7 research outputs found

    Synthesis of graft copolymer based on PEDOT conductive polymer

    No full text
    Vodljivi polimeri kombiniraju električna svojstva metala s prednostima polimera kao što su niža masa, jednostavnije oblikovanje, otpornost na koroziju te niža cijena. Zbog navedenih svojstava imaju raznovrsnu primjenu te se koriste kod kemijskih senzora i biosenzora, tranzistora i prekidača, superkondenzatora, fotonaponskih ćelija, elektrokromnih uređaja i dr. Poli(3,4-etilendioksitiofen) (PEDOT) se kao jedan od važnijih vodljivih polimera današnjice vrlo često koristi za izradu senzora za kontrolu i praćenje zdravlja. U radu je provedena sinteza zasebnih komponenti graft kopolimera, PEDOT/polistiren sulfonat (PSS) kao glavnog lanca, PEDOT/poli(metil vinil eter) (PMVE) kao bočnih lanaca, te sinteza dva uzorka PEDOT/PMVE-g-PEDOT/PSS graft kopolimera u trajanju od 15 i 60 minuta. Karakterizacija je provedena infracrvenom spektroskopijom s Fourierovim transformacijama (FT-IR) i termogravimetrijskom analizom (TGA); elektrovodljivost je određena metodom sondi s četiri točke, a digitalnim mikroskopom je snimljena morfologija uzoraka. Rezultati ispitivanja su pokazali da je vrijeme sinteze od 15 min prekratko jer nastaju dvije razdvoje faze, dok nakon 60 min sinteze nastaje PEDOT vodljivi polimer pri čemu dolazi do njegova povezivanja s bočnim lancima i nastajanja graft kopolimera. Sintetizirani PEDOT graft kopolimer je vodljiv, a što je stupanj razgranatosti i veličina bočnih grana veća vodljivost je niža.Conductive polymers combine the electrical properties of metals with the advantages of polymers such as lower mass, simpler shaping, corrosion resistance and lower cost. Due to these properties they have a variety of applications and are used in chemical sensors and biosensors, transistors and switches, supercapacitors, photovoltaic cells, electrochromic devices, etc. Poly(3,4-ethylenedioxythiophene) (PEDOT), as one of the most important conductive polymers today, is very often used to create sensors for health control and monitoring. In this work a synthesis of separate components of graft copolymers, PEDOT/polystyrene sulfonate (PSS) as main chain, PEDOT/poly(methyl vinyl ether) (PMVE) as side chains, and synthesis of two samples of PEDOT/PMVE-g-PEDOT/PSS graft copolymers with 15 and 60 minutes polymerization time was performed. Characterization was performed by infrared spectroscopy with Fourier transforms (FT-IR) and thermogravimetric analysis (TGA); the electrical conductivity was determined by the four-point probe method, and the morphology of the samples was recorded using a digital microscope. The test results showed that the synthesis time of 15 min is too short because two separate phases are formed, while after 60 min of synthesis, PEDOT conductive polymer is formed whereby it is bonded to side chains and the graft copolymer is formed. The synthesized PEDOT graft copolymer is conductive, and the higher the degree of branching and the size of the lateral branches is, the lower is the conductivity

    Synthesis of graft copolymer based on PEDOT conductive polymer

    No full text
    Vodljivi polimeri kombiniraju električna svojstva metala s prednostima polimera kao što su niža masa, jednostavnije oblikovanje, otpornost na koroziju te niža cijena. Zbog navedenih svojstava imaju raznovrsnu primjenu te se koriste kod kemijskih senzora i biosenzora, tranzistora i prekidača, superkondenzatora, fotonaponskih ćelija, elektrokromnih uređaja i dr. Poli(3,4-etilendioksitiofen) (PEDOT) se kao jedan od važnijih vodljivih polimera današnjice vrlo često koristi za izradu senzora za kontrolu i praćenje zdravlja. U radu je provedena sinteza zasebnih komponenti graft kopolimera, PEDOT/polistiren sulfonat (PSS) kao glavnog lanca, PEDOT/poli(metil vinil eter) (PMVE) kao bočnih lanaca, te sinteza dva uzorka PEDOT/PMVE-g-PEDOT/PSS graft kopolimera u trajanju od 15 i 60 minuta. Karakterizacija je provedena infracrvenom spektroskopijom s Fourierovim transformacijama (FT-IR) i termogravimetrijskom analizom (TGA); elektrovodljivost je određena metodom sondi s četiri točke, a digitalnim mikroskopom je snimljena morfologija uzoraka. Rezultati ispitivanja su pokazali da je vrijeme sinteze od 15 min prekratko jer nastaju dvije razdvoje faze, dok nakon 60 min sinteze nastaje PEDOT vodljivi polimer pri čemu dolazi do njegova povezivanja s bočnim lancima i nastajanja graft kopolimera. Sintetizirani PEDOT graft kopolimer je vodljiv, a što je stupanj razgranatosti i veličina bočnih grana veća vodljivost je niža.Conductive polymers combine the electrical properties of metals with the advantages of polymers such as lower mass, simpler shaping, corrosion resistance and lower cost. Due to these properties they have a variety of applications and are used in chemical sensors and biosensors, transistors and switches, supercapacitors, photovoltaic cells, electrochromic devices, etc. Poly(3,4-ethylenedioxythiophene) (PEDOT), as one of the most important conductive polymers today, is very often used to create sensors for health control and monitoring. In this work a synthesis of separate components of graft copolymers, PEDOT/polystyrene sulfonate (PSS) as main chain, PEDOT/poly(methyl vinyl ether) (PMVE) as side chains, and synthesis of two samples of PEDOT/PMVE-g-PEDOT/PSS graft copolymers with 15 and 60 minutes polymerization time was performed. Characterization was performed by infrared spectroscopy with Fourier transforms (FT-IR) and thermogravimetric analysis (TGA); the electrical conductivity was determined by the four-point probe method, and the morphology of the samples was recorded using a digital microscope. The test results showed that the synthesis time of 15 min is too short because two separate phases are formed, while after 60 min of synthesis, PEDOT conductive polymer is formed whereby it is bonded to side chains and the graft copolymer is formed. The synthesized PEDOT graft copolymer is conductive, and the higher the degree of branching and the size of the lateral branches is, the lower is the conductivity

    Synthesis of graft copolymer PEDOT-g-PCL by ring opening polymerization

    No full text
    Elektrovodljivi polimeri su zbog svoje električne provodnosti, velike površine i stabilnosti u okolišu idealan materijal za primjenu u biosenzorima za praćenje osobnog zdravlja ugrađenima u nosivu elektroniku, a za tu svrhu nužno je da budu istezljivi i samozacjeljivi. To se postiže ugradnjom dinamičkih nekovalentnih umreženja između polimernih lanaca elekrovodljivog polimera što je ključno za zadržavanje dobre sposobnosti prijenosa naboja. U ovom diplomskom koristit će se novi višefazni dizajn za visoko istezljive, elektrovodljive polimere koji su zacjeljivi na sobnoj temperaturi. Glavni lanac biti će poli(3,4-etilendioksitiofen), a na njega će se vezati bočne grane PCl polimera. Kao alat za krojenje željenih graft polimera, koristit će se anionska polimerizacija otvaranja prstena koja omogućava izgradnju polimera sa specifično krojenim funkcionalnostima, u ovom slučaju optimalne gustoće umreženja i duljine bočnih lanaca. Za dobivanje različitih duljina PCL lanca korišteni su različiti uvjeti polimerizacije, a učinak na svojstva procijenjen je uz pomoć više tehnika. Strukturna svojstva sintetiziranih materijala okarakterizirana su tehnikama kao što su nuklearna magnetska rezonancija (NMR), infracrvena spektroskopija (FTIR) i UV/Vis spektroskopija. Elektrokemijska svojstva proučavana su cikličkom voltametrijom i metodom sonde s četiri točke, dok su toplinska svojstva proučavana termogravimetrijskom analizom (TGA) i diferencijalnom skenirajućom kalorimetrijom (DSC). Analize su potvrdile uspješnu sintezu vodljivih graft polimera s povećanom rastezljivošću uz zadržavanje dobrih vodljivih svojstava.Conductive polymers are an ideal material for application in health monitoring biosensors in wearable electronics because of their electrical conductivity, large surface area, and environmental stability, and for that purpose it is necessary for them to be stretchable and self-healable. This can be achieved by introducing side chains containing hydrogen bonding species which enable non-covalent cross-linking between conducting polymers, while maintaining the high conductivity of the backbone. In this work, a novel multiphase design for highly stretchable, room temperature healable and conductive polymers is used. The backbone consists of poly(3,4-ethylenedioxythiophene) (PEDOT) onto which polycaprolactone (PCL) side chains are grafted. Anionic ring-opening polymerization is used as a tool for tailoring the desired graft polymers, which allows the assembly of polymers with specific tailored functionalities, in this case with optimal density and side-chain length. Different polymerization conditions were used to obtain different PCL chain lengths and effect on properties was evaluated by multiple techniques. The structural properties of the synthesized materials were characterized using techniques such as nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR) and UV/Vis. The electrochemical properties were studied by cyclic voltammetry and four-point probe method, while the thermal properties were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The analyses confirmed the successful synthesis of conductive graft polymers with increased stretchability while maintaining good conductive properties

    Synthesis of graft copolymer based on PEDOT conductive polymer

    No full text
    Vodljivi polimeri kombiniraju električna svojstva metala s prednostima polimera kao što su niža masa, jednostavnije oblikovanje, otpornost na koroziju te niža cijena. Zbog navedenih svojstava imaju raznovrsnu primjenu te se koriste kod kemijskih senzora i biosenzora, tranzistora i prekidača, superkondenzatora, fotonaponskih ćelija, elektrokromnih uređaja i dr. Poli(3,4-etilendioksitiofen) (PEDOT) se kao jedan od važnijih vodljivih polimera današnjice vrlo često koristi za izradu senzora za kontrolu i praćenje zdravlja. U radu je provedena sinteza zasebnih komponenti graft kopolimera, PEDOT/polistiren sulfonat (PSS) kao glavnog lanca, PEDOT/poli(metil vinil eter) (PMVE) kao bočnih lanaca, te sinteza dva uzorka PEDOT/PMVE-g-PEDOT/PSS graft kopolimera u trajanju od 15 i 60 minuta. Karakterizacija je provedena infracrvenom spektroskopijom s Fourierovim transformacijama (FT-IR) i termogravimetrijskom analizom (TGA); elektrovodljivost je određena metodom sondi s četiri točke, a digitalnim mikroskopom je snimljena morfologija uzoraka. Rezultati ispitivanja su pokazali da je vrijeme sinteze od 15 min prekratko jer nastaju dvije razdvoje faze, dok nakon 60 min sinteze nastaje PEDOT vodljivi polimer pri čemu dolazi do njegova povezivanja s bočnim lancima i nastajanja graft kopolimera. Sintetizirani PEDOT graft kopolimer je vodljiv, a što je stupanj razgranatosti i veličina bočnih grana veća vodljivost je niža.Conductive polymers combine the electrical properties of metals with the advantages of polymers such as lower mass, simpler shaping, corrosion resistance and lower cost. Due to these properties they have a variety of applications and are used in chemical sensors and biosensors, transistors and switches, supercapacitors, photovoltaic cells, electrochromic devices, etc. Poly(3,4-ethylenedioxythiophene) (PEDOT), as one of the most important conductive polymers today, is very often used to create sensors for health control and monitoring. In this work a synthesis of separate components of graft copolymers, PEDOT/polystyrene sulfonate (PSS) as main chain, PEDOT/poly(methyl vinyl ether) (PMVE) as side chains, and synthesis of two samples of PEDOT/PMVE-g-PEDOT/PSS graft copolymers with 15 and 60 minutes polymerization time was performed. Characterization was performed by infrared spectroscopy with Fourier transforms (FT-IR) and thermogravimetric analysis (TGA); the electrical conductivity was determined by the four-point probe method, and the morphology of the samples was recorded using a digital microscope. The test results showed that the synthesis time of 15 min is too short because two separate phases are formed, while after 60 min of synthesis, PEDOT conductive polymer is formed whereby it is bonded to side chains and the graft copolymer is formed. The synthesized PEDOT graft copolymer is conductive, and the higher the degree of branching and the size of the lateral branches is, the lower is the conductivity

    Synthesis of graft copolymer PEDOT-g-PCL by ring opening polymerization

    No full text
    Elektrovodljivi polimeri su zbog svoje električne provodnosti, velike površine i stabilnosti u okolišu idealan materijal za primjenu u biosenzorima za praćenje osobnog zdravlja ugrađenima u nosivu elektroniku, a za tu svrhu nužno je da budu istezljivi i samozacjeljivi. To se postiže ugradnjom dinamičkih nekovalentnih umreženja između polimernih lanaca elekrovodljivog polimera što je ključno za zadržavanje dobre sposobnosti prijenosa naboja. U ovom diplomskom koristit će se novi višefazni dizajn za visoko istezljive, elektrovodljive polimere koji su zacjeljivi na sobnoj temperaturi. Glavni lanac biti će poli(3,4-etilendioksitiofen), a na njega će se vezati bočne grane PCl polimera. Kao alat za krojenje željenih graft polimera, koristit će se anionska polimerizacija otvaranja prstena koja omogućava izgradnju polimera sa specifično krojenim funkcionalnostima, u ovom slučaju optimalne gustoće umreženja i duljine bočnih lanaca. Za dobivanje različitih duljina PCL lanca korišteni su različiti uvjeti polimerizacije, a učinak na svojstva procijenjen je uz pomoć više tehnika. Strukturna svojstva sintetiziranih materijala okarakterizirana su tehnikama kao što su nuklearna magnetska rezonancija (NMR), infracrvena spektroskopija (FTIR) i UV/Vis spektroskopija. Elektrokemijska svojstva proučavana su cikličkom voltametrijom i metodom sonde s četiri točke, dok su toplinska svojstva proučavana termogravimetrijskom analizom (TGA) i diferencijalnom skenirajućom kalorimetrijom (DSC). Analize su potvrdile uspješnu sintezu vodljivih graft polimera s povećanom rastezljivošću uz zadržavanje dobrih vodljivih svojstava.Conductive polymers are an ideal material for application in health monitoring biosensors in wearable electronics because of their electrical conductivity, large surface area, and environmental stability, and for that purpose it is necessary for them to be stretchable and self-healable. This can be achieved by introducing side chains containing hydrogen bonding species which enable non-covalent cross-linking between conducting polymers, while maintaining the high conductivity of the backbone. In this work, a novel multiphase design for highly stretchable, room temperature healable and conductive polymers is used. The backbone consists of poly(3,4-ethylenedioxythiophene) (PEDOT) onto which polycaprolactone (PCL) side chains are grafted. Anionic ring-opening polymerization is used as a tool for tailoring the desired graft polymers, which allows the assembly of polymers with specific tailored functionalities, in this case with optimal density and side-chain length. Different polymerization conditions were used to obtain different PCL chain lengths and effect on properties was evaluated by multiple techniques. The structural properties of the synthesized materials were characterized using techniques such as nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR) and UV/Vis. The electrochemical properties were studied by cyclic voltammetry and four-point probe method, while the thermal properties were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The analyses confirmed the successful synthesis of conductive graft polymers with increased stretchability while maintaining good conductive properties

    Synthesis of graft copolymer PEDOT-g-PCL by ring opening polymerization

    No full text
    Elektrovodljivi polimeri su zbog svoje električne provodnosti, velike površine i stabilnosti u okolišu idealan materijal za primjenu u biosenzorima za praćenje osobnog zdravlja ugrađenima u nosivu elektroniku, a za tu svrhu nužno je da budu istezljivi i samozacjeljivi. To se postiže ugradnjom dinamičkih nekovalentnih umreženja između polimernih lanaca elekrovodljivog polimera što je ključno za zadržavanje dobre sposobnosti prijenosa naboja. U ovom diplomskom koristit će se novi višefazni dizajn za visoko istezljive, elektrovodljive polimere koji su zacjeljivi na sobnoj temperaturi. Glavni lanac biti će poli(3,4-etilendioksitiofen), a na njega će se vezati bočne grane PCl polimera. Kao alat za krojenje željenih graft polimera, koristit će se anionska polimerizacija otvaranja prstena koja omogućava izgradnju polimera sa specifično krojenim funkcionalnostima, u ovom slučaju optimalne gustoće umreženja i duljine bočnih lanaca. Za dobivanje različitih duljina PCL lanca korišteni su različiti uvjeti polimerizacije, a učinak na svojstva procijenjen je uz pomoć više tehnika. Strukturna svojstva sintetiziranih materijala okarakterizirana su tehnikama kao što su nuklearna magnetska rezonancija (NMR), infracrvena spektroskopija (FTIR) i UV/Vis spektroskopija. Elektrokemijska svojstva proučavana su cikličkom voltametrijom i metodom sonde s četiri točke, dok su toplinska svojstva proučavana termogravimetrijskom analizom (TGA) i diferencijalnom skenirajućom kalorimetrijom (DSC). Analize su potvrdile uspješnu sintezu vodljivih graft polimera s povećanom rastezljivošću uz zadržavanje dobrih vodljivih svojstava.Conductive polymers are an ideal material for application in health monitoring biosensors in wearable electronics because of their electrical conductivity, large surface area, and environmental stability, and for that purpose it is necessary for them to be stretchable and self-healable. This can be achieved by introducing side chains containing hydrogen bonding species which enable non-covalent cross-linking between conducting polymers, while maintaining the high conductivity of the backbone. In this work, a novel multiphase design for highly stretchable, room temperature healable and conductive polymers is used. The backbone consists of poly(3,4-ethylenedioxythiophene) (PEDOT) onto which polycaprolactone (PCL) side chains are grafted. Anionic ring-opening polymerization is used as a tool for tailoring the desired graft polymers, which allows the assembly of polymers with specific tailored functionalities, in this case with optimal density and side-chain length. Different polymerization conditions were used to obtain different PCL chain lengths and effect on properties was evaluated by multiple techniques. The structural properties of the synthesized materials were characterized using techniques such as nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR) and UV/Vis. The electrochemical properties were studied by cyclic voltammetry and four-point probe method, while the thermal properties were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The analyses confirmed the successful synthesis of conductive graft polymers with increased stretchability while maintaining good conductive properties
    corecore