31 research outputs found

    Running performance at high running velocities is impaired but V'O_{2max} and peripheral endothelial function are preserved in IL-6^{−/−} mice

    Get PDF
    It has been reported that IL-6 knockout mice (IL-6^{−/−}) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6^{−/−} mice is linked to impaired maximal oxygen uptake (V′O_{2max}), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6−/− mice than in WT mice (13.00±0.97 m.min^{-1} vs. 16.89±1.15 m.min^{-1}, P<0.02, respectively). Moreover, the time to exhaustion during running at 12 m.min^{-1} in IL-6^{−/−} mice was significantly shorter (P<0.05) than in WT mice. V′O_{2max} in IL-6^{−/−} (n = 20) amounting to 108.3±2.8 ml.kg^{-1}.min^{-1} was similar as in WT mice (n = 22) amounting to 113.0±1.8 ml.kg^{-1}.min^{-1}, (P = 0.16). No difference in maximal COX activity between the IL-6^{−/−} and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6^{−/−} mice. Surprisingly, plasma lactate concentration during running at 8 m.min−1 as well at maximal running velocity in IL-6^{−/−} mice was significantly lower (P<0.01) than in WT mice. Interestingly, IL-6^{−/−} mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca^{2+}-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6^{−/−} mice could not be explained by reduced V′O_{2max}, endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance performance. Furthermore, we identified important compensatory mechanism limiting reduced exercise performance in IL-6^{−/−} mice

    Effect of acute sprint exercise on myokines and food intake hormones in young healthy men

    Get PDF
    Physical exercise is known to influence hormonal mediators of appetite, but the effect of short-term maximal intensity exercise on plasma levels of appetite hormones and cytokines has been little studied. We investigated the effect of a 30 s Wingate Test, followed by a postprandial period, on appetite sensations, food intake, and appetite hormones. Twenty-six physically active young males rated their subjective feelings of hunger, prospective food consumption, and fatigue on visual analogue scales at baseline, after exercise was completed, and during the postprandial period. Blood samples were obtained for the measurement of nesfatin-1, ghrelin, leptin, insulin, pancreatic polypeptide (PP), human growth factor (hGH) and cytokine interleukin-6 (IL-6), irisin and plasma lactate concentrations, at 30 min before exercise, immediately (210 s) after exercise, and 30 min following a meal and at corresponding times in control sedentary males without ad libitum meal intake, respectively. Appetite perceptions and food intake were decreased in response to exercise. Plasma levels of irisin, IL-6, lactate, nesfatin-1 and ghrelin was increased after exercise and then it was returned to postprandial/control period in both groups. A significant rise in plasma insulin, hGH and PP levels after exercise was observed while meal intake potentiated this response. In conclusion, an acute short-term fatiguing exercise can transiently suppress hunger sensations and food intake in humans. We postulate that this physiological response involves exercise-induced alterations in plasma hormones and the release of myokines such as irisin and IL-6, and supports the notion of existence of the skeletal muscle-brain-gut axis. Nevertheless, the detailed relationship between acute exercise releasing myokines, appetite sensations and impairment of this axis leading to several diseases should be further examined

    New calibration system for low-cost suspended particulate matter sensors with controlled air speed, temperature and humidity

    Get PDF
    This paper presents a calibration system for low-cost suspended particulate matter (PM) sensors, consisting of reference instruments, enclosed space in a metal pipe (volume 0.145 m3), a duct fan, a controller and automated control software. The described system is capable of generating stable and repeatable concentrations of suspended PM in the air duct. In this paper, as the final result, we presented the process and effects of calibration of two low-cost air pollution stations—university measuring stations (UMS)—developed and used in the scientific project known as Storm&DustNet, implemented at the Jagiellonian University in Kraków (Poland), for the concentration range of PM from a few up to 240 µg·m–3. Finally, we postulate that a device of this type should be available for every system composed of a large number of low-cost PM sensors

    Possible mechanisms underlying slow component of the \dot{V}O_{2} on-kinetics in skeletal muscle

    No full text
    slow component of V Ë™ O2 on-kinetics in skeletal muscle. J App

    The impact of aging and physical training on angiogenesis in the musculoskeletal system

    No full text
    Angiogenesis is the physiological process of capillary growth. It is strictly regulated by the balanced activity of agents that promote the formation of capillaries (pro-angiogenic factors) on the one hand and inhibit their growth on the other hand (anti-angiogenic factors). Capillary rarefaction and insufficient angiogenesis are some of the main causes that limit blood flow during aging, whereas physical training is a potent non-pharmacological method to intensify capillary growth in the musculoskeletal system. The main purpose of this study is to present the current state of knowledge concerning the key signalling molecules implicated in the regulation of skeletal muscle and bone angiogenesis during aging and physical training

    Myosin heavy chain composition in the vastus lateralis muscle in relation to oxygen uptake and heart rate during cycling in humans

    No full text
    In this study we examined the relationship between fast myosin heavy chain (MyHC2) content in the vastus lateralis and the rate of oxygen uptake (VO2) and heart rate (HR) increase during an incremental exercise in 38, young, healthy men. Prior to the exercise test, muscle biopsies were taken in order to evaluate the MyHC composition. It was found that during cycling performed below the lactate threshold (LT), a positive relationship between MyHC2 and the intercept of the oxygen uptake and power output (VO2-PO) relationship existed (r=0.49, P=0.002), despite no correlation between MyHC2 and the slope value of the VO2-PO relationship (r= -0.18, P=0.29). During cycling performed above the LT, MyHC2 correlated positively with the magnitude of the nonlinearity in the VO2-PO relationship; i.e. with the accumulated VO2'excess' (r=0.44, P=0.006) and peak VO2'excess' (r=0.44, P=0.006), as well as with the slope of the HR-PO relationship (r=0.49, P=0.002). We have concluded that a greater MyHC2 content in the vastus lateralis is accompanied by a higher oxygen cost of cycling during exercise performed below the LT. This seems to be related to the higher energy cost of the non-cross-bridge activities in the muscles possessing a greater proportion of MyHC2 content. In the case of heavy-intensity exercise, a higher MyHC2 content in the vastus lateralis is accompanied by greater non-linearity in the VO2-PO relationship, as well as a steeper increase in HR in the function of an increase of PO. This relationship can be explained by greater disturbances in metabolic stability in type II muscle fibres during exercise, resulting in a decrease of muscle mechanical efficiency and greater increase of heart rate at a given power output. Therefore, MyHC composition has an impact on the oxygen cost of cycling both below and above the LT
    corecore