1 research outputs found

    동적 λ©€ν‹°λͺ¨λ‹¬ 데이터 ν•™μŠ΅μ„ μœ„ν•œ 심측 ν•˜μ΄νΌλ„€νŠΈμ›Œν¬

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2015. 2. μž₯병탁.Recent advancements in information communication technology has led the explosive increase of data. Dissimilar to traditional data which are structured and unimodal, in particular, the characteristics of recent data generated from dynamic environments are summarized as high-dimensionality, multimodality, and structurelessness as well as huge-scale size. The learning from non-stationary multimodal data is essential for solving many difficult problems in artificial intelligence. However, despite many successful reports, existing machine learning methods have mainly focused on solving practical problems represented by large-scaled but static databases, such as image classification, tagging, and retrieval. Hypernetworks are a probabilistic graphical model representing empirical distribution, using a hypergraph structure that is a large collection of many hyperedges encoding the associations among variables. This representation allows the model to be suitable for characterizing the complex relationships between features with a population of building blocks. However, since a hypernetwork is represented by a huge combinatorial feature space, the model requires a large number of hyperedges for handling the multimodal large-scale data and thus faces the scalability problem. In this dissertation, we propose a deep architecture of hypernetworks for dealing with the scalability issue for learning from multimodal data with non-stationary properties such as videos, i.e., deep hypernetworks. Deep hypernetworks handle the issues through the abstraction at multiple levels using a hierarchy of multiple hypergraphs. We use a stochastic method based on Monte-Carlo simulation, a graph MC, for efficiently constructing hypergraphs representing the empirical distribution of the observed data. The structure of a deep hypernetwork continuously changes as the learning proceeds, and this flexibility is contrasted to other deep learning models. The proposed model incrementally learns from the data, thus handling the nonstationary properties such as concept drift. The abstract representations in the learned models play roles of multimodal knowledge on data, which are used for the content-aware crossmodal transformation including vision-language conversion. We view the vision-language conversion as a machine translation, and thus formulate the vision-language translation in terms of the statistical machine translation. Since the knowledge on the video stories are used for translation, we call this story-aware vision-language translation. We evaluate deep hypernetworks on large-scale vision-language multimodal data including benmarking datasets and cartoon video series. The experimental results show the deep hypernetworks effectively represent visual-linguistic information abstracted at multiple levels of the data contents as well as the associations between vision and language. We explain how the introduction of a hierarchy deals with the scalability and non-stationary properties. In addition, we present the story-aware vision-language translation on cartoon videos by generating scene images from sentences and descriptive subtitles from scene images. Furthermore, we discuss the meaning of our model for lifelong learning and the improvement direction for achieving human-level artificial intelligence.1 Introduction 1.1 Background and Motivation 1.2 Problems to be Addressed 1.3 The Proposed Approach and its Contribution 1.4 Organization of the Dissertation 2 RelatedWork 2.1 Multimodal Leanring 2.2 Models for Learning from Multimodal Data 2.2.1 Topic Model-Based Multimodal Leanring 2.2.2 Deep Network-based Multimodal Leanring 2.3 Higher-Order Graphical Models 2.3.1 Hypernetwork Models 2.3.2 Bayesian Evolutionary Learning of Hypernetworks 3 Multimodal Hypernetworks for Text-to-Image Retrievals 3.1 Overview 3.2 Hypernetworks for Multimodal Associations 3.2.1 Multimodal Hypernetworks 3.2.2 Incremental Learning of Multimodal Hypernetworks 3.3 Text-to-Image Crossmodal Inference 3.3.1 Representatation of Textual-Visual Data 3.3.2 Text-to-Image Query Expansion 3.4 Text-to-Image Retrieval via Multimodal Hypernetworks 3.4.1 Data and Experimental Settings 3.4.2 Text-to-Image Retrieval Performance 3.4.3 Incremental Learning for Text-to-Image Retrieval 3.5 Summary 4 Deep Hypernetworks for Multimodal Cocnept Learning from Cartoon Videos 4.1 Overview 4.2 Visual-Linguistic Concept Representation of Catoon Videos 4.3 Deep Hypernetworks for Modeling Visual-Linguistic Concepts 4.3.1 Sparse Population Coding 4.3.2 Deep Hypernetworks for Concept Hierarchies 4.3.3 Implication of Deep Hypernetworks on Cognitive Modeling 4.4 Learning of Deep Hypernetworks 4.4.1 Problem Space of Deep Hypernetworks 4.4.2 Graph Monte-Carlo Simulation 4.4.3 Learning of Concept Layers 4.4.4 Incremental Concept Construction 4.5 Incremental Concept Construction from Catoon Videos 4.5.1 Data Description and Parameter Setup 4.5.2 Concept Representation and Development 4.5.3 Character Classification via Concept Learning 4.5.4 Vision-Language Conversion via Concept Learning 4.6 Summary 5 Story-awareVision-LanguageTranslation usingDeepConcept Hiearachies 5.1 Overview 5.2 Vision-Language Conversion as a Machine Translation 5.2.1 Statistical Machine Translation 5.2.2 Vision-Language Translation 5.3 Story-aware Vision-Language Translation using Deep Concept Hierarchies 5.3.1 Story-aware Vision-Language Translation 5.3.2 Vision-to-Language Translation 5.3.3 Language-to-Vision Translation 5.4 Story-aware Vision-Language Translation on Catoon Videos 5.4.1 Data and Experimental Setting 5.4.2 Scene-to-Sentence Generation 5.4.3 Sentence-to-Scene Generation 5.4.4 Visual-Linguistic Story Summarization of Cartoon Videos 5.5 Summary 6 Concluding Remarks 6.1 Summary of the Dissertation 6.2 Directions for Further Research Bibliography ν•œκΈ€μ΄ˆλ‘Docto
    corecore