜๊ฒฝ์ œ์ด๋ก  2) ๊ณจํ”„๋Œ€ํšŒ ์ฒดํ—˜์š”์ธ 3) ์ฒดํ—˜์š”์ธ๊ณผ ์ฆ๊ฑฐ์›€, ๋งŒ์กฑ๋„, ์žฌ๊ด€๋žŒ์˜๋„์˜ ๊ด€๊ณ„ โ…ข. ์—ฐ๊ตฌ๋ชจํ˜• ๋ฐ ๊ฐ€์„ค 1. ์—ฐ๊ตฌ๋ชจํ˜• 44 2. ์—ฐ๊ตฌ๊ฐ€์„ค 45 โ…ฃ. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 1. ์—ฐ๊ตฌ๋Œ€์ƒ ๋ฐ ์ ˆ์ฐจ 2. ์ธก์ •๋„๊ตฌ 1) ์—”ํ„ฐํ…Œ์ธ๋จผํŠธ ์ฒดํ—˜ 2) ๊ต์œก ์ฒดํ—˜ 3) ํ˜„์‹ค๋„ํ”ผ์  ์ฒดํ—˜ 4) ๋ฏธ์  ์ฒดํ—˜ 5) ํŽธ์˜์„ฑ ์ฒดํ—˜ 6) ์ฆ๊ฑฐ์›€ 7) ๋งŒ์กฑ๋„ 8) ์žฌ๊ด€๋žŒ์˜๋„ 9) ์ธ๊ตฌํ†ต๊ณ„ํ•™์  ๋ณ€์ธ 10) ๊ณจํ”„ ๊ด€๋ จ ๋ณ€์ธ 3. ์ž๋ฃŒ์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ• โ…ค. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 1. ์˜ˆ๋น„๋ถ„์„ 1) ๊ธฐ์ˆ ํ†ต๊ณ„ ๋ถ„์„ 2) ํ™•์ธ์  ์š”์ธ ๋ถ„์„ 3) ๋‹ค์ค‘๊ณต์„ ์„ฑ ๊ฒ€์ฆ 4) ์‹ ๋ขฐ๋„ ๋ฐ ํƒ€๋‹น๋„ ๊ฒ€์ฆ 2. ๊ตฌ์กฐ๋ฐฉ์ •์‹ ๋ชจ๋ธ ๊ฒ€์ฆ 1) ๊ตฌ์กฐ๋ฐฉ์ •์‹ ๋ชจ๋ธ ์ ํ•ฉ๋„ ๊ฒ€์ฆ 2) ์—ฐ๊ตฌ๊ฐ€์„ค์˜ ๊ฒ€์ฆ โ…ฅ. ๋…ผ์˜ ๋ฐ ๊ฒฐ๋ก  1. ๊ฒฐ๊ณผ์ •๋ฆฌ 2. ์‹œ์‚ฌ์  3. ์ œ์–ธ 4. ๊ฒฐ๋ก  ์ฐธ๊ณ ๋ฌธํ—Œ AbstractMaste
    • โ€ฆ
    corecore