414 research outputs found
์์ด ๊ฒฐ๊ณผ๊ตฌ๋ฌธ ํ์ต์ ๋ฏธ์น๋ ๋ชจ๊ตญ์ด์ ์ํฅ: ํ๊ตญ์ธ ํ์ต์ ์ค๊ฐ์ธ์ด์ ํต์ฌ ๋ฐ ์๋ฏธ ๊ตฌ์กฐ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์ธ๊ตญ์ด๊ต์ก๊ณผ ์์ด์ ๊ณต, 2016. 8. ์ํ๊ถ.The present study explores the syntactic and semantic structures of the resultative construction, with special reference to English and Korean. It also investigates native Korean-speaking English learners comprehension and production of English resultative constructions (RC, hereafter).
Resultative constructions show considerable variations across languages (Eckardt, 2003Legendre, 1997Nakazawa, 2008Napoli, 1992). English and Korean provide a case in point. English resultatives have been analyzed as complements denoting telic events (Goldberg, 1995Kearns, 2007). The present study shows that one of the most representative resultative phrases in Korean, AP-key phrase, is best analyzed as an adjunct that can denote atelic sense.
Two experimental studies were undertaken to investigate Korean students comprehension and production of English resultative constructions. Study I (Comprehension Test) comprised an acceptability judgment task (AJT) and an elicited choice task (ECT), in which 99 Korean students and 17 native English speakers (NSs) participated. Study II (Production Test) was an elicited writing task (EWT), in which 97 Korean students participated.
The results of the AJT showed that the Korean students comprehension of the target construction was significantly lower than that of the NSs. In contrast to the NS group, both high and low proficiency Korean learner groups failed to accept the grammatical RCs and failed to reject the syntactically and semantically ungrammatical RCs.
The ECT results showed an asymmetry in preferences for English RCs between the Korean learner groups and the NS control group. The NSs showed significantly higher preferences for English RCs than the two Korean learner groups. Given a choice, the learners preferred adjunct expressions over RCs. This result was expected based on the assumption that the L1 Korean resultative construction, which is an adjunct, would influence the learners L2 behavior.
In the EWT, the Korean participants produced non-target-like sentences, using adjunct-type resultative phrases. This error also seems to result from L1 influence on the learning of L2 RCs, which has been observed in previous acquisition studies (Slabakova, 2002Whong-Barr, 2005).
In a nutshell, resultative constructions in English and Korean differ syntactically and semantically, and the Korean students comprehension and production of English resultative constructions were heavily influenced by their L1. Hence, due consideration needs to be given to developing systematic and efficient ways to help Korean students learn English RCs.CHAPTER 1. INTRODUCTION 1
1.1. The Motivation and Purpose of the Study 1
1.2. The Scope of the Investigation 5
1.3. Research Questions and Hypothesis 5
1.4. Organization of the Thesis 8
CHAPTER 2. THEORETICAL BACKGROUND 9
2.1. Resultative Constructions and Language Variation 10
2.2. Syntactic Discussion: Complement versus Adjunct 15
2.2.1. English Resultatives as Complements 15
2.2.2. Korean Resultatives as Adjuncts 20
2.3. Semantic Discussion: Telicity 30
2.3.1. Semantic Restrictions on English Resultatives and Korean AP-key Constructions 30
2.3.2. Atelicity of Korean AP-key Phrase 33
2.3.3. Modifier Survey 37
2.3.4. Syntax-Semantics Interface 39
2.4. Previous Acquisition Studies 42
CHAPTER 3. METHODS 53
3.1. A Pilot Study 53
3.1.1. Participants 53
3.1.2. Instrument and Procedures 54
3.1.3. Results 55
3.2. Study I (Comprehension Test) 59
3.2.1. Participants 59
3.2.2 Instruments and Procedures 63
3.3. Study II (Production Test) 74
3.3.1. Participants 74
3.3.2. Instruments and Procedures 76
3.3.3 Coding and Analysis 78
CHAPTER 4. RESULTS 79
4.1. Study I (Comprehension Test) 79
4.1.1. Comprehension of the English Resultative Construction across Groups 79
4.1.2. Preference for English Resultative Constructions across Groups 90
4.2. Study II (Production Test) 93
4.2.1 Korean Learners Use of the Target Structure 93
4.2.2 Korean Learners Error Types 95
4.2.3 Verb-Specific Analysis 99
CHAPTER 5. DISCUSSION 103
5.1 L1 Influence on Korean Learners Comprehension of English Resultative Constructions 104
5.1.1 L1 Linguistic Properties and Learners Interpretation of English RCs 104
5.1.2 Rethinking the Test Items: Pseudo-Resultatives 109
5.2 L1 Influence on Korean Learners Production of English Resultative Constructions 112
5.2.1 L1 Influence on the Use of Adjuncts 112
5.2.2 L1 Influence on the Use of Other Constructions 115
5.2.3 The Scope of the Korean Resulative Construction 120
5.2.4 Alternative Views on the Verb-Specific Analysis 122
5.3 The L1 Influence Revisited: Data from Filler Items and Heritage Speakers 126
5.3.1 Data from Filler Items: Learning Potential 126
5.3.2 Data from Heritage Speakers: Problems at the Syntax-Semantics Interface 130
5.4. Pedagogical Considerations 136
5.4.1 Korean Students Experience of Learning English Resultative Constructions and Implications 136
5.4.2 Necessity of Teaching English Resultative Constructions 141
CHAPTER 6. CONCLUSION 145
6.1. Major Findings and Pedagogical Implications 145
6.2. Limitations of the Study and Suggestions for Future Research 150
APPENDICES 169
๊ตญ๋ฌธ ์ด๋ก 202Docto
์น์ํ์ค์์ ์ฝ๋ฆฌ๋ง๊น์ง โ ๋ฉ์์ฝ ์ฌํ(4)
1์ 10์ผ ์ค์ํ์นด์์ ์ผ๊ฐ ๋ฒ์ค๋ฅผ ํ๊ณ ์ฐํฌ๋ฆฌ์คํ ๋ฐ ๋ฐ ๋ผ์ค ์นด์ฌ์ค์ ๋์ฐฉํ๋ค. ์ฝ์นญ ์ฐํฌ๋ฆฌ์คํ ๋ฐ์ด๋ผ๊ณ ๋ถ๋ฅด๋ ์ด๊ณณ์ ํด๋ฐ 2,120๋ฏธํฐ์ ์์นํด ์์ด์ ๊ณ ์ ๊ธฐํ๊ฐ ํผ๋ถ์ ์ ์ ํ๊ฒ ์ ๋ฟ๋ ๊ณณ์ด๋ค. ์ฃผ์๊ฐ ๋์ ์ฐ๋ค๋ก ๋๋ฌ์ธ์ฌ ์๋ ์์ ๋์์ด์ง๋ง ๊ทธ ์ญ์ฌ๋ ๊น๋ค. ์ด๋ฏธ ์๋ฏผ ์๋ ์ด๊ธฐ์ธ 1528๋
์คํ์ธ ์ธ์ ์ด์ฃผ๊ฐ ์์๋์ด ์๋ฏผ ์๋ํ์ ์๊ฐ์ง๊ฐ ์ ๋น๋๋ค. 1893๋
ํญ์คํ๋ผ์ฟ ํฐ์๋ ์ค๋ก ์ด์ ํ๊ธฐ๊น์ง ์ด๊ณณ์ ์น์ํ์ค ์ฃผ์ ์ฃผ๋์๋ค. ๋ฌผ๋ก ์ง๊ธ๋ ์๋ฆ๋ค์ด ์ฑ๋น์ด๋ ์์น๊ฐ ์๋ด ๊ณณ๊ณณ์ ๋จ์ ์๋ค. ์ฃผ๋ณ์๋ ์ ์ํ์ ๊ทธ๋๋ก ์์ํ๋ ์์ฃผ๋ฏผ ๋ง์์ด ๋ง๊ธฐ์ ์ฐํฌ๋ฆฌ์คํ ๋ฐ์ ๊ทธ๋ค์ด ๊ต์ญํ๋ ์ฃผ ๋ฌด๋์ด๊ธฐ๋ ํ๋ค.
์ด ๋์๋ ์คํ์ธ ํ์๋ค๊ณผ ์ง์ญ ์์ฃผ๋ฏผ๋ค ์ฌ์ด์ ๊ณ ๋๊ณ ์ค๋ ๊ฐ๋ฑ์ ์ญ์ฌ๋ฅผ ์ง๋๊ณ ์๋ค. 1994๋
์ฌํํฐ์คํ ๋ฌด์ฅ๋ด๊ธฐ๊ฐ ์์๋ ๊ณณ๋ ๋ฐ๋ก ์ฌ๊ธฐ๋ค. ์๋ด์๋ ์์ง๋ ์ ๋ถ๊ตฐ์ด ์ฃผ๋ํ๊ณ ์๋ค. ์ฌํํฐ์คํ ๋ฏผ์กฑํด๋ฐฉ
๊ตฐ์ ๋ฉ์์ฝ์ ์์ ๋๋ฏผ ๋ฌด์ฅ๋จ์ฒด์ด์ง๋ง ์ ์ธ๊ณ์ ์ผ๋ก ์๋ ค์ง ์ ๋ช
ํ ๊ฒ๋ฆด๋ผ์ด๊ธฐ๋ ํ๋ค. ๋ฏผ์กฑํด๋ฐฉ๊ตฐ์ด๋ ๊ทธ๋ด ๋ฏํ ์ด๋ฆ์ ๊ฐ์ง๊ณ ์๋ ์ด๋ค์ ๊ฒ์ ๋ณต๋ฉด์ ์ฐ๊ณ ์ด๊ณผ ์นผ ๋์ ์ธํฐ๋ท์ผ๋ก ์๊ธฐ๋ค ์ฃผ์ฅ์ ํผ์น๋ค. ์
์ธ๊ณ ์ธ๋ก ๋ค์ ์ฌํํฐ์คํ ๋ฏผ์กฑํด๋ฐฉ๊ตฐ์ ๋ํด ๊ธ์ ์ ์ด๋ค
MERGE: A Multinational, Multicenter Observational Registry for Myeloproliferative Neoplasms in Asia, including Middle East, Turkey, and Algeria
Philadelphia chromosome-negative (Ph-) myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal disorders of the bone marrow, and are associated with a high disease burden, reduced quality of life (QOL), and shortened survival. This multinational, multicenter, non-interventional registry "MERGE" was initiated with an objective to collect data on the epidemiological indices of classical Ph-MPNs, existing treatment patterns, and impact of MPNs on health-related QOL in various countries/regions in Asia, including the Middle East, Turkey, and Algeria. Of the 884 eligible patients with MPNs, 169 had myelofibrosis (MF), 301 had polycythemia vera (PV), 373 had essential thrombocythemia (ET), and 41 had unclassified MPNs. The median age was 58 years (range, 47-66 years), and 50% of patients were males. The prevalence and incidence of MPNs were estimated to be 57-81 and 12-15 per 100 000 hospital patients per year over the last 4 years, respectively, in these countries. Total symptom score (mean [standard deviation; SD]) at baseline was highest in patients with MF (23.5 [17.47]) compared with patients with ET (14.6 [14.26]) and PV (16.6 [14.84]). Patients with ET had a lower mean (SD) number of inpatient visits (0.9 [0.77] days), and patients with MF had more outpatient visits (5.2 [3.17] days) on an average, compared with the entire MPN group. The study showed that patients with MPNs have a severe disease burden and reduced QOL. A discordance between physician and patient perception of symptom assessment was observed in this study (International clinical trials registry ID: CTRI/2014/05/004598).ope
A Study on the Hand-Geometry's Feature Extraction Algorithm
Biometrics is getting more and more attention in recent years for security and other purpose. So far, only fingerprint has seen limited success for on-line security check, since other biometrics verification and identification systems require more complicated and expensive acquisition interfaces and recognition processes.
Hand-Geometry has been used for biometric verification and identification because of its acquisition convenience and good verification and identification performance. Therefore, this paper propose Hand-Geometry recognition system based on geometrical of hand. From anatomical point of view, human hand can be characterized by its length, width, thickness, geometrical composition, shapes of the palm, and shape and geometry of the fingers. Unlike palmprint verification Hand-Geometry does not involve extraction of detailed features of the hand(for example, wrinkles on the skin).
Whole system is consisted of image acquisition part, processing part, actuator part. Image acquisition part is consisted of image capture board and CCD camera that is image acquisition system. Processing part extracts feature points in hand image that inputted from CCD camera using GAs that imitates nature evolution and has excellent performance in search algorithm. And after extract feature points, image of inputted color scale changes to gray scale, and extracts characteristic data. Finally, feature data that is gotten from processing part is transmitted by printer port and confirmed result of Hand-Geometry recognition through actuator part. This paper proposes Hand-Geometry recognition system having with function such as upside. This system presents verification results based on hand measurements of 100 data about 20 individuals captured over real time. The recognition process has been tested on a size of 320 ร 240 image, and result of the recognition process have hit rate of 94๏ผ
and FAR of 0.021.Abstract
์ 1 ์ฅ ์ ๋ก 1
์ 2 ์ฅ Hand-Geometry 3
์ 3 ์ฅ ์์ ํ๋ ์์คํ
6
3.1 ์์ ํ๋ ์์คํ
์ ๊ตฌ์ฑ 6
3.2 ์ด๋ฏธ์ง ์บก์ณ ๋ณด๋ 7
3.3 Hand-Geometry์ ์์ ํ๋ 9
3.4 Hand-Geometry์ธ์์ ์ ๋ฐ์ ์ธ ์ฒ๋ฆฌ ๊ณผ์ 10
์ 4 ์ฅ GAs๋ฅผ ์ด์ฉํ ํน์ง ๋ฐ์ดํฐ ์ถ์ถ 12
4.1 Hand-Geometry์ ํน์ง ๋ฐ์ดํฐ 13
4.2 GAs๋ฅผ ์ด์ฉํ ํน์ง์ ์ถ์ถ 19
์ 5 ์ฅ Hand-Geometry ํน์ง ๋ฐ์ดํฐ ์ธ์ ์๊ณ ๋ฆฌ์ฆ 32
5.1 Hand-Geometry์ ํน์ง ๋ฐ์ดํฐ ์ธ์ 32
5.2 Hand-Geometry์ ํน์ง ๋ฐ์ดํฐ์ ์ธ์ ์คํ 35
์ 6 ์ฅ PC ๊ธฐ๋ฐ Hand-Geometry์ธ์ ์์คํ
๊ตฌํ ๋ฐ ์คํ 36
6.1 Hand-Geometry์ธ์ ์์คํ
36
6.2 Hand-Geometry์ธ์ ์์คํ
์ ์คํ ๋ฐ ๊ฒฐ๊ณผ 40
์ 7 ์ฅ ๊ฒฐ ๋ก 46
์ฐธ ๊ณ ๋ฌธ ํ 47
๋ถ ๋ก 4
๋ฒ ๋ผํฌ๋ฃจ์ค์์ ์ค์ํ์นด๊น์ง โ ๋ฉ์์ฝ ์ฌํ(3)
๋์์์ผ๋ก ํฅํ๊ธฐ ์ ํ ๋ผํ์์
1์ 7์ผ ์์์ผ: ํ ๋ผํ ์๋ด ๋ต์ฌโ๋ฒ ๋ผํฌ๋ฃจ์ค๋ก ์ด๋โ๋ฒ ๋ผํฌ๋ฃจ์ค ์ง์ญ ๋ฐ๋ฌผ๊ดโ์์นผ
๋กโ์ํฐํ๋ก ํธ
ํ ๋ผํ(Jalapa ๋๋ Xalapa)๋ ๋ฉ์์ฝ์ ๋๋ถ, ๋์์์ ๋ง๋ฟ์ ๋ฒ ๋ผ
ํฌ๋ฃจ์ค ์ฃผ์ ์ฃผ๋๋ค. ๋ฉ์์ฝ์ํฐ์์ ๋ฒ ๋ผํฌ๋ฃจ์ค๊น์ง ํ๊ฑธ์์ ๋ฌ๋ฆฌ๊ธฐ์
๋๋ฌด๋ ๋จผ ๊ฑฐ๋ฆฌ. ์ฐ๋ฆฌ๋ ์ ์ ํ ๋ผํ์ ๋ค๋ ค ํ๋ฃจ ์ ๋ ํด์์ ์๊ฐ์ ๊ฐ
์ก๋ค. ํด๋ฐ ์ฝ 1,400๋ฏธํฐ์ ์์นํ ๋์๋ผ ๊ธฐํ๊ฐ ์ ์ ํ ํธ์ด์์ง๋ง, ํฐ
๋ฏธ๋์ ๋์ฐฉํ์ ๋ ๊ทธ ๋์ ๋๋ผ์ง ๋ชปํ๋ ์ต๊ธฐ๋ฅผ ์๋ฉ ๋๋ ์ ์์๋ค.
์ ์ ๋ฐ๋ท๊ฐ ๊ทผ์ฒ๋ก ์๋ค๋ ๊ฒ์ด ์ค๊ฐ๋๊ธฐ ์์ํ๋ค.
ํ ๋ผํ๋ ์๊ฐ, ์์ ๊ฐ, ๋ํ์, ์์
๊ฐ์ ์ง๋จ์ง๋ก ๋ฌ์ฌ๋๋ค. ์ด๋ฌํ
๋ค์ฑ๋ก์ด ๋ฌธํ์ ๋งค๋ ฅ ๋๋ฌธ์ ๋ฒ ๋ผํฌ๋ฃจ์ค์ ์ํ
๋ค๋ผ๊ณ ๋ถ๋ฆฌ๊ธฐ๋ ํ
๋ค. ๋ํ๋์๋ต๊ฒ ์ ์์ ์๋์ง๊ฐ ์์ผ๋ฉฐ, ๋ถ์ฃผํ ํ๋ ๋์๋ค. ์ฐ๋ฆฌ๊ฐ
๋ค๋ ์ฌ๋ฌ ์ง์ญ ๊ฐ์ด๋ฐ ๊ต๋ณต ์
์ ํ์๋ค์ ๊ฐ์ฅ ๋ง์ด ๋ณธ ๊ณณ์ด๊ธฐ๋ ํ๋ค.
์ด ์ง์ญ์ ์ ๋ฌ๋ฆฌ ์คใ๊ณ ๋ฑํ๊ต๊ฐ ๋ง์์ง ์์นผ๋ก์์๋ง ์ฌ๋ฌ ์ข
๋ฅ์ ๊ต๋ณต
์ ๊ด์ฐฐํ ์ ์์๋ค. ์ฐ๋ฆฌ๋๋ผ์ ๋ฌ๋ฆฌ ๊ต๋ณต์ ์
๊ณ ๋ค๋๋ ์ด๋ฑํ์๋
๋์ ๋์๋ค
๋์ฌ๊ณตํ์ ์ผ๋ก ์ค๊ณ๋ ์ฌ์กฐํฉ ํจ๋ชจ๋ฅผ ์ด์ฉํ ๋ชฉ์ง๊ณ ๋ฐ์ด์ค๋งค์ค๋ก๋ถํฐ 2,3-butanediol ์์ฐ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ๋์๋ช
๊ณตํ๋ถ, 2014. 2. ์์งํธ.2,3-Butanediol (2,3-BD) is a platform chemical with wide industrial applications. Most microbial fermentations for 2,3-BD production have been focused on pathogenic bacteria, which makes large-scale fermentation difficult in terms of safety and industrialization.
Since Saccharomyces cerevisiae, a popular GRAS (Generally Recognized As Safe) microorganism, is known to produce a trace amount of 2,3-BD naturally, the bakers yeast was metabolically engineered for efficient production of 2,3-BD by introducing the 2,3-BD metabolic pathways and by modulating the central carbon metabolism. A fed-batch fermentation strategy was optimized in order to enhance a final 2,3-BD concentration. To intensify the 2,3-BD biosynthetic pathway, the alsS gene encoding ฮฑ-acetolactate synthase and the alsD gene encoding ฮฑ-acetolactate decarboxylase both from Bacillus subtilis and the endogenous BDH1 gene coding for 2,3-BD dehydrogenase were overexpressed in the wild-type S. cerevisiae (D452-2). The resulting strain of S. cerevisiae BD0 showed approximately a 10-fold increase in 2,3-BD production compared to the wild strain, but still produced unfavorable ethanol as a major metabolite.
To increase 2,3-BD production through eliminating ethanol production, a pyruvate decarboxylase (Pdc)-deficient mutant (SOS4) was used as a host for 2,3-BD production. The SOS4 strain grew in a glucose medium and accumulated pyruvate from glucose, a key intermediate for 2,3-BD, without ethanol production. When the alsS and alsD genes from B. subtilis and the endogenous BDH1 gene were overexpressed in the SOS4, the resulting strain (BD4) not only produced 2,3-BD with a high yield of 0.34 g 2,3-BD/g glucose, but also consumed glucose faster than the parental strain. In a fed-batch fermentation under the optimum aeration condition, 2,3-BD concentration increased up to 96.2 g/L from glucose.
The use of xylose that is abundant in lignocellulosic hydrolyzate would make the production of 2,3-BD more sustainable and economical. However, S. cerevisiae cannot ferment xylose as a sole carbon source. For xylose utilization, the XYL1, XYL2, and XYL3 genes coding for xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulokinase (XK) derived from Scheffersomyces stipitis were introduced into the SOS4 strain. The resulting strain (SOS4X) accumulated pyruvate by using xylose without ethanol production. Additionally, the alsS and alsD genes from B. subtilis and the endogenous BDH1 gene were overexpressed in the SOS4X for production of 2,3-BD from xylose. As a result, the resulting strain (BD4X) produced 20.7 g/L 2,3-BD with a yield of 0.27 g 2,3-BD/g xylose, showing that (R, R)-2,3-BD was dominantly produced. The titer of 2,3-BD from xylose increased up to 43.6 g/L in a fed-batch fermentation. These results suggest that S. cerevisiae might be a promising host for producing 2,3-BD from lignocellulosic biomass for industrial applications.Chapter 1
Literature review:
Characteristics and microbial production of 2,3-butandiol (2,3-BD) 1
1.1. 2,3-Butanediol (2,3-BD) 2
1.2. Biosynthesis of 2,3-BD in bacteria 5
1.3. Biosynthesis of 2,3-BD in Saccharomyces cerevisiae 6
1.4. Pyruvate decarboxylase-deficient S. cerevisiae 8
1.5. Objectives of the dissertation 11
Chapter 2
Production of 2,3-butanediol (2,3-BD) through complementing the 2,3-BD biosynthetic pathway of Saccharomyces cerevisiae 19
2.1. Summary 20
2.2. Introduction 21
2.3. Materials and Methods 23
2.4. Results 26
2.4.1. 2,3-BD tolerance test of S. cerevisiae 26
2.4.2. Construction of the efficient 2,3-BD biosynthesis pathway of S. cerevisiae 27
2.5. Discussion 28
Chapter 3
Production of 2,3-butanediol (2,3-BD) by pyruvate decarboxylase-deficient Saccharomyces cerevisiae 34
3.1. Summary 35
3.2. Introduction 36
3.3. Materials and Methods 39
3.4. Results 43
3.4.1. Confirmation of the evolved Pdc-deficient S. cerevisiae (SOS4) 43
3.4.2. Production of 2,3-BD by the SOS4 strain with the 2,3-BD biosynthetic pathway (BD4) 44
3.4.3. Effect of oxygen supply on 2,3-BD production by the BD4 strain 46
3.4.4. Fed-batch fermentations and cell-recycling fermentation by the BD4 strain 47
3.5. Discussion 49
Chapter 4
Production of 2,3-butanediol (2,3-BD) from xylose by pyruvate decarboxylase-deficient Saccharomyces cerevisiae 70
4.1. Summary 71
4.2. Introduction 73
4.3. Materials and Methods 76
4.4. Results 80
4.4.1. Construction of a xylose-fermenting S. cerevisiae
accumulating pyruvate (SOS4X) 80
4.4.2. 2,3-BD production from xylose by the SOS4X strain with the 2,3-BD biosynthetic pathway (BD4X) 81
4.4.3. Characterization of stereoisomer of 2,3-BD produced from sugars by the BD4X strain 82
4.4.4. Enhanced 2,3-BD production by the BD4X strain under fed-batch fermentation conditions 83
4.5. Discussion 85
Chapter 5
Conclusions 103
References 107
๊ตญ๋ฌธ ์ด๋ก 122
Appendix
A. Deletion of the PDC1 and PDC5 genes and laboratory evolution for construction of the SOS4 strain 125
B. List of primers used in this study 126
C. Production of 2,3-BD by the SOS4 strain harboring genes involved in 2,3-BD biosynthetic pathway 128Docto
์์ ๋น์ ํ ํฌ๋ฌผ ํธ๋ฏธ๋ถ ๋ฐฉ์ ์์ ์ ์น ์ด๋ก ๊ณผ ๊ทธ ์์ฉ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์๋ฆฌ๊ณผํ๋ถ, 2013. 8. ์ด๊ธฐ์.์ด ํ์ ๋
ผ๋ฌธ์์๋ ๋น๋ฐ์ฐ ๊ตฌ์กฐ๋ฅผ ๊ฐ๋ ์์ ๋น์ ํ ํฌ๋ฌผ ๋ฐฉ์ ์์ ํด์ ์ ์น ์ด๋ก ๊ณผ ๊ทธ ์์ฉ์ ๋ํ์ฌ ์ฐ๊ตฌํ์๋ค.
์ฒซ๋ฒ์งธ ์ฅ์ ์์ ๋น์ ํ ๊ณ ๋ฅธ ํฌ๋ฌผํ ๋ฐ ํดํ๋ ํฌ๋ฌผํ ๋ฐฉ์ ์์ ํด์ ์ ๊ทผ์ ํ๋ ์์์ ๋ํ ์ฐ๊ตฌ์ด๋ค. ๋จผ์ , ํฌ๋ฌผ ๋ฐฉ์ ์์ ์ ๊ทํ ๋ ํด๊ฐ ์๊ฐ์ด ํ๋ฆ์ ๋ฐ๋ผ ๋ฐฉ์ ์๊ณผ ๊ด๋ จ๋ ์์ ๋น์ ํ ํ์ ์์ฉ์์ ์ 1 ๊ณ ์ ํจ์๋ก ์๋ ดํจ์ ์ฆ๋ช
ํ์๋ค. ๋ํ ๋ณผ๋กํ ์์ญ์์ ์ค๋ชฉํ ์์ ๋น์ ํ ์ ์ฐจ ์์ฉ์๊ฐ ์ฃผ์ด์ก์๋, ํฌ๋ฌผํ ํด์ ์ด๊ธฐ ๊ธฐํ์ ๊ตฌ์กฐ-ํน์ ํ ์ค๋ชฉ์ฑ(log-concavity, power concavity)-๊ฐ ๋ณด์กด๋๋ ๊ฒ์ ๋ณด์๋ค. ์์ ์๋ ด์ฑ์ ์ด์ฉํ๋ฉด ์ 1 ๊ณ ์ ํจ์ ๋ํ ๊ฐ์ ๊ธฐํ์ ๊ตฌ์กฐ๋ฅผ ๊ฐ์ง์ ์ ์ ์๋ค.
๋๋ฒ์งธ ์ฅ์์๋ ์์ ๋ฆฌ๋ง ๋ค์์ฒด ์์์ ์์ ๋น์ ํ ํฌ๋ฌผ ๋ฐฉ์ ์์ ํด๋ฅผ ๋ค๋ฃจ์๋๋ฐ, ํนํ ์ ์น ์ด๋ก ์ ์ด์์ด ๋๋ ํฌ๋ฌผํ Harnack ๋ถ๋ฑ์์ ์ฆ๋ช
ํ์๋ค. ์ ํ ์์ฉ์์ ๋ํด์๋ ๊ฑฐ๋ฆฌ ํจ์๋ก ์ ์๋ ํน์ ํ ์กฐ๊ฑด์ ๊ฐ์ ํ๊ณ ์ ์น์ธ ํด์ ๋์ญ์ Harnack ๋ถ๋ฑ์์ ์ป์๋ค. ๋ ๋จ๋ฉด ๊ณก๋ฅ ์ ํํ์ ๊ฐ์ง๋ ๋ค์์ฒด์ ๋ํด ๋น์ ํ ์์ฉ์์ ๊ตญ์์ Harnack ๋ถ๋ฑ์์ ๋ณด์๋ค. ๋ง์ง๋ง์ผ๋ก Jensen์ sup- and inf-convolution์ ์ด์ฉํ์ฌ, ์ฐ์ ํด์ธ viscosity ํด์ ๋ํ Harnack ๋ถ๋ฑ์์ ์ฆ๋ช
ํ์๋ค.Abstract
1 Introduction 1
1.1 Long-time asymptotics for parabolic equations 2
1.2 Parabolic Harnack inequality on Riemannian manifolds 4
2 Preliminaries 8
2.1 Viscosity solutions 8
2.1.1 Uniformly elliptic operator 8
2.1.2 Viscosity solutions 10
2.1.3 Regularity for uniformly elliptic and parabolic equations 11
2.2 Riemannian geometry 12
2.2.1 Variation formulas and Volume comparison 15
2.2.2 Semi-concavity 18
2.2.3 Viscosity solutions on Riemannian manifolds 19
3 Asymptotic behavior of parabolic equations 22
3.1 Uniformly parabolic equations 22
3.1.1 Elliptic eigenvalue problem 22
3.1.2 Long-time asymptotics for uniformly parabolic equations 23
3.1.3 Log-concavity 29
3.2 Degenerate parabolic equations 39
3.2.1 Sub-linear elliptic eigenvalue problems 39
3.2.2 Long-time asymptotics for degenerate parabolic equations 42
3.2.3 Square-root concavity of thepressure 47
4 Harnack inequality on Riemannian manifolds 69
4.1 Harnack inequality for linear parabolic operators 69
4.1.1 ABP-Krylov-Tso type estimate 70
4.1.2 Barrier functions 78
4.1.3 Parabolic version of the Calderon-Zygmund decomposition 90
4.1.4 Proof of parabolic Harnack inequality 94
4.1.5 Weak Harnack inequality 107
4.2 Harnack inequality for nonlinear parabolic operators 110
4.3 Harnack inequality for viscosity solutions 121
4.3.1 Sup-and inf-convolution 121
4.3.2 Proof of parabolic Harnack inequality 132
Abstract (in Korean)Docto
ํฌ๋ฅจ ์์ ํ๋ผ์ฆ๋ง ๋ถ๋ ์ ์งํ ํน์ฑ
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์๋์ง์์คํ
๊ณตํ๋ถ, 2014. 2. ๊น๊ณคํธ.ํฌ๋ฅจ ์์ ํ๋ผ์ฆ๋ง ์ ํธ(He-APPJ)๋ ๋๊ธฐ์์ ์กฐ๊ฑด์์ ์๋ ๊ฐ๋ฅํ๊ณ ๊ทธ ์ด์ฉ์ด ์ ์ ํ๋ผ์ฆ๋ง์ ๋นํด ๊ฐํธํ๋ฉฐ ๋ฐ์์ฑ์ด ํฐ OH, O3, NO์ ๊ฐ์ ๋ผ๋์ปฌ์ด ๋ค๋ ์์ฑ๋๋ค๋ ์ฅ์ ์ ๊ฐ์ง๋ค. ์ด๋ก ์ธํด ๋ฐ์ด์ค, ์๋ฃ ๋ถ์ผ์์ ์ด๊ท , ์ ์น๋ฃ, ๋ฏธ์ฉ ๋ฑ์ ๋ชฉ์ ์ผ๋ก APPJ๊ฐ ์ด์ฉ๋๊ณ ์์ง๋ง, ์คํ์ด๋ ์น๋ฃ ๊ฒฐ๊ณผ์ ์ฌํ์ฑ์ด ๋จ์ด์ ธ ์ผ์ ํ ํจ๊ณผ๋ฅผ ๊ธฐ๋ํ๊ธฐ๊ฐ ์ด๋ ต๊ณ , ํ๋ผ์ฆ๋ง์ ์ฒ๋ฆฌ ๋์๊ฐ์ ์๊ด๊ด๊ณ๋ฅผ ๋์ถํ๋ ๋ฐ ์ด๋ ค์์ด ์๋ค. APPJ ์์ค๋ ์ฃผ๋ณ ๊ณต๊ธฐ์ ์ํ์ ์ํด์ ์ ํธ์ ํน์ฑ์ด ๋ณํ ์ ์๊ธฐ ๋๋ฌธ์ด๋ฉฐ, ํน๋ณํ ์ ํธ์ ํ์์ ๊ตฌ์ฑํ๋ ๋ถ๋ ๊ณผ ์ฃผ๋ณ ๊ณต๊ธฐ์์ ๊ด๊ณ์ ๋ํ ์ดํด๊ฐ ์ ํ๋์ด์ผ๋ง ํ๋ค. ๋ณธ ํ์ ๋
ผ๋ฌธ์์๋ ์ฃผ๋ณ ํผํฉ ๊ฐ์ค์ ์กฐ๊ฑด์ ๋ฐ๋ผ ๋ณํํ๋ ๋ถ๋ ์๋ ๋ฐ ๋ถ๋ ์งํ ๋ฉ์ปค๋์ฆ์ ๋ํ ์ฐ๊ตฌ๋ฅผ ์งํํ์๋ค.
ํฌ๋ฅจ APPJ๋ก๋ถํฐ ๋ฐ์ํ ๋ถ๋ ์ ์ฃผ๋ก ๊ณต๊ธฐ ์ค์์ ์งํํ๊ธฐ ๋๋ฌธ์ ํฌ๋ฅจ๊ณผ ์ฃผ๋ณ ์ง์, ์ฐ์์์ ๋ฐ์์ด ์ค์ํ๋ค. ์ง์์ ์ฐ์์ ์ด์จํ ์๋์ง๋ ํฌ๋ฅจ ์ค์์ ์ค์ ์ข
์ ์๋์ง๋ณด๋ค ๋ฎ์ ํ๋ ์ด์จํ๋ก ์ธํ์ฌ N2+, O2+ ๋ฑ์ ์ด์จ๊ณผ ์ ์๋ฅผ ์์ฑํ๋ค. ํนํ ์ฐ์๋ ํ๋๊ณผ ๋์์ ์์ด์จ์ ์์ฑํ์ฌ ์ ์ ๋ฐ๋๋ฅผ ๊ฐ์์ํค๋ ์ญํ ๋ ํ๊ธฐ ๋๋ฌธ์, ์ฃผ๋ณ ๊ฐ์ค ์ค ์ฐ์์ ๋ถ์จ์ ๋ถ๋ ์ ์ ์ ๋ฐ๋ ๋ฐ ๋ถ๋ ์งํ ์๋์ ์ํฅ์ ์ค๋ค. ๋ณธ ์คํ์์๋ ์ธ๋ถ ๊ณต๊ธฐ์ ์ฐจ๋จ๋ ์ฑ๋ฒ ๋ด์์ ๋๊ธฐ ํ๊ฒฝ์ ์กฐ์ ํ ์ ์๋๋ก ํ์์ผ๋ฉฐ, N2์ O2์ ๋ถ์จ์ ๋ณํ์์ผ ๋ถ๋ ์๋๋ฅผ ์ธก์ ํ์๋ค. Intensified Charge-Coupled Device (ICCD) ์นด๋ฉ๋ผ์ 50 nsec์ ๋
ธ์ถ ์๋ ์กฐ๊ฑด์์ ์ด๋ฏธ์ง ์ดฌ์์ ํตํ์ฌ ๋ถ๋ ์ ์๋๋ฅผ ๋์ถํ์๊ณ , ๋ฐ๊ด๋ถ์๋ฒ(Optical Emission Spectroscopy, OES)์ ํตํด ์ ํธ์ ์์น์ ๋ฐ๋ฅธ ์ฌ๊ธฐ์ข
๊ณผ ์ด์จํ์ข
์ ์ ๋ณด๋ฅผ ์ป๊ณ , ์ ๊ธฐ์ฅ์ ๊ณ์ฐํ์๋ค. ๊ธฐ์กด์ ์คํธ๋ฆฌ๋จธ ์ด๋ก ์ ๋ชจ๋ธ์ ๊ทผ๊ฑฐํ์ฌ, ์ ์ ๋ฐ๋์ ์ ๋ฆฌ๊ด ๋ด๋ถ ๋ฐฉ์ ์ ์ํ ์ ๊ธฐ์ฅ ํจ๊ณผ๋ฅผ ๋ฐ์ํ๋ ๋ถ๋ ์๋ ๋ชจ๋ธ์ ์ ์ํ๊ณ , ์คํ๊ฒฐ๊ณผ์ ํจ๊ป ๋น๊ตํ์๋ค. ๋ถ๋ ์๋๋ ์ฃผ๋ณ ๋๊ธฐ์ ์ง์, ์ฐ์ ๊ฐ์ค์ ํผํฉ๋ฅ ์ ์๊ด์์ด ๋ชจ๋ ์ธ ๊ฐ์ ๋จ๊ณ๋ก ๊ตฌ๋ถ๋จ์ ํ์ธํ์๋ค. ์ฒซ ๋ฒ์งธ ๋จ๊ณ๋ ๊ฐ์ ๋จ๊ณ๋ก, ์ธ๋ถ์์ ์ ์
๋ ์ง์์ ์ฐ์๊ฐ ํฌ๋ฅจ ์ค์์ ์ค์๋ก ์ธํด ํ๋ ์ด์จํ๋ฅผ ์ผ์ผ์ผ ์ ์ ๋ฐ๋๋ฅผ ์ฆ๊ฐ์ํค๊ณ , ์๊ฐ์ ๋ฐ๋ผ ๋ถ๋ ์ ์๋๊ฐ ์ง์์ ์ผ๋ก ์ฆ๊ฐํ๋ค. ์ด ์์ญ์์ ์์ด์จ์ผ๋ก ์ธํ ์ ์ ์์ค์ ์ ์-์ค์ฑ์ ์ถฉ๋ ๋ฐ ํ๋ ์ด์จํ์ ์ํ ์์ฑ์ ๋นํด ๋ฌด์๊ฐ๋ฅํ๊ธฐ ๋๋ฌธ์, ์ฃผ๋ณ์ ์ฐ์ ๋ถ์จ์ด ์ฆ๊ฐํ ์๋ก, ๋ถ๋ ์๋๊ฐ ์ฆ๊ฐํ๋ ๋น์จ๋ ํจ๊ป ์ฆ๊ฐํ๋ค. ๋ ๋ฒ์งธ ๋จ๊ณ์์๋ ์ ๋ฆฌ๊ด ๋ด๋ถ์ ๋ฐฉ์ ์ด ๋ฐ์ํ๊ณ , ์ด๋ก ์ธํด ๋ถ๋ ์ ์งํ์ ๋ฐ๋๋๋ ๋ฐฉํฅ์ ์ ๊ธฐ์ฅ์ด ๋ฐ์ํ์ฌ ๊ฐ์๋๊ฐ ๊ฐ์ํ๊ณ ์ผ์ ํ ์๋๋ฅผ ์ ์งํ๋ฉฐ ์งํํ๋ค. ์ด๋ ์ ๋ฆฌ๊ด ๋ด ๋ฐฉ์ ์ด ๋ถ๋ ์ ์ฒ์ ์์ฑ๋ฟ ์๋๋ผ ์งํ์์๋ ์ํฅ์ ์ค ์ ์์์ ๋ํ๋ด๋ฉฐ, ์ฐ์์ ์ผ๋ก ๋ณํํ๋ ๊ฐ์ค ์กฐ๊ฑด์์ ๊ฐ์์ค๋ฐ ๊ฐ์๋์ ๋ณํ๋ฅผ ์ค๋ช
ํด์ค๋ค. ๋ถ๋ ์ด ์งํํ ์๋ก ์ ํธ ๋ด๋ถ๋ก ์ ์
ํ๋ ์ฐ์์ ๋ถ์จ์ ์ฆ๊ฐํ๊ณ , ํฌ๋ฅจ ๋ฐ๋๊ฐ ๊ฐ์ํ๋ฉด์ ๋ถ๋ ์ ์๋๊ฐ ๊ฐ์ํ๋ ์ธ ๋ฒ์งธ ๋จ๊ณ์ ์ง์
ํ๋ค. ์ฃผ๋ณ ๋๊ธฐ์ ์ฐ์ ๋ถ์จ์ด ๋์์๋ก ๋ ๋ฒ์งธ ๋จ๊ณ์ ๊ธธ์ด๊ฐ ๊ฐ์ํ๊ณ , ์ ์ฒด ์ ํธ์ ๊ธธ์ด ๋ํ ๊ฐ์ํ๋ค.
๋ถ๋ ์ ์๋๊ฐ ๊ณต๊ธฐ ์ค์์ ์ธ ๋จ๊ณ์ ๋ถํฌ๋ฅผ ๊ฐ์ง๊ณ ์์์ ๋ถ๋ ์ ์ํด ์์ฑ๋ ์ ํ์ ๋ผ๋์นผ ๋ํ ๊ณต๊ฐ ๋ถํฌ๋ฅผ ๊ฐ์ง๊ณ ์๋ค๋ ๊ฒ์ ๋ํ๋ธ๋ค. ์ ํ์ ๋ผ๋์นผ์ ์ญํ ์ด ์ค์ํ ๋ฐ์ด์ค ๋ฐ ์ํ ๋ถ์ผ์ ์ ์ฉ์ ์ํด์๋ ์ฒ๋ฆฌ ๋ชฉ์ ์ ๋ถํฉํ๋ ๊ฒฐ๊ณผ๋ฅผ ์ํ์ฌ ๋ถ๋ ์๋์ ๊ณต๊ฐ ํน์ฑ์ ๊ณ ๋ คํ ์ฒ๋ฆฌ ์กฐ๊ฑด์ ์๋ฆฝ์ด ํ์ํ๋ค.Helium Atmospheric Pressure Plasma Jets (He-APPJs) are frequently used for bio-medical treatments due to the advantages of easy to use, high production of reactive radicals and low gas temperature. In spite of the efforts of application on bio-medical fields, difficulties for securing the reproducibility among experiments still exist. This is caused by the lack of understanding APPJ plumes in which the discrete bullets are continuously propagating. Spatial distribution of bullet velocity and radical density cause the treatment results of target, which varied with the location in APPJ plume. In this thesis, the bullet propagation mechanisms along the plasma plume are studied.
Because the bullet propagates in ambient gas, the ratio of N2/O2 and He in plasma plume is an important parameter so the molar fraction ratio of N2 and O2 in ambient gas is controlled in this study. To measure the bullet velocity, Intensified Charge-Coupled Device (ICCD) camera was employed with the exposure time of 50 nsec. Optical Emission Spectroscopy method also introduced to monitor the excited, ionized species and to estimate the electric field in the plasma plume. The effect of ambient gas mixture on bullet propagation was analyzed with the bullet velocity model which was developed from the cathode-directed streamer. Reactor discharge effect was also considered in field analysis in the plume.
ICCD results show that bullet velocity is distributed along the plasma plume and it can be classified with the three of velocity phases. In the phase 1, the bullet gets out the quartz tube exit and the Penning ionization of N2 and O2 entrained from the ambient enhances the speed of bullet propagation. In the phase 2, plasma is discharged in reactor quartz tube and the electric field from accumulated charges on quartz drags the bullet propagation, resulting that the acceleration force becomes zero and the bullet velocity is maintained constant during until the reactor discharge is off. In the phase 3, the excessive O2 entrain into He causes the electron loss by attachment to O2 so the discharge becomes weaker and the bullet velocity linearly decreases with time.
The analysis reveals that the reactor discharge should be considered to understand the bullet behavior in space. In addition, it can be inferred that the position of bio-medical targets is important for the proper purpose of that treatment because it changes the gas flow and molar fraction in plasma plume which have crucial roles in bullet propagation and the spatial distribution of charges and radicals.Chapter 1 Introduction .............................................................. 1
1.1 Helium Atmospheric Pressure Plasma Jets (He-APPJs) and Bullet Formation ................................................ 1
1.2 Necessity of Bullet Propagation Velocity and Mechanisms in space for the treatments ............................................................ 5
1.3 Previous Studies for Bullet Propagation Mechanisms .......... 7
Chapter 2 Experimental Setup ................................................ 11
2.1 Ambient Gas Controllable APPJ and the Diagnostic System .................................................................................. 11
2.2 Bullet Velocity Measurement by ICCD Images .......... 15
Chapter 3 Experimental Results ............................................. 17
3.1 Bullet Velocity and V-I in Ambient air and N2/O2 Mixtures ................................................................................ 17
3.2 Optical Emissions from APPJ Plume .......................... 26
Chapter 4 Discussion .............................................................. 28
4.1 The Bullet Velocity Model .......................................... 28
4.2 Bullet Velocity in Phase 1 : Acceleration Region ...... 38
4.3 Bullet Velocity in Phase 2 : Constant Velocity Region 50
4.4 Bullet Velocity in Phase 3 : Deceleration Region .... 53
Chapter 5 Conclusion .............................................................. 58
References ................................................................................... 61Maste
๊ทธ๋ํ ๊ธฐ๋ฐ ํ๋ ์๋ธ ์ ์ก์ ๋ก์ RF ํน์ฑ์ ๊ดํ ์ฐ๊ตฌ
This thesis deals with RF characteristics of graphene-based flexible transmission line on PET substrate and studied about making-process of graphene-based flexible transmission line. To make graphene-based flexible transmission line, we use photolithography process and rGO(reduced Ghapene Oxide) paste. PET Substrateโs thickness was 200 um, permittivity was 3.7. According to measured results, graphene-based flexible transmission line showed higher attenuation constant than conventional one. And itโs phase constant showed similar to conventional one. And graphene-based flexible transmission lineโs impedance was 270 ฮฉ.์ 1 ์ฅ ์ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์ โฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅ1
์ 2 ์ฅ ๊ธฐ์กด ํ๋ ์๋ธ ์ ๋ก์ RF ํน์ฑ โฅโฅโฅโฅโฅโฅโฅโฅโฅโฅ3
2.1 Gold ๊ธฐ๋ฐ์ ํ๋ ์๋ธ ์ ๋กโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅ3
2.1.1 Gold ๊ธฐ๋ฐ์ ํ๋ ์๋ธ ์ ๋ก์ RF ํน์ฑโฅโฅโฅโฅโฅโฅโฅ3
2.1.2 Gold ๊ธฐ๋ฐ์ ํ๋ ์๋ธ ์ ๋ก์ ๋ฌธ์ ์ โฅโฅโฅโฅโฅโฅโฅ12
2.2 ๊ทธ๋ํ ๊ธฐ๋ฐ์ ํ๋ ์๋ธ ์ ์ก์ ๋กโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅ 12
์ 3 ์ฅ ๊ทธ๋ํ ๊ธฐ๋ฐ์ ํ๋ ์๋ธ ์ ์ก์ ๋ก์ ์ ์ ๊ณผ์ โฅโฅโฅโฅโฅ15
์ 4 ์ฅ ๊ทธ๋ํ ๊ธฐ๋ฐ์ ํ๋ ์๋ธ ์ ์ก์ ๋ก์ RF ํน์ฑ โฅโฅโฅโฅโฅโฅ21
4.1 ๊ทธ๋ํ ๊ธฐ๋ฐ์ ํ๋ ์๋ธ ์ ์ก์ ๋ก์ ์์คํน์ฑโฅโฅโฅโฅโฅโฅโฅ21
4.2 ๊ทธ๋ํ ๊ธฐ๋ฐ์ ํ๋ ์๋ธ ์ ์ก์ ๋ก์ ์ ์กํน์ฑโฅโฅโฅโฅโฅโฅโฅ24
4.3 ๊ทธ๋ํ ๊ธฐ๋ฐ์ ํ๋ ์๋ธ ์ ์ก์ ๋ก์ ํน์ฑ ์ํผ๋์คโฅโฅโฅโฅ25
์ 5 ์ฅ ๊ฒฐ ๋ก โฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅ27
์ฐธ๊ณ ๋ฌธํ โฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅโฅ29Maste
Influence of Anhedonia and Self-Esteem on Daily-Life Decision-Making in Patients with Schizophrenia.
Objectives Decision-making in patients with schizophrenia has been known to be inefficient in both cognitive and affective aspects. The purpose of this study was to investigate the influence of anhedonia and self-esteem on the decision-making process in schizophrenia. Methods Twenty patients with schizophrenia and 21 healthy controls performed the 'apparel purchase decision-making task', during which they were asked to respond to the preference, fitness, and price suitability, before making the final purchase decision. Generalized estimating equation and correlation analysis were conducted to explore for the difference of decision making patterns and influential factors between the two groups. Results The patients showed lower odds ratio (OR) of the fitness on the apparel purchase decision than the controls [OR 0.190 ; 95% confidence interval (CI) 0.047-0.762, p = 0.019). In the patient group, there was no correlation between the number of purchased trials and the severity of anhedonia, but the number of purchased trials was negatively correlated with the Rosenberg Self-Esteem Scale score at a trend level (R = -0.436, p = 0.055). Conclusions Patients with schizophrenia considered the fitness of clothes less than healthy controls on apparel purchasing decisions. Schizophrenia patients with lower self-esteem were intended to buy more clothes.ope
- โฆ