2,143 research outputs found

    Undulatory swimming in shear-thinning fluids: Experiments with C. elegans

    Get PDF
    The swimming behaviour of microorganisms can be strongly influenced by the rheology of their fluid environment. In this manuscript, we experimentally investigate the effects of shear-thinning viscosity on the swimming behaviour of an undulatory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer's kinematic data (including propulsion speed) and velocity fields. We find that shear-thinning viscosity modifies the velocity fields produced by the swimming nematode but does not modify the nematode's speed and beating kinematics. Velocimetry data show significant enhancement in local vorticity and circulation and an increase in fluid velocity near the nematode's tail compared to Newtonian fluids of similar effective viscosity. These findings are compared to recent theoretical and numerical results

    Radio Polarization of the Young High-Magnetic-Field Pulsar PSR J1119-6127

    Get PDF
    We have investigated the radio polarization properties of PSR J1119-6127, a recently discovered young radio pulsar with a large magnetic field. Using pulsar-gated radio imaging data taken at a center frequency of 2496 MHz with the Australia Telescope Compact Array, we have determined a rotation measure for the pulsar of +842 +/- 23 rad m^-2. These data, combined with archival polarimetry data taken at a center frequency of 1366 MHz with the Parkes telescope, were used to determine the polarization characteristics of PSR J1119-6127 at both frequencies. The pulsar has a fractional linear polarization of ~75% and ~55% at 1366 and 2496 MHz, respectively, and the profile consists of a single, wide component. This pulse morphology and high degree of linear polarization are in agreement with previously noticed trends for young pulsars (e.g., PSR J1513-5908). A rotating-vector (RV) model fit of the position angle (PA) of linear polarization over pulse phase using the Parkes data suggests that the radio emission comes from the leading edge of a conal beam. We discuss PSR J1119-6127 in the context of a recent theoretical model of pulsar spin-down which can in principle be tested with polarization and timing data from this pulsar. Geometric constraints from the RV fit are currently insufficient to test this model with statistical significance, but additional data may allow such a test in the future.Comment: 9 pages, including 6 figures and 1 table. Accepted for publication in Ap

    Chiral sedimentation of extended objects in viscous media

    Get PDF
    We study theoretically the chirality of a generic rigid object's sedimentation in a fluid under gravity in the low Reynolds number regime. We represent the object as a collection of small Stokes spheres or stokeslets, and the gravitational force as a constant point force applied at an arbitrary point of the object. For a generic configuration of stokeslets and forcing point, the motion takes a simple form in the nearly free draining limit where the stokeslet radius is arbitrarily small. In this case, the internal hydrodynamic interactions between stokeslets are weak, and the object follows a helical path while rotating at a constant angular velocity ω\omega about a fixed axis. This ω\omega is independent of initial orientation, and thus constitutes a chiral response for the object. Even though there can be no such chiral response in the absence of hydrodynamic interactions between the stokeslets, the angular velocity obtains a fixed, nonzero limit as the stokeslet radius approaches zero. We characterize empirically how ω\omega depends on the placement of the stokeslets, concentrating on three-stokeslet objects with the external force applied far from the stokeslets. Objects with the largest ω\omega are aligned along the forcing direction. In this case, the limiting ω\omega varies as the inverse square of the minimum distance between stokeslets. We illustrate the prevalence of this robust chiral motion with experiments on small macroscopic objects of arbitrary shape.Comment: 35 pages, 10 figures; Section VII.A redone and other edits made for clarity. Accepted by Phys. Rev.

    Multidimensional Data Visual Exploration by Interactive Information Segments

    Get PDF
    Visualization techniques provide an outstanding role in KDD process for data analysis and mining. However, one image does not always convey successfully the inherent information from high dimensionality, very large databases. In this paper we introduce VSIS (Visual Set of Information Segments), an interactive tool to visually explore multidimensional, very large, numerical data. Within the supervised learning, our proposal approaches the problem of classification by searching of meaningful intervals belonging to the most relevant attributes. These intervals are displayed as multi–colored bars in which the degree of impurity with respect to the class membership can be easily perceived. Such bars can be re–explored interactively with new values of user–defined parameters. A case study of applying VSIS to some UCI repository data sets shows the usefulness of our tool in supporting the exploration of multidimensional and very large data

    Anisotropic elasticity in confocal studies of colloidal crystals

    Full text link
    We consider the theory of fluctuations of a colloidal solid observed in a confocal slice. For a cubic crystal we study the evolution of the projected elastic properties as a function of the anisotropy of the crystal using numerical methods based on the fast Fourier transform. In certain situations of high symmetry we find exact analytic results for the projected fluctuations.Comment: 6 pages, 7 figure

    Effects of Autonomy on Worker Performance

    Get PDF
    Having autonomy can produce positive effects on an individual’s well-being as well as overall job-satisfaction. Research has shown that background music influences listener attention and is associated with the listeners fondness of the music (Huang & Shih, 2011). This study investigates the effects that autonomy may also have on performance levels in the workplace. Specifically, the effects of listening to music of preference and the effects it has on attention, concentration, and enjoyment of task. In this study worker autonomy is operationally defined as preferred genre of music. Performance will be measured by participants score on a recall task that mimics a medical scenario where a healthcare worker would have to recall specific patient information. We hypothesize that participants autonomy preferred background music will have a positive effect on worker performance. If the predicted results are found, this research could be beneficial to companies that are considering implementing new policies to encourage autonomy and in turn produce greater success in the workplace

    Reversible Motion In a Contact Line

    Get PDF
    When a body of liquid sits on a surface, an irregular border between the wet and dry regions of the surface exists, called the contact line. Driving this contact line back and forth repeatedly can change its shape.We use a syringe pump to cyclically infuse and withdraw a predetermined volume of water, and take photos of the contact line after each cycle. Comparing these images to each other determines if the contact line is returning to the same shape. We find that below a critical value of infused volume, after many cycles the contact line reaches a steady state in which it always returns to the same shape. Above that value the shape fluctuates in the steady state. This suggests a transition similar to that seen in other systems like particle suspensions and solids

    Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions

    Get PDF
    In the absence of inertia, a reciprocal swimmer achieves no net motion in a viscous Newtonian fluid. Here, we investigate the ability of a reciprocally actuated particle to translate through a complex fluid that possesses a network using tracking methods and birefringence imaging. A geometrically polar particle, a rod with a bead on one end, is reciprocally rotated using magnetic fields. The particle is immersed in a wormlike micellar (WLM) solution that is known to be susceptible to the formation of shear bands and other localized structures due to shear-induced remodeling of its microstructure. Results show that the nonlinearities present in this WLM solution break time-reversal symmetry under certain conditions, and enable propulsion of an artificial "swimmer." We find three regimes dependent on the Deborah number (De): net motion towards the bead-end of the particle at low De, net motion towards the rod-end of the particle at intermediate De, and no appreciable propulsion at high De. At low De, where the particle time-scale is longer then the fluid relaxation time, we believe that propulsion is caused by an imbalance in the fluid first normal stress differences between the two ends of the particle (bead and rod). At De~1, however, we observe the emergence of a region of network anisotropy near the rod using birefringence imaging. This anisotropy suggests alignment of the micellar network, which is "locked in" due to the shorter time-scale of the particle relative to the fluid
    corecore