40 research outputs found

    Fierce selection and interference in B-cell repertoire response to chronic HIV-1

    Full text link
    During chronic infection, HIV-1 engages in a rapid coevolutionary arms race with the host's adaptive immune system. While it is clear that HIV exerts strong selection on the adaptive immune system, the characteristics of the somatic evolution that shape the immune response are still unknown. Traditional population genetics methods fail to distinguish chronic immune response from healthy repertoire evolution. Here, we infer the evolutionary modes of B-cell repertoires and identify complex dynamics with a constant production of better B-cell receptor mutants that compete, maintaining large clonal diversity and potentially slowing down adaptation. A substantial fraction of mutations that rise to high frequencies in pathogen engaging CDRs of B-cell receptors (BCRs) are beneficial, in contrast to many such changes in structurally relevant frameworks that are deleterious and circulate by hitchhiking. We identify a pattern where BCRs in patients who experience larger viral expansions undergo stronger selection with a rapid turnover of beneficial mutations due to clonal interference in their CDR3 regions. Using population genetics modeling, we show that the extinction of these beneficial mutations can be attributed to the rise of competing beneficial alleles and clonal interference. The picture is of a dynamic repertoire, where better clones may be outcompeted by new mutants before they fix

    Significance analysis and statistical mechanics: an application to clustering

    Full text link
    This paper addresses the statistical significance of structures in random data: Given a set of vectors and a measure of mutual similarity, how likely does a subset of these vectors form a cluster with enhanced similarity among its elements? The computation of this cluster p-value for randomly distributed vectors is mapped onto a well-defined problem of statistical mechanics. We solve this problem analytically, establishing a connection between the physics of quenched disorder and multiple testing statistics in clustering and related problems. In an application to gene expression data, we find a remarkable link between the statistical significance of a cluster and the functional relationships between its genes.Comment: to appear in Phys. Rev. Let

    Neoantigen quality predicts immunoediting in survivors of pancreatic cancer.

    Get PDF
    Cancer immunoediting1 is a hallmark of cancer2 that predicts that lymphocytes kill more immunogenic cancer cells to cause less immunogenic clones to dominate a population. Although proven in mice1,3, whether immunoediting occurs naturally in human cancers remains unclear. Here, to address this, we investigate how 70 human pancreatic cancers evolved over 10 years. We find that, despite having more time to accumulate mutations, rare long-term survivors of pancreatic cancer who have stronger T cell activity in primary tumours develop genetically less heterogeneous recurrent tumours with fewer immunogenic mutations (neoantigens). To quantify whether immunoediting underlies these observations, we infer that a neoantigen is immunogenic (high-quality) by two features-'non-selfness'  based on neoantigen similarity to known antigens4,5, and 'selfness'  based on the antigenic distance required for a neoantigen to differentially bind to the MHC or activate a T cell compared with its wild-type peptide. Using these features, we estimate cancer clone fitness as the aggregate cost of T cells recognizing high-quality neoantigens offset by gains from oncogenic mutations. With this model, we predict the clonal evolution of tumours to reveal that long-term survivors of pancreatic cancer develop recurrent tumours with fewer high-quality neoantigens. Thus, we submit evidence that that the human immune system naturally edits neoantigens. Furthermore, we present a model to predict how immune pressure induces cancer cell populations to evolve over time. More broadly, our results argue that the immune system fundamentally surveils host genetic changes to suppress cancer

    A common root for coevolution and substitution rate variability in protein sequence evolution

    Get PDF
    We introduce a simple model that describes the average occurrence of point variations in a generic protein sequence. This model is based on the idea that mutations are more likely to be fixed at sites in contact with others that have mutated in the recent past. Therefore, we extend the usual assumptions made in protein coevolution by introducing a time dumping on the effect of a substitution on its surrounding and makes correlated substitutions happen in avalanches localized in space and time. The model correctly predicts the average correlation of substitutions as a function of their distance along the sequence. At the same time, it predicts an among-site distribution of the number of substitutions per site highly compatible with a negative binomial, consistently with experimental data. The promising outcomes achieved with this model encourage the application of the same ideas in the field of pairwise and multiple sequence alignment

    Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors1,2, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies

    Metody przetwarzania danych na potrzeby eksperymentalnego modelowania fal oceanicznych

    No full text
    This paper presents the data processing methodology for the physical modeling of ocean waves in wave flumes which was developed for the purpose of conducting hydrodynamics research in laboratory conditions. It includes the description of the research cycle, applied wave theory and the measured data processing methods. A significant achievement presented in this paper is the originally developed data analysis algorithm for the practical improvement of the wave generation process.W artykule przedstawiono analizę danych przeprowadzoną na potrzeby procesu fizycznego modelowania fal oceanicznych w basenach falowych. Metodologia opracowana została w celu realizacji badań hydrodynamicznych. Uwzględnia ona opis cyklu badawczego, teorię falową oraz metody przetwarzania danych pomiarowych. Istotnym osiągnięciem jest autorski algorytm przetwarzania danych służący praktycznej poprawie procesu generowania fal

    Sensorless low speed PMSM control with cogging torque compensation

    No full text
    W pracy przedstawiono propozycję rozwiązania problemu bezczujnikowego sterowania wolnoobrotową maszyną synchroniczną z magnesami trwałymi PMSM. Przedstawiono silnik PMSM, który zastosowano w stanowisku badawczym. Omówiono problem występowania tętnień momentu napędowego wynikający głównie ze znacznego momentu zaczepowego. Pokazano rozwiązanie kompensujące tętnienia momentu napędowego w silniku PMSM. Przygotowano procedurę startową układu regulacji prędkości pozwalającą na uruchomienie napędu bez czujników prędkości i położenia. Do sterowania silnikiem użyto metodę sterowania polowo zorientowanego z regulatorami PI prądów stojana w osiach dq. Przedstawiono zależności nowej, prostszej wersji obserwatora stanu. Pokazano wyniki eksperymentów potwierdzających poprawne działanie napędu.The paper presents a possible implementation of a sensorless low speed permanent magnet synchronous machine (PMSM) control. The test setup for this purpose consists of an individual and programmable back-to-back voltage inverter and a PMSM with nominal power of 12 kW and nominal speed of 600 rpm. The impact of cogging torque oscillations is identified, which cause significant problems in the implementation of a Field Oriented Control for low speed PMSM. In order to handle this torque oscillation problem a compensation method is proposed as well. A start-up procedure for the control system was implemented that allows a motor start without any rotor angle and speed sensors. The presented control method is based on the Field Oriented Control with PI stator current controllers in dq axes. Furthermore, the equations of the applied state observer are shown. The observer estimates all of the control variables necessary using phase current measurement and the information of the desired stator voltage. All theoretical assumptions are verified with experimental results, which show the proper operation of the low speed PMSM drive

    Fierce selection and interference in B-cell repertoire response to chronic HIV-1

    No full text
    During chronic infection, HIV-1 engages in a rapid coevolutionary arms race with the host's adaptive immune system. While it is clear that HIV exerts strong selection on the adaptive immune system, the characteristics of the somatic evolution that shape the immune response are still unknown. Traditional population genetics methods fail to distinguish chronic immune response from healthy repertoire evolution. Here, we infer the evolutionary modes of B-cell repertoires and identify complex dynamics with a constant production of better B-cell receptor mutants that compete, maintaining large clonal diversity and potentially slowing down adaptation. A substantial fraction of mutations that rise to high frequencies in pathogen engaging CDRs of B-cell receptors (BCRs) are beneficial, in contrast to many such changes in structurally relevant frameworks that are deleterious and circulate by hitchhiking. We identify a pattern where BCRs in patients who experience larger viral expansions undergo stronger selection with a rapid turnover of beneficial mutations due to clonal interference in their CDR3 regions. Using population genetics modeling, we show that the extinction of these beneficial mutations can be attributed to the rise of competing beneficial alleles and clonal interference. The picture is of a dynamic repertoire, where better clones may be outcompeted by new mutants before they fix
    corecore