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Abstract

Recent advancements in information communication technology has led the ex-

plosive increase of data. Dissimilar to traditional data which are structured and

unimodal, in particular, the characteristics of recent data generated from dynamic

environments are summarized as high-dimensionality, multimodality, and struc-

turelessness as well as huge-scale size. The learning from non-stationary multi-

modal data is essential for solving many difficult problems in artificial intelligence.

However, despite many successful reports, existing machine learning methods have

mainly focused on solving practical problems represented by large-scaled but static

databases, such as image classification, tagging, and retrieval.

Hypernetworks are a probabilistic graphical model representing empirical dis-

tribution, using a hypergraph structure that is a large collection of many hyperedges

encoding the associations among variables. This representation allows the model

to be suitable for characterizing the complex relationships between features with a

population of building blocks. However, since a hypernetwork is represented by a

huge combinatorial feature space, the model requires a large number of hyperedges

for handling the multimodal large-scale data and thus faces the scalability problem.

In this dissertation, we propose a deep architecture of hypernetworks for dealing

with the scalability issue for learning from multimodal data with non-stationary

properties such as videos, i.e., deep hypernetworks. Deep hypernetworks handle

the issues through the abstraction at multiple levels using a hierarchy of multiple

hypergraphs. We use a stochastic method based on Monte-Carlo simulation, a graph

MC, for efficiently constructing hypergraphs representing the empirical distribution

of the observed data. The structure of a deep hypernetwork continuously changes

as the learning proceeds, and this flexibility is contrasted to other deep learning
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models. The proposed model incrementally learns from the data, thus handling

the nonstationary properties such as concept drift. The abstract representations

in the learned models play roles of multimodal knowledge on data, which are

used for the content-aware crossmodal transformation including vision-language

conversion. We view the vision-language conversion as a machine translation, and

thus formulate the vision-language translation in terms of the statistical machine

translation. Since the knowledge on the video stories are used for translation, we

call this story-aware vision-language translation.

We evaluate deep hypernetworks on large-scale vision-language multimodal

data including benmarking datasets and cartoon video series. The experimental

results show the deep hypernetworks effectively represent visual-linguistic infor-

mation abstracted at multiple levels of the data contents as well as the associations

between vision and language. We explain how the introduction of a hierarchy

deals with the scalability and non-stationary properties. In addition, we present

the story-aware vision-language translation on cartoon videos by generating scene

images from sentences and descriptive subtitles from scene images. Furthermore,

we discuss the meaning of our model for lifelong learning and the improvement

direction for achieving human-level artificial intelligence.

Keywords: Deep hypernetwork, Higher-order graphical model,

Nonstationary multimodal data, Multimodal concept learning,

Stochastic hypergraph construction, Incremental learning,

Vision-language translation

Student Number: 2006-21317
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Chapter 1

Introduction

1.1 Background and Motivation

The progress of information technology has rapidly increased the complexity as

well as the quantity of data. The paradigm of representing and deliverying in-

formation shifts from single modality to multimodal representations as shown in

Figure 1.1. A great many people use internet and social network services using

PCs, tablet PCs, and smart phones and their behaviors and thoughts are stored as

life-logs. Unlike conventional data that are relatively low-dimensional, structured,

numerical and unimodal, these data recently generated including videos, images,

and social network service logs can be summarized in terms of high-dimensionality,

structurelessness, and multimodality. In addition, they are continuously generated

from not static and stationary but dynamic and non-stationary environments. In

particular, the data generated by human behaviors are very helpful for studying and

modeling human beings. Therefore, the use of these complex multimodal data from

dynamic environments is essential for achieving human-level artificial intelligence

(Muggleton, 2014).

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Paradigm shift from static unimodal data to non-stationary multimodal

data

Machine learning has been successfully applied to various real-world applica-

tions for past three decades and recent advancement in machine learning have

led the great advancement in data mining and artificial intelligence. Emergence

of milestone methods such as Bayesian networks, support vector machines and

deep neural networks has helped other fields including industry, politics, natural

and social sciences to advance. However, many existing machine learning models

mainly focused on solving specific problems rather than developing generalized

solution such as knowledge construction. Moreover, the data on which the tradi-

tional methods are evaluated are mostly generated from static environments. Even

though incremental methods were introduced for learning from large-scale data,

many methods rarely consider the pattern changes implicated in the data as the

progress of time factors, i.e., concept drift, with multiple time frames. The learning

in short and long term resolutions is necessary for implementing lifelong learning

(Zhang, 2013) to reach human-level intelligences systems.
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1.2 Problems to be Addressed

Mutimodal learning is a method for finding the association rules by learning from

multimodal data. The association rules can be used for the knowledge on the data

as well as various applications such as image retrievals, image annotation, and

description generation. Since the semantics of the data are mainly represented

by the associations among more than three multimodal features including words,

phonemes and image patches rather than pair-wise feature relations, higher-order

models are suitable for characterizing the data contents. In addition, learning from

large-scale non-stationary data such as videos requires incremental methods which

can handle concept drifts implicated in the contents.

This dissertation proposes a higher-order probabilistic graphical model i.e., a

hypernetwork for learning from non-stationary multimodal data and focuses on

incrementally constructing and representing knowledge on the data while dealing

with concept drifts. Learning non-stationary multimodal data with hypernetworks

involves three technical issues as follows:

i) representing higher-order associations among multimodal features,

ii) exploring the huge combinatorial space representing a hypernetwork,

iii) learning from continuously increasing data while handling concept drifts.

In this dissertation, we used many numbers of the series of cartoon videos as

non-stationary multimodal data and addressed these three issues in learning the

model from the cartoon video data.

1.3 The Proposed Approach and its Contribution

We propose an advanced hypernetwork for learning the associations among visual-

linguistic features from large-scale non-stationary multimodal data and represent-
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ing multiple levels of multimodal features by introducing a hierarchical of multiple

hypergraphs, i.e. deep hypernetworks. As described in the previous subsection,

the learning of deep hypernetworks contains three technical issues. For handling

these issues, in this dissertation, we proposed three methods as follows:

i) the advanced model representation for visual-linguistic features

ii) the introduction of a hierarchy into hypernetworks for representing multiple

levels of features and a Monte-Carlo simulation-based stochastic method for effi-

ciently exploring a huge combinatorial feature space

iii) incremental learning based on sequential Bayesian update for tracing concept

drifts.

A hypernetwork represents multimodal associations by denoting vertices and

hyperedges to visual-textual features and higher-order connections between ver-

tices using a flexible hypergraph structure, i.e., multimodal hypernetwork. By

defining an image patch and a word as a visual and a textual node, a hyperedge en-

codes a semantic building block consisting of patches and words, and a multimodal

hypernetwork represent multimodal association rules with a large population of

many hyperedges to characterize the empirical distribution of observed multimodal

data.

Since hypernetworks are represented by a huge combinatorial space, it is al-

most infeasible to explore the space with an exhaustive search considering high-

dimensionality of multimodal data. For efficiently search the space of hypernet-

works, we use a stochastic method for constructing hypergraphs based on the

Monte-Carlo simulation, graph Monte-Carlo (graph MC). Graph MC constructs a

hypergraph by probabilistically selecting vertices based on observed data to gener-

ate hyperedges. Also, learning from large-scale data generally causes the scalability

problem because it requires huge number of hyperedges. As an alternative, we in-
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Figure 1.2: Improvement of the proposed models in this dissertation

troduce a deep architecture into the hypernetworks using a hierarchy of multiple

hypergraphs, a deep hypernetwork, instead of the increase of the amount of hy-

peredges. Nodes in upper layers encode higher-level features, vice versa. Deep

hypernetworks are different from other deep network models such as deep neural

networks and deep Boltzmann machines in terms of the flexibility of the model

structure. While nodes are fully connected between layers in conventional deep

networks, the connectivity and the number of nodes of deep hypernetworks are

sparse and flexibly change as the learning proceeds. This sparse and hierarchi-

cal structure reduces the model complexity, pursuing a parse modular hierarchical

structure, as found in human brains (Quiroga, 2012).

Deep hypernetwork incrementally learns the knowledge by the graph MC and

the weight update process while observing new data, thus robustly tracing concept

drift and continuously accumulating new knowledge. This process is formalized

as a sequential Bayesian inference. Finally, the learned model represents a hierar-

chy of high-level features, which can be considered as concept knowledge on the

observed data. In this dissertation, using cartoon videos as the data, deep hyper-

networks models concept hierarchies on the video contents and the constructed
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Figure 1.3: Main results and used data for the proposed models

knowledge are used for tasks of converting between vision and language consider-

ing the contents. For achieving this, we formulate the vision-language conversion

considering the contents in terms of the statistical machine translation, story-aware

vision-language translation.

Figure 1.2 presents the improvement of the proposed models in this dissertation

and Figure 1.3 summarizes the main experimental results.

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows:

• Chapter 2 presents a survey of the related work. Firstly, we discuss stud-

ies on multimodal learning. In particular, we summarize two representative

methods for multimodal learning; non-parametric approach using topic mod-
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els and deep learning-based models. Next, we explain hypernetworks as a

higher-order model and the evolutionary learning method for hypernetworks

in brief.

• In Chapter 3, we propose a multimodal hypernetwork which is extended to

represent higher-order associations among visual and linguistic features and

apply to text-to-image retrieval. The proposed multimodal hypernetwork.

By defining image patches and words as vertices, multimodal hypernetworks

characterize the association rules with the population of hyperedges encoding

higher-order relationships between small images and words. The proposed

model incrementally learns the associations from large-scale database of im-

ages with description. Given textual words, the query is transformed into

visual words by visual-textual crossmodal query expansion. We evaluate the

proposed method on SBU photograph data. The experimental results present

that the proposed method achieves very competitive retrieval performances

compared to a baseline method. Moreover, we demonstrate that our method

provides robust text-to-image retrieval results for the increasing data.

• Chapter 4 shows a deep hypernetwork using a hierarchy of hypergraphs for

representing concept hierarchies and handling concept drifts implicated in

multimodal data. We propose the graph MC for efficiently learning deep hy-

pernetworks. Using the graph MC, deep hypernetworks learns the concept

hierarchies by flexibly changing the structure and the weights of hyperedges

are incrementally updated to robustly trace concept drifts, which are formu-

lated in terms of Bayesian inference. For evaluation, we use cartoon videos

called ”Pororo” as multimodal data and present the emergence and evolution

of visual-linguistic concepts of the videos as the stories unfold. Also, we

investigate how the deep architecture and the learning strategy of the graph
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MC influence on the learning.

• In Chapter 5, we propose a method for story-aware vision-language transla-

tion based on the knowledge constructed by learning of deep hypernetworks.

The story-aware translation transforms between scene images and subtitles

considering the story contents learned and this process is formulated in terms

of the statistical machine translation. We also evaluate the proposed method

on ”Pororo”. Experimental results present that our method precisely trans-

lates the scenes into the subtitles and vice versa, reflecting observed video

contents. In addition, investigate how the deep architecture and the learning

strategy of the graph MC influence on the translation performance.

• This dissertation is summarized and directions for further research are dis-

cussed in Chapter 6.



Chapter 2

Related Work

2.1 Multimodal Leanring

Multimodal learning is a method based on statistical machine learning for associ-

ating between two or more modal representation from multimodal data such as

video, audio, and images. The research on multimodal associations have been

studied for investigating human cognitive mechanisms, functional connectivity of

brains, and psychological diseases in cognitive science (Mesulam, 1998; Zimmer-

man and Zeller, 1992; Meltzoff, 1990; Rioux and Van Meter, 1990) and neuroscience

(Andersen et al., 1997; Halgren et al., 1994; Mesulam, 1994; Besson et al., 1990) since

the early 1990s. These studies were mainly based on human experiments and made

the great contributions to understand human cognition and brain function. Since

the 2000s, many studies in computational cognitive and brain sciences mainly ad-

dressed the mulitmodal associations in terms of the Bayesian inference (Lee, 2011;

Goodman et al., 2008; Kemp et al., 2006; Tenenbaum, 1999), related to the grounded

theory of human cognition (Kiefer and Barsalou, 2012).

Apart from these scientific issues, the explosion of multimodal data enhance the

9
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importance of multimodal learning by which the information found can be used

for more valuable applications and real-world problems in information retrieval

(Carpineto and Romano, 2012), recommendation (Mei et al., 2011), and decision-

making support (Fearon et al., 2012). Furthermore, multimodal learning is essential

for learning and predicting human behaviors from log data generated by diverse

sensors including body, emotion, and movement sensors (Gemmell et al., 2006;

Eagle and Pentland, 2006), which is a key method for lifelong learning (Yu et al.,

2014; Zhang, 2013) to achieve human-level artificial intelligence (Muggleton, 2014).

Therefore, many conventional machine learning methods have been improved to

efficiently deal with multimodal data such as Bayesian non-parametric methods

(Blei, 2012), matrix factorization-based methods (Nikitidis et al., 2012; Caicedo et al.,

2012), Markov networks (Karimaghaloo et al., 2012; Fan et al., 2011) and deep

learning models (Kiros et al., 2014; Socher et al., 2013; Srivastava and Salakhutdinov,

2012), thus showing successful applications.

The rest of this chapter summarize state-of-the art models for multimodal learn-

ing and we discuss their characteristics and the limitations in brief.

2.2 Models for Learning from Multimodal Data

In this section, we summarize two approaches used widely for learning multimodal

associations. One is approaches using topic models based on latent Dirichlet allo-

cation (LDA) and the other is deep learning-based methods. Two models belong

to probabilistic graphical models where associations between multimodal variables

are defined as a probability and one representation is transformed into the other

modality by inference processes.
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Figure 2.1: Graphical representation of the LDA model (a) and the corr-LDA model

(b). Gray boxes denote observable variables.

2.2.1 Topic Model-Based Multimodal Leanring

A topic model is a statistical model for finding the topics, abstract variables, which

occur in data and it was used for text mining from a collection of documents in early

time. Although early topic models were proposed in the late 1990s (Hofmann, 1999;

Papadimitriou et al., 1998), the most common methods are latent Dirichlet alloci-

ation (LDA) proposed by Blei et al. (Blei et al., 2003) and its extended models. In

LDA, each document is viewed as a mixture of many topics, which are represented

as latent variables. Each topic has probabilities of generating words in documents

and two different topics have the different probability distributions of words from

each other. A topic is not strongly defined semantically in many cases but used

for the basis on the labels in supervised learning. Figure 2.1(a) shows the plate

notation of the standard LDA model. In Figure 2.1, z and w are topic and word

variables. α and β denote the parameters of the Dirichlet prior on the per-document

topic distribution and the per-topic word distribution, respectively. θ is the topic
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distribution for a document.

An LDA model was extended to model multimodal data such as annotated

images by adding an additional plate including topics and observable variables

into the model, i.e. corresponce-LDA (corr-LDA)(Blei and Jordan, 2003). Figure

2.1(b) presents the graphical representation of the corr-LDA model. In Figure

2.1(b), z and y denote the topics of images and words. In addition, r and w are

small regions of an image regions and words. Each image region is represented as

a real-valued vector of multiple visual properties and µ and σ are the mean and

the standard deviation of the feature values. As shown in Figure 2.1(b), words are

determined by the image topic as well as the word topic and the number of regions

influences on the word topic in corr-LDA. These dependencies allow the model

to associated with images and annotation words. LDAs were extended into an

nonparametric model including hierarchical Dirichlet process mixture models (Teh

et al., 2006) to applied mutimodal data recognition (Li and Fei-Fei, 2010; Guo and

Wang, 2013), image annotation (Nguyen et al., 2013; Feng and Lapata, 2013), and

cognitive modeling (Austerweil and Griffiths, 2013; Paddock and Savitsky, 2013).

Recent LDA-based topic models have been applied to video classification (Fu

et al., 2014), object discovery in video frames (Zhao et al., 2013a), action recognition

(Zhao et al., 2013b) and video pattern analysis (Jeong et al., 2014). These methods can

be useful in real-world application such as video recommendation on the web and

surveillance systems. However, topic models are difficult to intuitively understand

what a topic means since the topics are not explictly identified. Therefore, it is

not easy to extract and represent knowledge on the data contents from the learned

models. In addition, it is not easy to apply incremental learning method because

the models use a fixed model structure.
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2.2.2 Deep Network-based Multimodal Leanring

Deep learning is one of the most successful methods in machine learning for the

past ten years. It is algorithms which try to model high-level abstractions in data

by introducing the hierarchical architecture composed of multiple non-linear trans-

formation (Bengio et al., 2013). In addition, deep learning is a method based on

learning representations of data to make it easier to learn tasks of interest, i.e.,

distributed representations.

Diverse deep learning method such as deep neural networks (LeCun et al., 1989),

deep belief networks (Hinton, 2009; Le Roux and Bengio, 2008), deep Boltzmann

machines (DBM) (Salakhutdinov and Hinton, 2012) and convolutional neural net-

works (Lawrence et al., 1997) have reported successful applications in computer

vision, speech recognition, and natural language processing. A deep neural net-

work (DNN) is an artificial neural network with multiple layers. General deep

neural networks are typically designed as a feedforward network but recent stud-

ies on recurrent neural networks using deep learning architecture have reported

successful applications as language models (Mikolov et al., 2010). Deep belief net-

works (DBN) are a generative probabilistic graphical model consisting of multiple

layers of hidden units (Hinton, 2009). A DBN is efficiently trained in an unsuper-

vised and layer-by-layer manner where the layer consists of restricted Boltzmann

machines (RBM), which is an undirected and generative energy-based model with

an input and single hidden layer. There is no connection between nodes of the

same layer in an RBM. An RBM is trained based on contrastive divergence (CD)

which provides an approximation to the maximum likelihood method. Once an

RBM is tranied, another RBM is stacked to build a multilayer RBMs. Whenever

the RBM is stacked, the input layer is initialized to a training vector and values

for the units in the already-trained RBM layers. A convolutional neural network
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(a) Multimodal deep Boltzmann machine (b) Multimodal neural language model

Figure 2.2: Graphical representation of the multimodal deep Boltzmann machine

(a) and the multimodal neural language model (b)

(CNN) is a feed-forward network where the neurons are connected in such a way

that they respond to overlapping regions in the visual field. CNNs consists of

multiple layers of neuron collections corresponding to small portion of input im-

ages, called receptive fields. In particular, CNNs have been successfully applied in

computer visions (Ji et al., 2013; Lauer et al., 2007; Phung and Bouzerdoum, 2007;

Le Callet et al., 2006). Recent studies on deep learning models have been used for

learning the associations between vision and language. Srivastava et al. proposed

multimodal deep Boltzmann machines (MDBM) for associating images with texts

(Srivastava and Salakhutdinov, 2012). MDBMs consist of two DBMs dedicated to

images and texts and one DBM for joint representation of two modalities as shown

in Figure 2.2(a). The mulimodal DBM was applied to image classification, text-to-

image retrieval, and image annotation on a large-scale image databse (Huiskes and
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Lew, 2008). Socher et al. proposed a zero-shot learning method method based on

crossmodal transfer learning using deep network models and applied the model to

image classification (Socher et al., 2013). Beyond image classification and annota-

tion, the method for generating the sentences describing images was proposed by

Kiros et al., called multimodal neural langauge model (Kiros et al., 2014) as shown

in Figure 2.2(b). Ngiam et al. proposed a multimodal deep network for associating

between video and audio and applied the model to video and audio reconstruction

(Ngiam et al., 2011).

Despite many successful reports of deep learning models, their distributed rep-

resentation makes the interpretation of the model difficult, thus being not suitable

for representing knowledge. Also, they are not easy to apply incremental learning

methods due to their fixed model structures.

2.3 Higher-Order Graphical Models

We generally assume pairwise relationships among the objects of our interest in

machine learning problem setting. An object set endowed with pairwise relations

can be naturally described as a graph, in which the vertices represent the objects,

and two vertices related to each other are joined together by an edge. However, in

many real-world problems, relationships among the objects are more higher-order

than pairwise (Borgatti et al., 2009), and thus representing a set of their complex

relationships as general undirected or directed graphs may not be complete. A

higher-order model uses higher-order units as features . While linear models are

difficult to reflect high order dependency embodied in the data, higher-order models

can represent higher-order relationships, thus fitting the complex solution spaces

including nonlinearity. A higher-order unit can be defined to a feature represented

with patterns or function values derived from raw attributes of given data (Roddick
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et al., 2008; Lehár et al., 2008).

In this dissertation, we use an higher-order unit represented with a conjunction of

attribute values of data, and a population of the units as a higher-order model. This

conjunction-based unit representation enhances the interpretability of the models

more compared with units based on numerical functions. Also, the individual and

the population in our study can be represented with a hyperedge and a hypergraph.

2.3.1 Hypernetwork Models

Hypergraphs (Berge, 1984; Zhou et al., 2006)are a generalized graph in terms of the

power of representation in graph theory. Whereas an edge in conventional graphs

only represents a bi-relationship between two vertices, an edge in a hypergraph-a

hyperedge-can connect two or more vertices concurrently. Formally, a hypergraph

is defined as G = (V,E), where V and E are a set of vertices v and a set of hyperedges

e, respectively. A hyperedge is a subset of V and it has a weight, . Let d(v) and δ(e)

denote the degree of a vertex and a hyperedge, respectively. We define an indicator

function h(v, e) which returns 1 if v is an element of e and 0, otherwise. Then, the

degrees, d(v) and δ(e) are defined as

d(v) =
∑

e∈E
w(e)h(v, e) and δ(e) = |e| (2.1)

where |e| is the cardinality (size) of e. A hyperedge of degree δ(e) = k is called a

k-hyperedge. Higher-degree hyperedges characterize more specific patterns while

lower-degree ones include more general information. When a hypergraph consists

of k-hyperedges only, we call it a k-uniform hypergraph or k-hypergraph. Then,

we can consider a conventional graph as a 2-hypergraph. Hypergraphs have been

applied to modeling a variety of problems such as clustering (Zhou et al., 2006), text

mining (Hu et al., 2008), multimedia mining (Tan et al., 2008), bioinformatics (Klamt
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et al., 2009), and building Markov logic networks (MLNs) (Kok and Domingos,

2009).

Hypernetworks (Zhang, 2008) are a higher-order model using a hypergraph

structure. A vertex in a hypernetwork is defined as a pair of a data variable and

its value, and a hyperedge corresponds to an arbitrary higher-order connection

among vertices. The weight of a hyperedge reflects the strength of its connectivity.

Since a hypernetwork is the population consisting of large number of hyperedges,

therefore, the model characterizes higher-order relations among the variables. This

hypernetwork representation provides the model with two advantages: flexible

structure and interpretability. A hypernetwork has a very flexible structure com-

pared to Genetic Programming (Koza, 1992) and neural trees (Zhang et al., 1997)

because the degrees of hyperedges vary in the model and it is easy to add or re-

move new vertices and hyperedges into or from the model. In addition, connections

among vertices allow the significant relationships to be easily extracted from the

learned model by visualization. Since the hypernetwork was initially proposed as

a simulation model for DNA molecular computing (Zhang and Jang, 2005a,b), they

have been successfully used for diverse problems such as bioinformatics (Kim et al.,

2013, 2010; Ha et al., 2007), pattern recognition (Kim and Zhang, 2007), disease pre-

diction (Kim et al., 2014), multimodal information retrieval (Ha et al., 2010, 2009b),

cortical data analysis, and cognitive modeling (Kim et al., 2011; Ha et al., 2009a)

(Lee et al., 2013; Zhang et al., 2012).

A hypernetwork is a large population of many hyperedges including the class

label and variable-value pairs. Formally, a hypernetwork is defined as a triple

H = (V,E,W), where W denotes a hyperedge weight set. A hyperedge in a hyper-

network is the set of two or more vertices including the class label:

ei = {vi1, vi2, vi3, ..., vi|ei|, yi}, (2.2)
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where yi is the class label of the i-th hyperedge ei. This definition enables a

hyperedge to be considered as a decision rule. The weights of hyperedges reflect

their discriminative capability with respect to the class label. Thus, a hyperedge

can be regarded as a weak learner characterizing the partial pattern necessary for

classification, so a hypernetwork is an ensemble consisting of many weak learners.

Fig. 1 shows the population of hyperedges and its corresponding hypergraph

structure. When the n-th data instance x(n), a class label set Y, and a hypernetwork

H are given, the class label of the instance is then classified as whose weighted sum

of hyperedges matched to x(n) is largest among the elements of Y. Specifically, we

determine the class label as follows:

1. Calculate the total weight w̃y as the summation of weights for y ∈ Y with all

hyperedges in the hyperedge set E such that

w̃y =

|E|∑
i=1

{
w(ei) f (x(n), ei)ϕ(y, yi)

}
, (2.3)

where w(ei) denotes the weight of ei.

2. Predict ŷ(n) as the label of x(n) that has the largest total weight:

ŷ(n) = arg max
y∈Y

w̃y (2.4)

f (x(n), ei) andϕ(y, yi) are a matching function and an indicator function which return

1 if ei matches x(n) and if y(n) = yi, respectively as follows:

f (n)
i = f (x(n), ei) =

 1, if exp
{
c(x(n), ei) − δ(ei)

}
> θ

0, otherwise
, (2.5)

ϕ(n)
i = ϕ(y(n), yi) =

 1, ify(n)=yi

0, otherwise
, (2.6)
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Figure 2.3: An example of a hypernetwork and its term

where c(x(n), ei) denotes matching number, the number of hyperedge variables

whose value is equal to the value of their corresponding variables in x(n). θ is

the matching threshold and plays the role of a smoothing factor, enhancing ro-

bustness against data noise by allowing partial matching. Figure 2.3 presents an

instance of hypernetworks and their terms.

2.3.2 Bayesian Evolutionary Learning of Hypernetworks

Hypernetworks use an evolutionary algorithm for learning from data. As shown

in Figure 2.4(a), the evolutionary algorithm for learning hypernetworks consists

of generating hyperedges, updating the weight of hyperedges, and evaluating the

model. When a training dataset is given, hyperedges are generated to construct

an initial hypernetwork. The weight of hyperedges is calculated by matching the

hyperedges with the training instances. After updating the weights, the fitness

value of model is estimated by classifying the training set. Then, the model is

evolved by replacing low weighted hyperedges with newly generated ones at every
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Figure 2.4: Overall procedure for learning Bayesian evolutionary hypernetworks.

(a) presents the flow of learning hypernetworks with a functional level. (b) explains

the evolution of hypernetworks from an Bayesian point of view.

generation. This evolutionary learning of hypernetworks can be defined as in

terms of the sequential Bayesian inference and we call it Bayesian evolutionary

computation.

Bayesian evolutionary computation (BEC) views evolutionary computation as

a sequential Bayesian sampling process which transmits information from prior to

posterior with likelihood estimation based on fitness measurements (Zhang, 2000).

The evolved model in the posterior then plays the role of the empirical prior in

the next generation. A hypernetwork is learned by BEC and is called a Bayesian

evolutionary hypernetwork (BEHN) (Ha et al., 2014c; Kim et al., 2014). BEC assumes

that the posterior and the prior are represented as the current and the previous

populations. Specifically, the model fitness is defined as the posterior probability

which reflects both data-discrimination capability and the model complexity. This

definition of the fitness allows the model to efficiently search the huge space and to

adaptively determine the model complexity in BEHNs.
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Let Ht be a BEHN at the t-th generation. For a dataset D, the posterior distribution

of Ht is given by Bayes’ rule as follows:

p(Ht|D) =
p(D|Ht)p(Ht)

p(D)
(2.7)

For a classification problem, the dataset is decomposed as D = (X,Y), where X = {x(n)
}
N
n=1

and Y = {y(n)
}
N
n=1. Then, the classification rule is given as the conditional probability:

p(Ht|X,Y) =
p(Y|X,Ht)p(Ht|X)

p(Y|X)
(2.8)

where p(Y|X,Ht) and p(Ht|X) are called the likelihood and the prior, respectively.

Also, p(Y|X) is a normalizing constant since it is not a function of Ht. Thus, the

posterior distribution is proportional to the product of the likelihood and the prior:

p(Ht|X,Y) ∝ p(Y|X,Ht)p(Ht|X) . (2.9)

We define the fitness Ft of Ht as the logarithm of the posterior so that the evolutionary

process is to maximize it:

Ft = log p(Y|X,Ht) + log p(Ht|X) and H∗ = arg max
Ht

Ft (2.10)

Figure 2.4(b) illustrates the evolving process of BEHNs with the perspective of

BEC. The likelihood is defined as the conditional probability of correctly classifying

Y from a model H and X and is considered as the discriminative capability. For

estimating the likelihood, we assume that the discriminative capability grows by

increasing the difference of the weighted summation between the correctly matched

hyperedges and the incorrectly matched hyperedges for all training data. Also, the

prior is defined to prefer less complex model structure, which means a model con-

sisting of smaller number of hyperedges. The iteration of sequential Bayesian evo-

lutionary process thus finds optimal composition and number of the hyperedges,

that is, a hypernetwork that increases the classification accuracy while keeping
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the model complexity as sparse as possible. Although BEHNs represent higher-

order feature relations and efficiently learn from high-dimensional data, they have

focused on classification problems using supervised learning as a discriminative

model rather than a generative model.



Chapter 3

Multimodal Hypernetworks for

Text-to-Image Retrievals

3.1 Overview

Text-to-image (T2I) retrieval (Datta et al., 2008) involves getting images from text

queries and it has been actively studied because of its diverse applications including

content-based image retrieval (Datta et al., 2008; Smeulders et al., 2000) and article

or video searching (Feng et al., 2004). Various approaches have been applied to

associate textual and visual modalities for T2I retrieval. Feng et al. used multiple

Bernoulli model for image retrieval (Feng et al., 2004) and Zhang et al. applied

Bayesian framework to learning latent semantic models for T2I retrieval (Zhang

et al., 2005). Li et al. proposed multi-instance learning method using loosely

labeled images for image retrieval (Li et al., 2011). Because the sizes of text and

visual vocabularies increase continuously due to the growth of multimodal data,

however, T2I retrieval models should facilitate to deal with these increasing data for

their practical usages, thus requiring an incremental learning method. However,

23
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most of the models for T2I retrieval assume the vocabulary sizes are fixed like

bag of words and they use batch approach-based learning methods (Feng et al.,

2004; Zhang et al., 2005; Li et al., 2011). Therefore, these models are not easy to be

practically applied to data-increasing environments since this fixed vocabulary size

has a limitation in representing new multimodal image data including unobserved

textual words and new visual features.

In this chapter, we propose a T2I retrieval method based on a textual-visual

association model which can efficiently treat increasing data (Ha et al., 2012). For

the multimodal association, we use a hypernetwork (HN), which is a higher-order

probabilistic graphical model using hypergraph structure (Zhang, 2008). In HNs,

a vertex denotes a textual word or a visual feature and a hyperedge represents a

multimodal subpattern of textual-visual data by connecting more than two vertices.

Therefore, HNs can represent the higher-order associative relationships among

textual and visual modalities. Learning HNs consists of generating hyperedges

which reflect the relationships embodied in the given data and updating the weights

of the hyperedges. This learning process is formulated by a sequential Bayesian

framework. Whenever an image with a description is observed, new hyperedges

are generated from the image by random selection-based evolutionary method and

they are added into the HN. Then, the weights of the hyperedges of the model

are updated by predicting and correcting the observed image, with comparing the

subpattern of each hyperedge with the image and its description. Therefore, the

weights are to reflect the associative strength of the hyperedge for predicting the

images and descriptions. Especially, HNs can incrementally learn the increasing

data by simply adding unobserved textual words and visual features involved in

new data as new vertices into the model and generating hyperedges including them.

When a text query is given, the query is expanded to a visual query consisting of
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Figure 3.1: Overall flow of text-to-image retrieval using incrementally learned mul-

timodal hypernetworks

visual patches associated with the textual query by the learned HNs. By measuring

the similarity between the expanded visual query and stored images, images are

retrieved semantically related to the given text query. Figure 3.1 describes the

proposed framework of T2I retrieval using HN models.

We apply the HN-based T2I retrieval method to retrieve about 3,000 images from

Flickr.com for evaluation. In this study, several visual patches are extracted from

an image by maximally stable external regions (MSER) (Matas et al., 2004) and the

extracted patches are represented with 500 scale-invariant feature transform (SIFT)

features (Lowe, 2004). Also, the image descriptions are represented with about

2,800 textual words. The experimental results present that our method shows good

retrieval performances over a baseline method based on the co-occurrence of textual

words and visual features. Moreover, we demonstrate that the proposed method

provides robust T2I retrieval results with reflecting the increase of the data.
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3.2 Hypernetworks for Multimodal Associations

3.2.1 Multimodal Hypernetworks

The previous works proposed a method for multimodal associations between texts

and images (Ha et al., 2009b, 2010). However, they contains the semantic gap

problem because the models use gray-scale pixels and SURF histrogram vectors as

visual features, respectively. For solving this problem, we use small image patches

as more semantic visual features. Then, an HN can be used as a multimodal associ-

ation model by defining vertices to textual words or image pathces and hyperedges

to associative relationships among textual and visual features (Zhang et al., 2012).

The advantages of HNs as a multimodal association model are summarized as

follows: i) Representation of multimodal association based on higher-order rela-

tionships among textual and visual features, ii) Robust and flexible model structure

suitable for incremental learning, iii) Crossmodal inference based on higher-order

associative strength for text-to-image retrieval. Figure 3.2 illustrates hyperedges

generated from a captioned image. As shown in Figure 3.2, each hyperedge rep-

resents a higher-order visual-textual association by consisting of the several visual

and textual subpatterns. Moreover, the HN has the flexible model structure for

incremental learning because new textual words and visual patches involved in

unobserved data are added as new vertices and the relationships between the new

vertices are included as new hyperedges into the model. When a captioned image

dataset D = {(xT, xI)(n)
}
N
n=1, where xT denotes the set of textual words in an image

description and xI is the set of visual patches comprising the image, is sequentially

given, an HN can be formally considered as a mixture model of many hyperedges

and the empirical distribution is represented with the model:
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Figure 3.2: Hyperedges consisting of three texutual words and two visual pateches

from a textual-visual data instance (a captioned image)

p(xT, xI|H) =
∑
e∈E

w(e) f (xT, xI|e) (3.1)

s.t.

0 < w(e) < 1 and
∑
e∈E

w(e) = 1

,

where H denotes an HN model, w(e) denotes the weight of a hyperedge e, and

f (xT, xI|e) is the density function. Then, the likelihood of the model is the probability

of regenerating the observed data from the model and it is defined to this empirical

distribution:
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p(D|H) ≈ p(xT
(1), xI

(1), xT
(2), xI

(2), ..., xT
(N), xI

(N)
|H)

=

N∏
n=1

p((xT, xI)(n)
|H) =

N∏
n=1

∑
e∈E

w(e) f (xT, xI|e) (3.2)

where xT
(n) and xI

(n) denote the textual description and the image of the n-th cap-

tioned image, respectively.

3.2.2 Incremental Learning of Multimodal Hypernetworks

Whenever observing an unseen descripted image (xT,xI), an HN is learned incre-

mentally by predicting the image and updating the weight of the hyperedges. This

learning procedure can be formulated by Bayes rule:

p(Hn|xT, xI) =
p(xT, xI|Hn)p(Hn)

p(xT, xI)
(3.3)

where Hn denotes the HN at time step n. By this rule, the prior P(Hn) is updated

to the posterior P(Hn|xT, xI) by estimating the likelihood P(xT, xI|Hn) and by nor-

malized with P(xT, xI). The posterior is then used as the prior P(Hn + 1) at the next

time step n+1. Reformulating this process recursively using all time steps on the

sequence of n data, the above equation is described:

p(Hn|xT
(1:n), xI

(1:n)) =
p(xT

(n), xI
(n)
|Hn)p(Hn−1|xT

(1:n−1), xI
(1:n−1))

P(xT(n), xI(n)|xT(1:n−1), xI(1:n−1))
(3.4)

p(Hn|xT
(1:n), xI

(1:n)) ∝ p(xT
(n), xI

(n)
|Hn)p(Hn−1|xT

(1:n−1), xI
(1:n−1)) (3.5)

where xT
(1:n) and xI

(1:n) denote the sequential stream of n textual-visual data. The

posterior is estimated by predicting the new image with both hyperedges generated
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from the new observed image and hyperedges of Hn − 1 learning n-1 images. Each

hyperedge is generated by randomly selecting visual patches of the given image

and textual words of the description. This generation method assures that there

always exists the subpattern involved in the hyperedge in the data. The details of

generating hyperedges are explained in (Zhang et al., 2012) and (Ha et al., 2010).

The weights of the hyperedges are updated by the prediction of the new observed

image:

wn(e) = ηg(e, (xT, xI)(n)) + (1 − η)wn−1(e) (3.6)

= ηgT(eT, xT
(n)) · gI(eI, xI

(n)) + (1 − η)wn−1(e) (3.7)

s.t.

gT(eT, xT) = |eT ∩ xT|

and

gI(eI, xI) = α
∑
u∈eI

max
v∈xI

A(u)A(vT)

‖A(u)‖10
+ (1 − α)

∑
u∈eI

∑
v∈xI

c(u,v)

where is the constant for the current image, and eT and eI denote the sets of textual

words and visual patches included in hyperedge e, respectively. Also, u and v

denote the visual patches of eI and xI, respectively, A(u) is the function which

returns the occurrence vector of SIFT features of u, and denotes L0-norm of A(u),

the number of non-zero variables of A(u). In addition, we add c(u,v) for reflecting

the color similarity between two patches because SIFT does not consider a color

property.

3.3 Text-to-Image Crossmodal Inference

An HN facilitates to translate text to image and vice versa by crossmodal inference

because the model is the population of textual-visual associative subpatterns. In
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this paper, we focus on text-to-image translation for image retrieval from textual

queries.

3.3.1 Representatation of Textual-Visual Data

The description sentences are represented to the subsets of textual word set used

in the training image descriptions by stemming and eliminating the stop words.

An image is represented to the set of several visual patches that are extracted

by combining two image processing methods: maximally stable external regions

(MSER) (Matas et al., 2004) and scale-invariant feature transform (SIFT) (Lowe,

2004). MSER is a method for detecting an invariant stable subset of external regions

of the images and SIFT is a method for extracting the distinctive invariant features

from the images. The given images are separately represented to the several external

regions by MSER and the set of salient features by SIFT. The regions are then

represented with the vectors of the SIFT features using their locality information and

we use the SIFT-based regions as the visual patches. For effectively representing the

visual patches with SIFT features, k-means clustering method is used in this study

because there are few features shared by the regions when images are represented

with raw SIFT features. For incremental learning, in addition, the visual patches

of a new image are represented with the clustered SIFT features of the observed

images by using the clustered features as the centroids for k-means method and

by clustering the raw features of the new image with the centroids. Figure 3.3

illustrates the flow of converting an image into a visual patch set.

3.3.2 Text-to-Image Query Expansion

Text-to-image retrieval formally involves calculating the retrieved probability of an

image xI when a learned model H and a textual query xT are given using (3.2):
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Figure 3.3: Flow of constructing visual patches from a given image with MSER and

SIFT, two feature extraction methods. Boxes and circles denote the external regions

extracted by MSER and the salient features by SIFT, respectively

p(xI|xT,H) =
p(xT, xI|H)

p(xT|H)
∝

∑
e∈E

w(e) f (xT, xI|e) (3.8)

Then, the images related to the given textual words are selected as follows:

I∗ = arg max
xI

p(xI|xT,H) = arg max
xI

∑
e∈E

w(e) f (xT, xI|e) . (3.9)

When textual words are given as a query, in order to find I∗, we use the textual-

to-visual query expansion method and several images are selected as the candidates

of I* which are most similar to the visual query crossmodally expanded from the
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Figure 3.4: Flow of the crossmodal query expansion from the given textual query

to the visual query

given textual query. Thus, (3.9) is reformulated by substituting xT for the textual

query Q as follows:

I∗ = arg max
xI

∑
e∈E

w(e) f (Q, xI|e) ≈ arg max
xI

δ(Î, xI) (3.10)

where Î denotes the visual query expanded from Q and δ(Î, xI) denotes a similarity

function. Formally, a visual query Î is defined to the set of visual patches involved

in hyperedges including the elements of the textual query Q =
{
q1, . . . , q|Q|

}
:

Î =
⋃
e∈E

{u|u ∈ e, e ∈ E,Q ∩ e , ∅} (3.11)

where u denotes visual patches. Figure 3.4 illustrates an example of the crossmodal

query expansion from the textual query to the visual query. Then, the candidate

images are retrieved by measuring the similarity between the expanded visual
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query and the stored images. The similarity is estimated by summing the similarity

among the patches involved in Î and xI:

δ(Î, xI) =
1
|xI|

∑
v∈xI

∑
u∈Î

w(u)s(u, v) (3.12)

s.t.

s(u, v) =

 gI(u, v), i f gI(u, v) > θ

0, otherwise

and

gI(u, v) = α
A(u)A(vT)

‖A(u)‖10
+ (1 − α) c(u, v)

where w(u) is the weight of the hyperedge including a visual patch u, |xI| is the

number of patches in xI, and denotes the threshold to prevent many low-valued

patches from distorting the similarity. Therefore, the similarity becomes larger

when the image involves the visual patches sharing more SIFT features with the

patches of the visual query. Then, the images with large are retrieved as candidate

images related to the textual query.

3.4 Text-to-Image Retrieval via Multimodal Hypernetworks

3.4.1 Data and Experimental Settings

We evaluate the proposed T2I retrieval method with the dataset consisting of 3,000

photography images described by the sentences from Flickr.com. For evaluation,

we divide the dataset into training set and test set consisting of 1,000 and 2,000

images, respectively. Each description is represented with the subset of 2,814 textual

words. An image is converted into the set of the visual patches represented with the

occurrence vector of 500 clustered SIFT features. Table I shows parameter setups

for the method.
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Table 3.1: Parameter setup for model learning

Parameters values

Number of visual patches in a hyperedge 2

Number of textual words in a hyperedge 3

Number of hyperedges generated from an image 5

Number of iterations for correction 5

α (constant for balancing SIFT and color) 0.99

θ (patch similarity threshold) 0.9

3.4.2 Text-to-Image Retrieval Performance

We use three measures such as precision, recall, and successful retrieval (SR) for

evaluating the performance of the HN-based T2I retrieval method. In order to

define the measures, we call it correct retrieval (CR) that a retrieved image explicitly

includes the object that is described by the given textual query, i.e., query-object.

Then, each measure is defined as follows:

precision =
# of CR

# of the retrieved images
(3.13)

recall =
# of CR

#of all images including the query − object
(3.14)

SR =

 1, precision > 0

0, otherwise
(3.15)

Moreover, we use two types of textual queries such as 10 queries and 30 queries

for measuring the performance, and the textual queries are enumerated in Table
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Table 3.2: Contents of two types of textual queries

Query Textual words

10 queries beach, boat, cat, flower, girl, grass, sand, sky, tree, water

30 queries dog, dress, fish, floor, flower, girl, grass, house, kitchen,

mountain, office, river, road, rock, room, sand, sky, table, tower,

tree, wall, water

Table 3.3: Precision and recall of text-to-image retrieval for 10 queries

Methods Precision Recall

HN-based (1000-HN) 0.24 0.055

Baseline 0.155 0.035

3.2. Table 3.3 presents the precision and recall of T2I retrieval of the HN-based

method with models learning all the training images (1000-HNs) for 10 queries on

the test set compared to a baseline method. The baseline method uses all visual

patches of the training images including the textual query in their description as

the visual query without any learning process. From Table 3.3, the proposed T2I

method outperforms the baseline method in terms of both precision and recall. The

performances of the baseline method are lower than those of the proposed method

since the expanded query of the baseline method is blurred by too many patches and

the specificity is thus weakened. Meanwhile, large-weighted hyperedges with the

strong associative relationships only survive in the HN by the incremental learning.

Figure 3.5 presents the average precision and recall of T2I retrieval on the training

set and the test set for 30 textual queries with 1000-HNs. As shown in Figure 3.5,
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Figure 3.5: Precision and recall of text-to-image retrieval using 1000-hyperentworks

for 30 queries on (a) the training dataset and (b) the test set. Values are averaged

for 30 queries

Table 3.4: Successful retrieval for 30 queries

Image size 1 5 10 15 20

Training 0.6 0.933 1.0 1.0 1.0

Test 0.2 0.567 0.733 0.8 0.9

the results show the general pattern that the precision slightly decreases and the

recall increases as the number of retrieved images grows up. For the training set,

the precisions are mostly larger than 0.5 and it means that more than half of the

retrieved images are related to the textual queries. From Figure 3.5(b), we indicate

that one or more images are associated with the given query when the number of

the retrieved images is 10 from the test set. Table 3.4 shows the SR of T2I retrieval

for the same queries and model as Figure 3.5. Therefore, our method can retrieve
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Figure 3.6: Retrieved images from the test dataset using 1000-hypernetworks for

three queries. Red boxes are images including query-objects

images related to the textual query even if the images have no textual description.

Figure 3.6 illustrates 20 retrieved images from the test dataset for each query, totally

60 images for three queries including ’tree’, ’sky’, and ’boat’. The precisions of ’sky’

and ’tree’ are higher than that of ’boat’ because the patches of ’sky’ and ’tree’ are

similar to each other due to sharing more SIFT features than the patches of boat.

Figure 3.7 shows the precision and the recall for 10 queries on the test set as

the retrieval size increases. Although the performances are better than those of 30

queries because textual words in 10 queries are more selective, the result in Figure

3.7 is also consistent to Figure 3.5 In terms of SR, therefore, we indicate that images
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Figure 3.7: Precision and recall of text-to-image retrieval using 1000-hypernetworks

for 10 queries on the test set as the retrieval size grows

associated with the text query can be retrieved with textual-visual crossmodal

association by the HN-based T2I retrieval method from Table 3.4 and Figures 3.5,

3.6, and 3.5.

3.4.3 Incremental Learning for Text-to-Image Retrieval

Figure 3.8 shows (a) the sizes of the textual and the visual vocabularies of the model

and (b) the performances of T2I retrieval, as the learning incrementally proceeds.

As the observed data grow up, from Figure 3.8(a), visual information increases

linearly due to the uniqueness of the patch while the textual vocabulary grows up

slowly due to the frequently used words. In terms of performance, the precision

and the recall are enhanced in early learning steps due to the increase of the number

of hyperedges as well as the textual and the visual vocabulary sizes. Meanwhile,
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Figure 3.8: (a) Vocabulary size of hyperentworks and (b) average performance of

text-to-image retrieval for 10 queries as learning proceeds incrementally. In (b), the

number of retrieved images is 20.

the performances are saturated after learning more than 500 training images. The

reason is that the model contains redundant information despite the uniqueness

of the visual patches because the patches including the same object share many

SIFT features. In addition, we can indicate that the decay of the performances is

caused by the patches sharing SIFT features but including the different objects and

this issue can be solved by specifically representing the visual patches with more

SIFT features. Figure 3.9 illustrates the retrieved images for two textual queries

including ’sky’ and ’grass’ as the increase of the observed images. Same as Figure

3.8(b), the model observing more images shows the higher retrieval performance

for both queries in Figure 3.9.
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Figure 3.9: Retrieved images on the test dataset for two textual queries such as ’sky’

and ’grass’ with 300-hypernetworks and 1000-hypernetworks. Red boxed photos

are images including the query-object.

3.5 Summary

We have proposed a novel text-to-image (T2I) retrieval method based on a textual-

visual association model and we use hypernetwork models for incrementally learn-

ing the associative relationships between two modalities. Moreover, the images

related to the text queries are retrieved by crossmodal query expansion with the

learned model. The proposed method was evaluated on 3,000 images with text

descriptions from Flick.com to retrieve images associated with various text queries.

Experimental results show that our method achieves the high retrieval performance

in terms of precision, recall, and successful retrieval on the test dataset compared to

a baseline method. Moreover, the results demonstrate that the hypernetworks can

learn robustly increasing data with the proposed incremental learning method.



Chapter 4

Deep Hypernetworks for

Multimodal Cocnept Learning

from Cartoon Videos

4.1 Overview

Recent explosion of data enhances the importance of automatic knowledge acqui-

sition and representation from big data. Linguistically-oriented representation for-

malisms such as semantic networks (Steyvers and Tenenbaum, 2005) and WordNet

(Fellbaum, 1998) are popular and extremely useful. However, mutually-grounded

vision-language concepts are more foundational for cognitive systems that work in

perception-action cycles. Existing text-oriented representations are inefficient for

learning multimodal concepts from large-scale data, such as videos. Continuous

knowledge construction from multimodal data streams is essential for achieving

human-level artificial intelligence based on lifelong learning (Muggleton, 2014;

Zhang, 2013).

41
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The task of vision-language learning is to automatically build the relationships

between vision and language from multimodal sources of data. Previous works

on multimodal learning have focused on either cognitive theory or practical appli-

cations. On the practical side, the latent Dirichlet allocation (LDA) models were

applied to image annotation (Blei and Jordan, 2003) and video object detection (Zhao

et al., 2013a). Recently, deep learning models were also used for image annotation

(Srivastava and Salakhutdinov, 2012) and descriptive sentence generation (Kiros

et al., 2014). However, they mainly focused on automatic annotation rather than

constructing semantic knowledge at a higher level. Furthermore, the techniques

mostly have concentrated on efficient learning from a static large-scale dataset (Or-

donez et al., 2011; Deng et al., 2009) but seldom considered the dynamic change of

the contents, i.e. concept drift. Some recent proposals have addressed hierarchical

representations (Jia et al., 2013; Lewis and Frank, 2013; Abbott et al., 2012), but they

are biased to one modality or a static database.

In this chapter, we propose a deep architecture of hypernetworks for automat-

ically constructing visual-linguistic knowledge by dynamically learning concepts

represented with vision and language from videos, i.e., a deep concept hierarchy

(DCH) (Ha et al., 2014a). DCH consists of two or more concept layers and one layer

of multiple modalities. The concepts at the higher levels represent more abstract

concepts than at the lower layers. The modality layer contains the populations

of many microcodes encoding the higher-order relationships among two or more

visual and textual variables (Zhang et al., 2012). Each concept layer is represented

by a hypergraph. This structure coincides with the grounded theory of the hu-

man cognition system where a concept is grounded in the modality-specific regions

(Kiefer and Barsalou, 2012). The structure enables the multiple levels of concepts

to be represented by the probability distribution of the visual-textual variables.
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The concept construction of DCH from videos involves two technical issues. One

is to search a huge space of DCH represented by hypergraphs. The other is to deal

with concept drift contained in the video data. For handling these two issues, DCH

uses a method based on a Monte-Carlo simulation for efficiently exploring the search

space, i.e., a graph Monte-Carlo (graph MC). The graph MC is a stochastic method

for efficiently finding desired graph structures by the repetition of probabilistically

generating connections among nodes using observed data instead of sampling. The

model structure flexibly grows and shrinks by the graph MC, in contrast to other

deep learning models. DCH incrementally learns the concepts by the graph MC

and the weight update process while observing new videos, thus robustly tracing

concept drift and continuously accumulating new conceptual knowledge. This

process is formalized as a sequential Bayesian inference. The learning mechanism

is inspired by the cognitive developmental process of children constructing the

visually grounded concepts from multimodal stimuli (Meltzoff, 1990).

For evaluation, we used the whole collection of cartoon videos for children,

entitled ”Pororo”, consisting of 183 episodes with 1,232 minutes of playing time.

Experimental results show DCH faithfully captures visual-linguistic concepts at

multiple abstraction levels, reflecting the concept drift in the progress of the stories.

Technically, we investigate the effective combinations of hierarchy architectures

and graph MC variants to construct the DCH fast, flexibly, and robustly based

on sequentially observed data over an extended period of time. We also present

the application of the concept hierarchies for story- and context-aware conversion

between the video scenes and the text subtitles.
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4.2 Visual-Linguistic Concept Representation of Catoon Videos

To be concrete, we start with the video data from which we extract the vision-

language concepts. The whole data set used in this chapter consists of episodes,

which are preprocessed into the sequences of sentence-image pairs by capturing a

scene when a subtitle appears. The vocabulary for the visual words is defined by

SIFT, RGB color and MSER features. If we represent a textual word as wi and the

visual word as ri, the utterance-scene is represented as a vector of the form:

x(t) = (w(t), r(t)) = (w1, ...,w|w(t)|, r1, ..., r|r(t)|) (4.1)

DN = {(w(t), r(t))|t = 1, ...,T} (4.2)

Figure 4.1 shows four instances of scene-utterance pairs transformed from car-

toon videos. The objective is to construct a knowledge representation from the data

that keeps main conceptual information.

4.3 Deep Hypernetworks for Modeling Visual-Linguistic Con-

cepts

We address an extension of multimodal hypernetworks for learning concepts rep-

resented by vision and language in this section. The proposed model uses mul-

tiple layeres of hypernetworks, which represent concept hierarchies composing

video stories represented as visual and textual variables i.e., deep concept hier-

archy (DCH). DCH consists of two kinds of layers; multiple concept layers and a

sparse code layer. The multiple concept layers include one or more layers of concept

variables. Variables in higher layers represent more abstract concepts and nodes in

lower layers characterize more concrete ones. The sparse code layer involves a large
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It is the day that 

pororo and crong

are flying. 

{it, is, the, day,     

that, pororo, and, 

crong, are, flying}

Scene images Subtitles Patch collection Word collection

Ah I am so tired. {ah, i, am, so, tired}

I caught the biggest

fish awesome.

{i, caught, the, 

biggest, fish, 

awesome}

We promised to go 

to poby house.

{we, promised, to, go,

poby, house}

Figure 4.1: Examples of utterance-scene pairs extracted from cartoon videos

population of many multimodal microcodes. A microcode contains two or more

visual and textual variable values, thus encoding a small association rule between

two modalities. Because the microcode represents a small subpattern among very

large spaces of feature combination, the layer including the population is called

sparse code layer. This structure not only allows the model to represent various

levels of concepts involved in the video contents but also enables the concepts to

be characterized with the probability distribution of visual-textual variables. Fig-

ure 4.2 illustrates an architecture of a deep hypernetwork for characterizing the

hierarchy of visual-lingustic concepts.
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Figure 4.2: Architecture of deep hypernetwork for representing concept hierarchies

4.3.1 Sparse Population Coding

Sparse population coding (SPC) proposed by Zhang et al. is a method for rep-

resenting and learning concepts from dynamic data, using a large population of

multimodal information chunks (Zhang et al., 2012). The SPC simulates a situated

word learning from cartoon videos in childhood and this process is addressed in

terms of Bayesian inference. In specific, SPC is a principle to encode data of n vari-

ables compactly using multiple subsets of size k. The subset is called a microcode

and, typically, its size is small, i.e. k << n, and thus sparse. To deal with concept

drift contained in the video stories, SPC is based on a population coding scheme

suitable for incremental learning. The population consists of large number of mi-

crocodes encoding the relationships between visual and textual variables. In a SPC

model, the concepts are implicitly represented with subsets of microcode popula-

tion and this means that the empirical distribution of the concepts is characterized
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in the form of a finite mixture with the population.

Figure 4.3 shows an example of the concept representation in SPC. In Figure 4.3,

each h denotes a microcode, which is represented with a set of two or more words

and image patches. Formally, a microcode population characterizes the empirical

distribution of the concepts in the form of a finite mixture. When data x = (w, r) are

given, the distribution can be defined:

P(x|θ) =

M∑
i=1

αi fi(x|ei) (4.3)

where ei and αi denote a microcode and its weight, and fi(x|ei) is a density function.

Also, αi satisfies the following conditions:

0 ≤ αi ≤ 1 and
M∑

i=1

αi = 1 (4.4)

In above equation, a model parameter θ is defined as θ = (α, e), where e and α

are the sets of M microcodes and the weights associated with the microcodes. Then,

the empirical distribution of the observed video data consisting of continuous T

scenes D = {x(t)
}
T
t=1 = {(w, r)(t)

}
T
t=1 can be represented by the population code:

P(D|θ) =

T∏
t=1

P(x(t)
|θ) =

T∏
t=1

M∑
i=1

αi fi(w(t), r(t)
|ei) (4.5)

The representation of SPC model enables the concepts to be implicitly characterized

by the sparse subpatterns between visual and textual variables.

SPC uses a flexible hypergraph structure as the model representation for han-

dling concept drift in the increasing multimodal data. A SPC model can be equiva-

lently transformed into a hypernetwork when we consider the sets of image patches

and textual words as a vertex set. Also, each microcode is converted into a clique

connecting the vertices encoding the patches and the words of the microcode. Figure



CHAPTER 4. DEEP HYPERNETWORKS 48

w w w ww w v v v v v v

e e e e e e e e e e e e

c c c c c

“it”

SC4SC2 SC5 SC6

“playful” “start”“crong” “sky”“plane”

Pororo

= {SC1, SC2, …}

SC1 = e_1
= {w1, w3, v1, v4}

SC4 = e_5
= {w1, w5, v2, v6}

Pororo 

= {e_1, e_5, …}
= {w1, w3, w5, v1, v2, v4, v6, …}

SC1 SC3

Pororo

Population

code 

= a collection 

of sparse 

microcodes

Microcodes

(sparse)

Figure 4.3: An example of the concept representation of Pororo via sparse popula-

tion coding. SC denotes a sub-concept corresponding to a microcode

4.4 shows an example of the hypernetwork representation of a SPC model. There-

fore, a SPC model implicitly characterizes the concepts in video with higher-order

associations between image and text variables.

4.3.2 Deep Hypernetworks for Concept Hierarchies

SPC can be considered as a hypergraph, where the hyperedges represent the mi-

crocodes. An equivalent representation is a two-layer network where the upper-

layer nodes indicate microcodes (hyperedges) and the lower-layer nodes indicate
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Figure 4.4: An example of sparse population coding model and its hypernetwork

representation

the data variables. Though the representation power is large, the number of upper-

layer nodes may grow fast with the growing number of input units, i.e. the visual

and textual vocabulary sizes in our video data. To resolve this problem, we in-

troduce additional layers, resulting in a deep concept hierarchy (DCH). DCH is a

model representing the hierarchy of visually grounded concepts, using multimodal

sparse population coding. Dissimilar to SPC models where concepts are implicitly

represented and learned, concept variables are introduced into the model in DCH.

To representing diverse levels of concepts, the model contains one or more concept

layers. Nodes in a higher layer encode more abstract concepts and those of a lower

layer characterize more concrete concepts. A node in a layer can connect to nodes

in adjacent layers of the layer, and the nodes of the most specific conceptual layer

can connect to a subset of the population of sparse codes which encode the asso-

ciation between observable multimodal variables. The connections between layers

of a DCH are sparse, which is contrasted to the deep neural networks that have

full connectivity between layers. This sparse and hierarchical structure reduces
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Figure 4.5: An Example of deep concept hierarchy with two conceptual layers

learning from cartoon videos. Abstract concept variables denote the characters

appearing in the videos. Gray boxes are observable variables.

the model complexity and DCH pursues a parse modular hierarchical structure, as

found in human brains.

Mathematically, DCH represents the empirical distribution of data using a mul-

tiple layers of microcodes or concepts. Consider a DCH model with two concept

layers. Assume that a node of the top concept layer denotes a character appearing

in the video. Let c1=(c1
1, ..., c

1
K1

), c2=(c2
1, ..., c

2
K2

), w = (w1, ...,wM), and r = (r1, ..., rN)

denote the binary vectors representing the presence of concrete and abstract con-

cepts, textual words, and image patches in the scene-text pair, where K1, K2, M, and

N is the number of two concepts, the size of word vocabulary, and the size of the

patch dictionary. M and N increase whenever observing new words and patches.

The probability density of a scene-text pair for a given h = (e, α), c1, and c2 can be

formulated as follows:
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P(r,w|c1, c2) =
∑

h
P(r,w|h, c1, c2)P(h|c1, c2) (4.6)

where e and α denote the population of microcodes and their weights. Each mi-

crocode e is defined as two sparse binary vectors whose size is M and N at the time

when the scene is observed, respectively. Therefore, DCH can model the concepts

as probabilistic associations among words and images. Figure 2 (b) shows an in-

stance of DCH with two concept layers learning concepts from videos. In addition,

similar to deep networks, the joint probability of all the layer nodes is computed by

the production of the conditional probabilities:

P(x,h, c1, c2) = P(x|h)P(h|c1)P(c1
|c2) (4.7)

Deep hypernetworks have some advantages in model structure for learning from

continuously increasing and nonstationary data, compared to conventional multi-

modal learning models including topic models and deep learning models. Table

4.1 describes pros and cons of deep hypernetworks over topic models and deep

learning models. As shown in Table 4.1, deep hypernetworks have flexible model

structures suitable for incrementally learning from data. In addition, by using hy-

pergraphs as a model representation and denoting semantic variables such as image

patch and textual words as nodes, they can be used a efficient method for repre-

senting knowledge of the contents characterized with the data. Furthermore, the

sparse structure of the models reduces the model complexity. However, dissimilar

to models using a fixed structure, deep hypernetworks require a structure learning

method which has large influence on the model performance.
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Table 4.1: Comparison of deep hypernetworks to other multimodal leaning models

Criteria Topic models Deep networks Deep HNs

Model structure Fixed Fixed Flexible

Observable node Fixed Fixed Flexible

Semantic representation Middle Low High

Readability of hidden nodes Low Middle High

Incremental learning Difficult Middle Suitable

Model complexity Middle High Low

Knowledge representation Low Low High

Structure learning No No Yes

Learning strategy Stochastic Gradient descent Stochastic

Node value Cont./Disc. Cont./Disc. Discrete

Dynamic learning High Low Low

4.3.3 Implication of Deep Hypernetworks on Cognitive Modeling

A hypernetwork was proposed as a simulation model for DNA molecular com-

puting (Zhang and Jang, 2005b), using the population of many small memory

chunk. The representation of hypernetworks is similar to the sparse and popula-

tion representation of human brains where information is stored and processed to

be distributed (Quiroga, 2012), thus being suitable for characterizing human cogni-

tive process. In particular, the introduction of a hierarchy of multiple hypernetwork

layers and multimodal encoding enables the model to be used as a cognitive model

based on the grounded cognition theory of the human conceptual systems (Kiefer

and Barsalou, 2012). In the grounded cognition theory, cognition is grounded in the

modality-specific systems of brains for the perception and the body for action. In
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DCH that is an instance of deep hypernetworks for concept modeling, learned high-

level abstract concepts are connected to visual and lingustic variables and this can

be considered as a architecture grounded in the modality-specific systems despite

the absence of the explicit body-action systems in the model. However, the model

can extended into a action-grounded system by implementing the model as the in-

telligence systems of robots. In addition, main themes associated with the grounded

conceptual systems including simulation, emergence, dynamic representation, and

situatedness can be handled by deep hypernetworks. By inference of the learned

model, many abstract and concrete concepts are ignited for the given external stim-

uli and the emerged concepts are represented as vision and language through the

probabilistic simulations. In addition, whlie observing new videos, concepts are

incrementally learned and the concept representations dynamically changes con-

sidering the constructed concept hierarchies. Therefore, deep hypernewtorks are

a computational model suitable for cognitive modeling in the viewpoint of the

grounded cognition theory of the conceptual systems.

4.4 Learning of Deep Hypernetworks

4.4.1 Problem Space of Deep Hypernetworks

DCH uses a hierarchy of the hypergraph structure as the model representation.

Each layer of a DCH model can be equivalently transformed into a hypergraph

as shown in Figure 4.5. However, when a hypergraph and a conventional graph

have the same vertex set, the number of possible edges of a hypergraph is much

more than one of a graph due to the definition. For a k-hypergraph, the number of

possible hyperedges are
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|e| = C(n, k) =
n!

k!(n − k)!
(4.8)

where n = |V| and C(n, k) denote the number of cases to choose k items from a

set with n elements. When Ω is denoted as the set of all the hypergraphs, the size

is equal to

|Ω| = 2C(n,k) (4.9)

Therefore, the number of possible hyperedges with degree from zero to n and

the size of the space of (0,n)-hypergraphs are

|e| =
n∑

k=0

C(n, k) =

n∑
k=0

n!
k!(n − k)!

= 2n and |Ω| = 2κ·2
n

(4.10)

where κ is the maximum number of duplicates of a hyperedge in a hypergraph.

Then the problem space of a DCH model is equal to 2κ·2
n
, where |x| denotes the

size of the observable variable set, since each node connection of the conceptual

layers can be transformed into a corresponding hyperedge containing a subset of

x. It is infeasible to explore this huge search space with an exhaustive or a gradient

strategy. For efficiently searching the huge space, we propose a stochastic method,

i.e., graph Monte-Carlo (graph MC).

4.4.2 Graph Monte-Carlo Simulation

We propose a method for efficiently constructing hypergraphs incrementally from

incoming data. The idea is to use Monte Carlo search on the hypergraph space. The

resulting graph Monte-Carlo method (Graph MC) assumes two conditions:
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i) The graph structure in the t-th iteration is determined by that of the t-1 the

iteration.

ii) Estimating the empirical distribution asymptotically converges to exploring

all theoretical spaces when data are large enough.

Formally, for a given dataset D, an optimal hypergraph G∗ corresponding to a

model is formulated with Bayes rule:

G∗ = arg max
Gt

P(Gt|D) = arg max
Gt

P(D|Gt)P(Gt−1) (4.11)

where Gt is a k-hypergraph in the t-th time step. G is constructed to maximize

P(Gt|D) by the repetition of replacing hyperedges whenever observing the data:

∆G = ∆G ∪ {e} and e =

k⋃
m=1

v(x) (4.12)

where ∆G is a new hyperedge set, and e and v(x) denote a generated hyperedge

and the vertex corresponding to a variable x. Both the initial values of ∆G and e are

empty. P(e) denotes the probability with which e is generated. The graph MC is

addressed in terms of the Metropolis-Hastings algorithm (Newman and Barkema,

1999) under two conditions:

i) A hypergraph G is factorized by its hyperedges to represent a probability

distribution (Besag 1974).

ii) ∆G is generated to equivalently represent a sampling instance x.

Then, G∗ representing the empirical distribution of the observed data can be con-

structed by the graph MC. The learning strategy of the graph MC is determining the

probability of which vertices are connected as hyperedges, P(v(x)). Note that P(v(x))

is computed from the currently observed data instance according to assumption ii).

We define P(v(x)) based on three different approaches.
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Uniform graph Monte-Carlo

Uniform graph Monte-Carlo (UGMC) uses the same probability as P(v(x)) for all

the variables with the positive value of the data. Then, the probability is defined as

follows:

P(v(x)) =
1∣∣∣∣{x|x ∈ x(n)

+ }

∣∣∣∣ (4.13)

P(e) =
1

C(k, |x(n)
+ |)

(4.14)

where x(n)
+ denotes the set of variables with the positive value of the n-th data

instance. Then, all the possible hyperedges for a given instance are generated with

the same probability.

Poorer-richer graph Monte Carlo

The P(e) of each possible hyperedge for a given instance is different from each other

in poorer-richer graph Monte-Carlo (PRGMC). In PRGMC, a vertex more included

in a hypergraph has higher probability. The P(v(x)) of PRGMC is defined as follows:

P(v(x)) =
R+
{d(v(x))}
|x|

(4.15)

where R+(.) is a rank function in ascending order, d(v) is the degree of vertex of

v. For enabling new variables not existing in Gt−1 to be selected, their d(v) is set

to a small value. This approach makes a hypergraph contain the patterns which

frequently appear in the training data. Therefore, PRGMC constructs a smaller and

denser hypergraph, compared to that built by UGMC.



CHAPTER 4. DEEP HYPERNETWORKS 57

Poorer-richer graph Monte Carlo

Fair graph Monte Carlo Fair graph Monte Carlo (FGMC) prefers the subpatterns

less frequently appearing in the training data, contrary to PRGMC. The P(v(x)) is

defined as:

P(v(x)) =
R− {d(v(x))}
|x|

(4.16)

where R−(.) is a rank function in descending order. Therefore, a larger and sparser

graph is constructed by FGMC and the concepts are represented with much more

diverse words and patches.

4.4.3 Learning of Concept Layers

To learning the concept layers we should address three issues: i) determining the

number of the nodes of the concrete concept layer c1 (c1-nodes), ii) associating

between c1-nodes and modality layer h, and iii) associating between c1-nodes and

the abstract concept nodes (c2-nodes). The idea is to split the hyperedge set in

h into multiple subgraph clusters, which correspond to the nodes of the c1 layer.

The number of the c1-nodes are determined based on the distribution of the mean

similarities among the hyperedges of a subgraph on all the clusters:

Sim(hm) =
Dist(hm)
|hm|

(4.17)

where hm denotes the subgraph associated with the m-th c1-node and Dist(hm) is

the sum of the distance between all the hyperedges of hm. Then, the distance is

estimated by converting the words into the real-value vectors by word2vec (Mikolov

et al., 2013b). If Sim(hm) > θmax, hm is split into two subgraphs and a new c1-node

is added into the c1 layer and associated with one of the split subgraph. On the

other hand, if all the mean similarities are smaller than θmin, the number is reduced
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and the associations are conducted again. θmax and θmin are adaptively determined

from the mean and the variance of the similarity.

The connectivity between two concept layers are determined by the constitution

of hyperedges of the subgraph associated with c1-nodes. Each hyperedge includes

the information on the character appearance of the scene from which it is generated.

Then, a c1-node connects c2-nodes corresponding to characters which is included

in hyperedges that the subgraph of the c1-node contains. That is, c2-nodes are

associated with a c1-node when the characters corresponding to the c2-nodes appear

in the hyperedges of the subgraph associated with the c1-node. The weight of the

connection is defined by the weighted ratio of each character appearance in the

microcode cluster:

ω(c1
i , c

2
j ) =

∑
hm∈hi αmC(c2

j , hm)∑
hm∈hi αm

(4.18)

where C(c2
j , hm) is the indicator function that yields 1 when the character corre-

sponding to the j-th node of c2-layer, c2
j , appears in the scene from which the m-th

microcode is generated.

4.4.4 Incremental Concept Construction

DCH learns incrementally, i.e. builds the visual-linguistic concepts dynamically

while sequentially observing scene-text pairs. We use all the scene-text pairs of one

episode as a mini corpus. On sequential observation of the episodes, DCH predicts

the concepts from the population and updates the population from the observed

data and characters. Formally, this implements a sequential Bayesian estimation:

Pt(h, c1
|r,w, c2) =

P(r,w|h, c1, c2)P(c2
|c1,h)Pt−1(h, c1)

P(r,w, c2)
(4.19)

where Pt is a probability distribution at the t-th episode. When observing the t-th

episode, the prior distribution is updated to the posterior distribution by calculating
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the likelihood and normalizing. Then, the posterior is used as the prior for learning

from the next episode. Note that the P(r,w, c2) is independent on the model because

(r,w) and c2 are given from the observed data. Therefore, 4.19 is reformulated when

the empirical distributions are used:

Pt(h, c1
|r,w, c2) ∝

Dt∏
d=1

{
P(r(d),w(d)

|h, c1, c2)P(c2
|c1)P(c1

|h)Pt−1(h)
}
. (4.20)

The data generation term is divided into textual and visual features:

log P(r(d),w(d)
|c2, c1,h) =

N∑
n=1

log P(r
(d)

n |c
2, c1,h) +

M∑
m=1

log P(w
(d)

m |c
2, c1,h). (4.21)

Then the probability that the m-th element of the word vector is 1 is defined as

follows:

P(w
(d)

m = 1|c2, c1,h) = exp

sw
m −

|ec
|∑

i=1

αi

 , (4.22)

P(r
(d)

n = 1|c2, c1,h) = exp

sr
n −

|ec
|∑

i=1

αi

 , (4.23)

s.t. sw =
|ec
|∑

i=1
αiew

i and sr =
|ec
|∑

i=1
αier

i

where sm is the m-th value of s and ec denotes the subpopulation of microcodes

associated with c1. ei
w and ei

r denotes the textual and visual vectors of the i-th

microcode. The second term of 4.21 is related to predicting the characters from

the mixtures of concrete concepts. It is defined to prefer more distinct concrete

concepts for each character variable. The third term reflects the similarities of the

subpopulation for each concrete concept node. The last term is determined from

the used strategy of the graph MC.

The initial weight of the microcodes is defined as a function of how frequently

the words and patches of the microcode occur in the observed data:
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αi =

D∑
d=1

{
g(ei) f (r(d),w(d); ei)

}
, (4.24)

s.t.

f (r(d),w(d); ei) =

 1, if
(
r(d)
· er

i + w(d)
· ew

i

)/
eieT

i > κ

0, otherwise

where r(d)
· er

i and w(d)
· ew

i denote the inner product of the textual and the visual

vectors of the i-th microcode between and , respectively. g(ei) is the geometric mean

of the TF-IDF values of the words with 1 in ei, and this term prevents the abnormal

large weight of a microcode containing functional words only. κ is a nonnegative

constant less than 1. Whenever observing a new episode, it is updated:

αt
i = λαi + (1 − λ)αt−1

i (4.25)

λ in 4.25 is a constant for moderating the ratio of the new observed episode and

the previous episodes.

4.5 Incremental Concept Construction from Catoon Videos

4.5.1 Data Description and Parameter Setup

We use cartoon videos, called ”Pororo”, of 14 DVD titles with 183 episodes and

1,232 minutes of playing time. By preprocessing, each scene is captured whenever

a subtitle appears, transforming all the videos into the set of 16,000 utterance-

scene pairs. A scene image is represented by a bag of image patches extracted by

maximally stable external regions (MSER) (Matas et al., 2004) and each patch is

defined as a feature vector using SIFT (Lowe, 2004) and RGB color. We used a DCH

model with two concept layers. A microcode consists of two image patches and a
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1~13 episodes (1 DVD) 1~183 episodes (14 DVDs)

Concepts Visual nodes
# of nodes 

(V/L)
Top 15 linguistic nodes Visual nodes

# of nodes 
(V/L) Top 15 linguistic nodes

Pororo 986/230

crong, you, clean, over, draw, 

huh, to, it, I, up, said, the, 

moving, is, pororo

12870/1031

crong, you, snowboarding, transforming, 

rescuing, pororo, the, lamp, seven, are, 

quack, yellow, not, lollipop, cake,

Eddy 644/198

I, ear, art, midget, game, nothing, 

say, early, diving, lost, middle, 

lesson, case, because, snowballs 

9008/860

transforming, I, hand, careful, throw, art, 

suit, midget, farted, reverse, stage, 

luggage, gorilla, pole, cannon

Tongtong - 0/0 - 1812/429

kurikuri, doodle, doo, avoid, airplane, 

crystal, puts, branch, bland, finding, pine,

circle, kurikuritongtong, bees, talent 

Figure 4.6: Visual-linguistic representation and development of three character

concepts of video contents. A scene-utterance pair is represented by the sets of

image patches and words and the concepts of the video stories are represented by

these patches and words. Tongtong is not seen in episodes 1-13 and appears in

episode 56 for the first time.

phrase with three consecutive words. The image patches are selected by UGMC

and a phrase is selected with the maximum value of P(v(x)) of the words in the

phrase. The initial number of c1-nodes starts at 10 and θmax and θmin are defined as

follows:

θt
max =

 µt + η · (µt
− µ10) · σt, t > 10

µt + η · σt, t ≤ 10
, θt

min = 0 (4.26)

where µt and σt denote the mean and the standard deviation of the subgraph

similarities after observing the t-th episode, and is a constant for moderating the

increasing speed of the c1 layer size. Lager η reduces the speed and we set it to 0.75.
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(a) 1~13 episodes (b) 1~78 episodes

Figure 4.7: Evolution of Pororo’s visual-lingustic concept maps

4.5.2 Concept Representation and Development

To demonstrate the evolution of concepts in DCH, we have examined how the

characters, such as ”Pororo”, ”Eddy”, and ”Tongtong”, are differently described as

the story unfolds. Figure 1 compares the descriptions after learning up to episode

13 (DVD 1) and 183 (DVD 14). Considering the fact that Pororo is a brother of Crong,

Tongtong casts ”Kurikuri” for magic, and Eddy is an engineer, the descriptive words

for each character are suitable. We observe that the number of visual and linguistic

nodes tends to increase. This is because the concepts continuously develop while

observing the videos. However, we indicate that the textual nodes representing

each character concept does not linearly increase but saturates as the increment of

the amounts of observed videos, comparing the number of nodes of 1 DVD to that

of 14 DVDs. This is caused by that new words seldom appear in later episodes. The

saturation of the text nodes enables our method to scale up to much more video
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Figure 4.8: Changes of model complexity according to the learning strategies of the

graph MC. In (b), VU, VPR, and VF denote the vertex sets of the model constructed

by UGMC, PRGMC, and FGMC

data. Figure 4.7 illustrates the concept evolution of Pororo as the observed videos

increase. As shown in Figure 4.7, Pororo concept becomes much more complex by

being associated with more words and patches.

Specifically, we observed that the number of c1-nodes increases in early stages

and then saturates, in addition to textual nodes. Figure 4.8(a) shows the change of

the number of c1-nodes as the observed episodes increase. Regardless of the learning

strategy of the graph MC, the number of c1-nodes fast increases in early episodes

and then saturates after that. This indicates that new concrete concepts are learned

rather earlier and, as time goes on, familiar concepts reappear. In addition, Figure

4.8(a) compares the complexity growth curves of DCH by three learning methods.

FGMC is the most fast-growing strategy employing more c1-nodes because it tends

to select diverse words and patches, as compared to UGMC and PRGMC. This is

verified by Figure 4.8(b) which shows more vertices are included in the models
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(a) Microcodes (b) Centroids of c1-nodes

Tongtong

Eddy

Pororo

Pororo

Eddy

(c) Episode 1

Loopy

Crong

Petty

(d) Episode 1~52

Loopy

Crong

Petty

Figure 4.9: PCA plot of microcodes associated with the concrete concept nodes

(c1-nodes) and their centroids of the models learned from 183 episodes by UGMC.

constructed by FGMC.

To see if DCH correctly learned the distinguishable concepts, we have analyzed

the c1-nodes by PCA. Figure 4.9 shows that different characters are well discrim-

inated by the learned microcodes (the first component ratio = 0.70 in (a)). This

indicates that a c2-node corresponding to a character is associated with c1-nodes

distinguishably representing the property of the character.
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4.5.3 Character Classification via Concept Learning

The learned concepts via deep concept hierarchies can be used for classifying the

characters appearing in scenes. We present the character classification as a quan-

titative performance of the proposed concept model. The character classification

is defined to classify which characters appear from the given scene images and

subtitles. Because the class label of a scene is represented by not a single value but a

binary vector of whether each character appears in the scene, this problem belongs

to a multidimensional classification task (Zhang and Zhou, 2006). Multidimensional

classification is formalized as follows:

h : ΩX1 × · · · ×ΩXm → ΩC1 × · · · ×ΩCd , (4.27)

(x1, ..., xm) 7→ (c1, ..., cm), (4.28)

where Ci and X j for all i=1, ..., d and j=1, ..., m are discrete, and ΩXi and ΩC j are

sample spaces.

The used mDBMs have two hidden layers for each modality and one joint hidden

layer, and the classification is carried out in the joint hidden layer using regression

of each node values. Also, we used the Bayesian chain classfiers (BCCs) (Zaragoza

et al., 2011), a conventional multidimensional classification method for comparison,

implemented in a multilabel extension of Weka (MEKA). We used UGMC and

FGMC for learning DCHs. In addition, to investigate the effect of hierarchies, we

compared the results with those of SPCs. For evaluation, First 78 episodes are used

as the training dataset and epsiodes from 79 to 104 are used as the test dataset. Also,

we use mean average precision (MAP), a measure widely used for multiple label
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Table 4.2: Character classification results

Models BCCs MDBMs SPCs UGMC FGMC

MAP 0.314±0.012 0.630±0.007 0.553±0.021 0.612±0.035 0.643±0.032

classification:

MAP =
1
N

N∑
n=1

AveP(n) and AveP =

n∑
k=1

Precesion(k) × rel(k)

#o f relevant characters
, (4.29)

where Precision(k) denotes the precision at the cut-off k and rel(k) is a indicator func-

tion equaling 1 when the character at rank k is a relavent character, zero otherwise.

Table 4.2 shows the result of classifying the characters in the given scenes, compared

to multimodal deep Boltzmann machines (mDBMs) (Srivastava and Salakhutdinov,

2012). As shown in Table 4.2, we indicate that DCHs outperform BCCs in addi-

tion to SPCs and provide competitive performance compared to MDBMs. Also,

we found that FGMC showed better classification performances than UGMC and

this indicate concepts learned by FGMC are represetned by more descriptive and

diverse visual and textual features.

4.5.4 Vision-Language Conversion via Concept Learning

We show the result of converting between vision and language based on visual-

lingustic concepts from the learned DCHs. Figure 4.10(a) shows the sentences

generated from the images. The test data set consists of 183 images by randomly

selecting one scene image per episode, and the results are averaged on 10 experi-

ments. We examined how the different graph MC algorithms effect on the results.
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Figure 4.10: Results of vision-language conversion. precision of vision-to-language

(a) and intermediate images generated from given sentences (b)

The precision of PRGMC increases faster in early videos but slower in late ones than

that of FGMC. PRGMC is good at fast memorizing of main information but loses

details. On the contrary, FGMC requires a more complex structure to memorize

more information but shows higher accuracy. This is consistent with the results in

Figure 4.8. In addition, the result shows that the introduction of concept layers im-

proves the accuracy of the constructed knowledge. Figure 4.10(b) shows the recall

of images given the text sentences. It is interesting to note that the recall images

are like mental imagery as demonstrated in movie recall in humans (Nishimoto

et al., 2011). Overall, the results in Figure 5 demonstrate that the more episodes

the DCH learned, the more diversity are generated in sentences and images. It

should be noted that this is not for free; Observing more episodes requires heavier

computational costs. The tradeoff should be made by the controlling the greediness

of the graph MC algorithms as examined above.
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4.6 Summary

We have presented a deep concept hierarchy (DCH) for automated knowledge

construction by learning visual-linguistic concepts from cartoon videos. DCH rep-

resents mutually-grounded vision-language concepts by building multiple layers

of hypergraph structures. Technically, the main difficulty is how to efficiently learn

the complex hierarchical structures of DCH in online situations like videos. Our

main idea was to use a Monte-Carlo method. We have developed a graph MC

method that essentially searches ”stochastically” and ”constructively” for a hier-

archical hypergraph that best matches the empirical distribution of the observed

data. Unlike other deep learning models, the DCH structure can be incrementally

reorganized. This flexibility enables the model to handle concept drifts in stream

data, as we have demonstrated in the experiments on a series of cartoon videos of

183 episodes.

We have analyzed and compared three strategies for the graph MC: uniform

graph Monte-Carlo (UGMC), poorer-richer graph Monte-Carlo (PRGMC), and fair

graph Monte-Carlo (FGMC) depending on the probability of selecting vertices.

The use of hierarchy improved the generalization performance while paying slight

prices in computational cost. Among the variants of the Monte Carlo algorithms,

we found that the PRGMC and the FGMC work better in earlier and later stages of

video observation in the visual-language translation task. Overall, our experimental

results demonstrate that DCH combined with the graph MC algorithms captures

the mixed visual-linguistic concepts at multiple abstraction levels by sequentially

estimating the probability distributions of visual and textual variables extracted

from the video data. In future work, it would be interesting to see how the methods

scale up on a much larger dataset with more complex story structures than the

educational cartoon videos for children.



Chapter 5

Story-aware Vision-Language

Translation using Deep Concept

Hiearachies

5.1 Overview

A language has been the most important way to communicate and store information

for the past several thousands of years. Vision has been also used as a significant

assistant method of linguistic representations for information delivery. The recent

progress of information technology for the past two decades has caused the explo-

sive increment of multimodal data such as video and images, and humans more

frequently face multimodal data than simple text documents on the internet now a

day. The task of automatically converting vision and language is considered as a

key technique for valuable applications of these large-scale multimodal data (Kiros

et al., 2014). However, a vision-language conversion with minimizing the distor-

tion of semantic still remains a challenging issue due to the granularity difference

69
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between two modality representations and semantic gap (Turk, 2005).

Multimodal learning is a data-driven method for learning the relationships be-

tween two or more modalities and has been used as an approach suitable for the

vision-language converting task. Many multimodal learning models have been re-

ported as successful practical applications including image retrieval (Srivastava and

Salakhutdinov, 2012; Blei and Jordan, 2003), automatic image annotation (Srivastava

and Salakhutdinov, 2012; Blei and Jordan, 2003), and multimodal data classification

(Karpathy et al., 2014). Latent dirichlet allocation (LDA) and its variants are a mul-

timodal learning method based on a topic model for image retrieval and annotation

(Nguyen et al., 2013; Blei and Jordan, 2003). Deep learning is a mainly used method

for text and image association including deep belief networks (Socher et al., 2013),

deep Boltzmann machines (Srivastava and Salakhutdinov, 2012), and convolution

deep networks (Karpathy et al., 2014). Although these models showed successful

applications, they mainly focused on enhancing the accuracy of the retrieved im-

ages and the annotated words rather than the constructing semantic knowledge at

a higher level which can be used for further applications such as content summa-

rization and knowledge organization. Furthermore, many conventional methods

mostly concentrate on how efficiently the model is learned from a static and large-

scale benchmarking dataset (Ordonez et al., 2011; Deng et al., 2009) but they seldom

consider the change of the contents in the data with dynamic properties such as

videos.

Here we view the vision-language converting task as a machine translation,

i.e., a vision-language translation (V-L translation) and propose a method for V-L

translation based on visually grounded knowledge constructed through learning

the story contents from videos (Ha et al., 2014b). As a model for learning and

organizing the knowledge from the video, we use a hierarchical model, i.e., a deep



CHAPTER 5. VL-TRANSLATION 71

concept hierarchy (DCH), which characterizes the concepts and the concept rela-

tions contained in video stories as the knowledge. DCH consists of two kinds

of layers; i) multiple conceptual layers and ii) a modality-dependent layer. The

conceptual layers consist of one or more layers of concept variables for multiple

conceptual levels and the variables in higher layers represent more abstract con-

cepts. The modality-dependent layer contains the population of large number of

microcodes encoding the higher-order relationships between two or more visual

and textual variables. This model structure coincides with the grounded theory of

human cognition system where a concept is grounded in the sensory-motor process

including the modality-specific systems in which information is distributed to be

stored (Quiroga, 2012). This structure enables DCH to represent the concepts with

the probability distribution of the visual and the textual variables. As the model

representation, DCH uses a flexible hypergraph structure.

The learning of DCH involves two main technical issues. One is to search a

huge problem space represented with combinatorial features. Because a microcode

store a higher-order association between two or more variables, the population and

the connections between microcodes and concept variables is represented with a

combinatorial feature space. The other is to deal with concept drift contained in the

video data. A video story contains many concept relations, which change as the

story unfolds. Furthermore, these concepts long-termly change over the progress of

the stories. For handling these two issues, DCH uses a stochastic method based on a

Monte-Carlo simulation for feasibly exploring the search space, i.e., a graph Monte-

Carlo (graph MC) and incrementally learns the concepts and their change with a

Bayesian update. Graph MC is a stochastic method to find optimal or suboptimal

hypergraph structure by probabilistically adding and connecting the nodes using

observed training data. The graph MC enables the model structure to flexibly grow
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and shrink for representing the concepts and this is a main difference from the other

deep learning models. The weight of the constructed hypergraphs by graph MC are

updated to reduce the Kullback-Leibler divergence between the observed data and

the generated data by the model and this process is defined in terms of the Bayesian

inference. Whenever observing new videos, DCH learns the concepts from the

video by this mechanism and thus robustly tracing concept drift and continuously

accumulating the knowledge on concepts. This learning is analogy for children to

construct the visually grounded concepts from multimodal stimuli and to imitate

the behaviors. The learned DCH provides visually grounded concept knowledge

representation on the video story, a multimodal concept map.

This constructed knowledge is used to translate between the video scenes and

the subtitles each other. While a given image is translated into words and sen-

tences simply describing the objects of the image in conventional V-L translation,

the proposed method translates the scenes into the subtitles considering the scene

contents including the character relationships and situations. The knowledge on

abstract concepts in DCH facilitates this contents-sensitive V-L translation. In spe-

cific, when scene images are given, the strength of the concepts in the scenes is

estimated. Because each concept is represented with a mixture of the appearance

distributions of words, word sets is generated to reflect the contents of the scenes.

Finally, the subtitles corresponding to the scene are generated by a phrase-based

approach. Text-to-vision translation is conducted by the same process except the

image patch alignment. This translation is addressed in terms of Bayesian formu-

lation in statistical machine translation. This process emulate a human crossmodal

cognitive process to recall the subtitles when famous scenes is given after watching

a movie, vice versa.

For evaluation, we used a famous cartoon video for children consisting of 183
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episodes with 1,232 minutes of playing time, entitled ”Pororo.” Children’s cartoon

videos are suitable for learning of DCHs since they have a simple and explicit

story line and the relationships of the characters are not complex, compared to

general videos. Moreover, the scene images are simple so that image preprocessing

methods can show good performance. Experimental results show our method

precisely translates the video scenes into the subtitles and vice versa. Furthermore,

we investigate how the hierarchy of conceptual layers enhances the robustness of

the model in concept drift. We present a novel representation of visually grounded

knowledge for multimodal data, i.e., a multimodal concept map. Moreover, we

demonstrate two applications: i) a visual story summarization of the video and ii)

a generation of text story from arbitrarily composed scenes.

5.2 Vision-Language Conversion as a Machine Translation

5.2.1 Statistical Machine Translation

Machine translation is a computational linguistics including the task of translate text

or speech from one language to another (Koehn, 2009). Machine translation has a

very long history but statistical and data-driven approaches have been mainly used

as the large-scale multilingual corpus become available. Recently, humans face

diverse translation services such as google translation on the web or the mobile

devices due to the progress of these statistical machine translation (SMT). The

early methods for SMT were word-based models where words are used as atomic

units. In word-based models such as IBM Candide project (Hutchins, 1993), the

translation of sentences is considered as the task of word alignment. However,

words are not suitable for the atomic units for translation because a word in a

language can translate into two or more words in another language, or vice versa.
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For resolving this issue, multiple words i.e., phrases have been used as the smallest

unit for translation instead of one word, and many state-the-art SMT models belong

to these phrase-based models (Durrani et al., 2013). The SMT can be mathematically

defined using Bayes’ rule:

p(e|f) =
p(f|e)p(e)

p(f)
= p(f|e)p(e) (5.1)

e∗ = arg max
e

p(e|f) = arg max
e

p(f|e)p(e) (5.2)

where e and f denote the sentences in two languages, and e∗ means the best sen-

tence for f. In above equation, p(f|e) and p(e) are the probability distributions of

a translation model and a language model. For translation and language models,

n-gram models and their variants have been widely used since proposed in early

1990s (Brown et al., 1992). In computational linguistics, an n-gram model is a prob-

abilistic language model to predict the next word in a word sequence in the form

of a (n-1)-order Markov model. Due to their simplicity and scalability, the n-gram

models have been applied to diverse domain problems including computational

biology and data compression as well as computational linguistics. However, n-

gram models are difficult to avoid curse of dimensionality even if n is not large and

thus they require many large corpus for precise prediction. In addition, various

smoothing methods have been introduced for overcoming the problem of balancing

the infrequent and the frequent grams by preventing the probability of infrequent

grams from being zero (Mikolov et al., 2013a; Chen and Goodman, 1999). Recent

studies on SMT have used a distributed representation of words and phrases for

overcoming curse of dimensionality. Bengio et al. proposed the distributed rep-

resentation of words and phrases using multilayer neural networks (Bengio et al.,

2003) and it is reported that recurrent or deep neural networks have been success-

fully applied to learning language models and machine translation (Mikolov et al.,
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2010).

5.2.2 Vision-Language Translation

Vision-language translation (V-L translation) views the task of converting between

visual and linguistic information as a type of machine translation. V-L translation

involves many well-knownl problems including image annotation, photo descrip-

tion, and text-based image retrieval. While SMT methods learn the translation rules

from bilingual corpus, it is required to learn the association rules between visual

and linguistic data for V-L translation. In general, V-L translation is known to be

more difficult than conventional translation between two languages due to the rep-

resentation difference and semantic gap between two modalities (Fu et al., 2014).

Similar to the SMT, V-L translation is defined with Bayes’ rule:

p(w|r) =
p(r|w)p(w)

p(r)
= p(r|w)p(w) (5.3)

p(r|w) =
p(w|r)p(r)

p(w)
= p(w|r)p(r) (5.4)

where r and w denote an image and a sentence. When introducing a concept model

θ, an image and a sentence are translated from the corresponding sentences and

images as follows:

w∗ = arg max
w

P(w|r,θ) = arg max
w

P(r|w,θ)P(w|θ) (5.5)

r∗ = arg max
r

P(r|w,θ) = arg max
r

P(w|r,θ)P(r|θ) (5.6)

where w∗ and r∗ denote the best sentence and image which describe the given image

and sentence, respectively.

Early studies on V-L translation used topic models using the latent Dirichlet

allocation (LDA) model. Blei et al. proposed an extension of the latent Dirichlet
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allocation (LDA) model for learning multimodal associations, i.e., correspondence-

LDA (Corr-LDA) . In the Corr-LDA, the probabilities of both image and text vari-

ables are conditioned by the latent variable and thus multimodal associations are

defined as topics for image annotation and retrieval(Blei and Jordan, 2003). Recent

topic model-based approaches have focus on learning from multimodal data such

as short video clips. Zhao et al. proposed a method for object detection from key

frames of video clips using multimodal topic models (Zhao et al., 2013a). Fu et

al. proposed the multimodal latent attribute topic model for transfer learning by

learning semilatent attributes using video and audio modalities, and the model was

applied to video classification (Fu et al., 2014). In addition, it has been reported

that deep neural networks are successfully used for multimodal learning and V-

L translation. Srivastva et al. proposed deep Boltzmann machines for learning

large-scale multimodal data (Srivastava and Salakhutdinov, 2012). In this model,

each modality is separately learned in the corresponding modality-specific layer.

The modality-specific layers are integrated in higher layer encoding the associative

information of two modalities. A zero-shot method based on deep learning models

was proposed for crossmodal transfer learning by Socher et al. and was applied

to image classification (Socher et al., 2013). Apart from these two approaches, var-

ious methods such as statistical methods (Li et al., 2008) and matrix factorization

(Caicedo and González, 2012) have been used for learning the association between

visual and linguistic modalities. However, these models are mainly applied to au-

tomatic image annotation, image segment labeling and text-based image retrieval

but these applications were a little far from translation in a strict sense. More recent

studies have handled the problems closer to the definition of translation. Kiros et al.

proposed a multimodal log-bilinear model for generating sentences that describe

the given images via image-text feature learning based on deep neural networks
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(Kiros et al., 2014). However, most methods for V-L translation were applied to

static large-scale annotated image database. Since they mainly use a fixed model

structure, it is not easy to handle the translation in dynamic and increasing data

such as videos. Some methods dealt with video data but they focused on classifi-

cation or object detection rather than translation. In this chapter, we use large scale

cartoon videos as the data and translate scene images and subtitles reflecting the

video contents. This is more challenging because video data contain knowledge

such as characters as well as concept changes included in the stories, i.e., concept

drifts. In addition, the story content should be considered for more accurate trans-

lation. For handling these issues, it is required that the model for V-L translation

uses more flexible representation which is suitable for incrementally learning from

multimodal data streams.

5.3 Story-aware Vision-Language Translation using Deep

Concept Hierarchies

5.3.1 Story-aware Vision-Language Translation

Tasks of converting between vision and language can be considered as a translation

in the way that one representation is transformed into the other one with min-

imizing the distortion of its semantics. In this chapter, we view vision-language

conversion as a translation, i.e., vision-language translation (V-L translation), which

is formulated in terms of the statistical machine translation. In particular, we pro-

pose a method for translating between video scenes and subtitles considering the

story contents which are represented as the concepts and call it story-aware V-L

translation. This story-based translation is different from conventional methods for

vision-language conversion in three aspects:
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Figure 5.1: Example of sentences generated by conventional methods and story-

aware vision-language translation.

i) Instead of sentences describing a scene image, the subtitles including situa-

tion explanations or dialogues are generated by the story-aware V-L translation for

given scene images.

ii) The story-aware V-L translation synthesizes legible intermediate images by

combining image patches representing the concepts associated with given sen-

tences, which are used to retrieve similar original scene images.

iii) Given character information to the translation, the generated sentences and

images varies depending on the characters despite the same query.

Figure 5.1 shows the difference between the sentences generated by the conven-

tional V-L conversion and story-aware V-L translation. As shown in Figure 5.1, for

example, ”How are you today, Poby” and ”Good morning, Loopy” are generated

when Loopy and Poby are given as the observable concept variables, respectively.

Story-aware vision-language translation can be formulated from (5.3) and (5.4)

by introducing a model parameter θ:

p(w|r, θ) =
p(r|w, θ)p(w, θ)

p(r, θ)
=

p(r|w, θ)p(w|θ)
p(r|θ)

(5.7)
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Figure 5.2: Vision-language translation by the crossmodal inference via a deep

hypernetwork

p(r|w, θ) =
p(w|r, θ)p(r, θ)

p(w, θ)
=

p(w|r, θ)p(r|θ)
p(w|θ)

(5.8)

Figure 5.2 presents vision-language crossmodal inference via deep hypernet-

works. As shown in Figure 5.2, the mechanism of vision-language translation can

be explained in terms of the encoding-decoding process. Scene-subtitles are en-

coded into multiple levels of visual-linguistic concepts and they are decoded into

other modality representation from the concepts.
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5.3.2 Vision-to-Language Translation

Vision-to-language translation denotes the generation of the subtitle sentences cor-

responding to given scenes as a query considering the video contents. Vision-to-

language translation involves two steps: i) generating words associated with the

scene image and ii) aligning the generated words.

The generation probability of the set of words associated with the given scene,

in specific, is defined as the product of the probabilities of all the patches contained

in the scene image for the word set by Bayes’ rule:

P(w|r,θ) ∝
∏
ri∈r

{P(ri|w,θ)P(w|θ)} (5.9)

Ignoring P(r|θ) that are not independent on w and using log function for conve-

nience, the best word set can be defined from (5.9):

w∗ = arg max
w

log P(w|r,θ) = arg max
w

 |r|∑
ri

P(ri|w,θ) + |r| · log P(w|θ)

 (5.10)

Since we consider a model with two concept layers, θ is defined as the tuple of

θ = (c2, c1, h). Using the phrase contained in each microcode as w, the first term can

be computed as follows:

P(ri|w,θ) =

exp
{ ∑

hm∈h
αmϕ(w, c1, c2, hm)φ(ri, c1, c2, hm)

}
exp

{ ∑
hm∈h

αmϕ(w, c1, c2, hm)
} (5.11)

s.t

ϕ(w, c1, c2, hm) =


|wT
·hw

m|

|hw
m|

, i f hm ∈ hc1
and ω(c1, c2) > ζ

0, otherwise

and

φ(ri, c1, c2, hm) =

 1, i f hm ∈ hc1
, ω(c1, c2) > ζ, and min ED(ri, hr

m) < ξ

0, otherwise
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where hw
m and hc1

denote the words of the m-th microcode hm and the microcode

cluster associated with a c1 node, respectively. ED(r1, r2) is the Euclidean distance

between the vectors of two image patches. ζ and ξ are the thresholds of importance

ratio of the character c2 in r and the patch distance. In this function, h is determined

by c1 and c2. It means that the generated word set varies depending on the character

despite the same scene. This definition allows the vision-to-language translation to

be story-aware. By this process, the word set is generated including multiple words

associated with the scene. The second term can be easily obtained by counting the

frequency of the phrases in the model. The second step is aligning words. Since

the generated word set mainly includes nouns and verbs, it is almost impossible

to make sentences by aligning words in the set only. Therefore, we use the word

set as a seed. Because each microcode encodes the consecutive words of subtitle

sentences, next words are concatenated with the generated word one by one by the

probability:

P(wn=i|w1, ....,wn−1) = P(wn=i|wn−k, ....,wn−1) =

exp
{ ∑

hm∈h
αmϕ(wn−k:n−1wi, c1, c2, hm)

}
exp

{ ∑
hm∈h

αmϕ(wn−k:n−1, c1, c2, hm)
}(5.12)

where k is the length of Markov chain and we set k to 2. By introducing the concept

layers into the indication function, we can generated character-specific dialogues

and sentences. A dialogue sentence is generated by probabilistically concatenating

words until a period is selected, and thus the length of the sentences is variable.

5.3.3 Language-to-Vision Translation

In contrast to vision-to-language translation, dialogues and sentences are trans-

formed into intermediate images by the crossmodal inference, i.e. language-to-

vision translation. Same as the vision-language translation, the translation consists
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of two steps including i) the selection of image patches associated with the given

sentence and ii) the arrangement of the selected patches.

The generation probability of the patch set associated with given sentences is

also defined as the product of the probabilities of generating words in the sentences

for the patch set in the same way as the vision-to-language translation:

P(r|w,θ) ∝
∏
wi∈w

{P(wi|r,θ)P(r|θ)} (5.13)

r∗ = arg max
r

log P(r|w,θ) = arg max
r

 |w|∑
wi

P(wi|r,θ) + |w| · log P(r|θ)

 (5.14)

The first term in (5.14) can be calculated in the same way:

P(wi|r,θ) =

exp
{ ∑

hm∈h
αmφ(r, c1, c2, hm)ϕ(ri, c1, c2, hm)

}
exp

{ ∑
hm∈h

αmφ(r, c1, c2, hm)
} (5.15)

In language-to-vision translation, we do not consider the alignment of the selected

patches. Therefore, we select multiple patches based on the generation probability

for all the patches in h, dissimilar to the vision-to-language translation. Selected

patches are located with randomness to be an intermediate image.

5.4 Story-aware Vision-Language Translation on Catoon Videos

5.4.1 Data and Experimental Setting

We use two multimodal datasets in this section. One is ”Pororo” dataset with 183

episodes, which is same to Chapter 4. By preprocessing, each scene is captured

whenever a subtitle appears, transforming all the videos into the set of 16,000

utterance-scene pairs. A scene image is represented by a bag of image patches
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Scenes Episodes 1~13 Episodes 1~36

Original And petty taught loopy how to ski.

UGMC

- did you ask me how to swim.
- the end how grateful I think she 
is coming.

UGMC

- Wow petty that how that is not always 
so loopy taught if i can do fly it well.

- How did you have to be that I could ski 
just.

PRGMC
- end how was so happy
- the end how did you I would

PRGMC
- How did you pororo you.
- How about now you can I do not worry.

FGMC

- To show how big you found
- The end how grateful I am petty 
nice to lose careful

FGMC
- Harry realized that how that is it is 
dangerous

- I thought that how that I could ski just

SPC

- But how do someone stop.
- The end how was it. SPC

- How about now you can you give me 
that how that is great.

- I will see let see how big.

Original Wow poby, you caught so many already.

UGMC

- Has been caught

UGMC

- Come out if you go in to hear you guys 
you have got a lot of fish I caught.

- You have caught a lot today did you see 
you later.

PRGMC

- Has been caught
PRGMC

- Everyone has caught a fish for dinner.
- You have caught a lot today did you ask 
me how.

FGMC

- What are you guys you have 
caught a lot.

- What happened to ten everyone 
has caught a lot.

FGMC

- Poby caught a boat a secret that all the 
wind is so big.

- You have caught a fish for the art diving.

SPC

- Pororo no pororo has caught
- She caught the first place

SPC

- You come with his new friend has 
caught a very interesting book recently

- What about pororo has caught a lot of 
fish

Figure 5.3: Story-aware subtitle generation for given scene images as the increase

of the observed videos. SPC denotes a model with no concept layer.

extracted by maximally stable external regions (MSER) (Matas et al., 2004) and

each patch is defined as a feature vector using SIFT (Lowe, 2004) and RGB color.

The other is a benchmarking dataset which is a database of tagged images from

Flickr.com called MIR Flickr dataset (Huiskes and Lew, 2008). Among the dataset,

we selected 10,000 images with category labels for evaluation. We used a DCH

model with two concept layers. A microcode consists of two image patches and a

phrase with three consecutive words. The image patches are selected by UGMC
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PRGMC UGMC FGMC SPC

(a) Precision (b) Recall

Figure 5.4: Precision (a) and recall (b) of scene to sentence as the increase of the

observed videos generation

and a phrase is selected with the maximum value of P(v(x)) of the words in the

phrase.

5.4.2 Scene-to-Sentence Generation

Figure 5.3 shows the generated subtitle sentences for given scene images using

concept knowledge on the video contents. The first image is an observed scene and

the second is not observed by the models. For both the images, the model observing

more videos generates not only more complex but also more descriptive sentences

with more diverse words. Also, the model learned by FGMC provides more accurate

and descriptive sentences, compared to those by PRGMC. We can obviously find

this result from Figure 5.3, which presents the quantitative performance of story-

aware scene to subtitle generation. We used the test set of 183 images by randomly

selecting one image per episode image and the values are averaged after repeating

10 times of experiments. For evaluation, we used precision, recall, and F-score as
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Table 5.1: Scene-to-sentence translation performance on the Pororo dataset

Score cLDAs mDBMs PRGMC UGMC FGMC SPC

Precision 0.020 0.101 0.267 0.251 0.268 0.242

Recall 0.240 0.152 0.315 0.284 0.376 0.291

F-score 0.037 0.121 0.289 0.266 0.313 0.264

measures. Three measures are defined as follows:

Precision =
|C|
|w′|

,Recall =
|C|
|w|
, (5.16)

F − score = 2 ·
Precesion · Recall
Precesion + Recall

, (5.17)

where C denotes the set of correctly matched words. w and w′ are an original and

a generated subtitle sentence.

Table 5.1 shows the performances of translating scene images into sentences,

compared to conventional multimodal models. For comparison, we used multi-

modal deep Boltzmann machines (mDBMs) (Srivastava and Salakhutdinov, 2012)

and correpondence LDAs (cLDAs)(Xiao and Stibor, 2010). Because two models can

generate textual tags only instead of sentences, the performances were measured

using the generated tags. Dissimilar to mDBMs and corrLDAs, the performances of

DHCs were computed using all the words in the generated sentences. The results

in Table 5.1 are consistent with Figure 5.3. As shown in Table 5.1, we can find that

DCHs not only provide subtitle sentences which cannot be generated by other two

models but also show better performances than mDBMs and cLDAs. In specific,

because two models mainly generate words frequently appearing in the observed
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Scene images Generated sentences (words)

Original I am making a magic potion

cLDA is, I, you, crong, it, 

mDBM cookie, cororong, uh, pipi, poyoyo

DCH
- i am making magic sorry i am making food 

- your magic wand already but i want to meet you 

sure

Original Everyone headed into the forest

cLDA I, is, you, crong, the

mDBM cookie, crorong, uh, pipi, poyoyo

DCH
- you think everyone is better to the forest

- we have to find everyone ran away

Figure 5.5: Examples of sentences (words) generated by DCHs and other models

subtitles, including it, is, a, and that, they present low scores as shown in figure 5.5.

Also, FGMC shows better performance than UGMC and PRGMC as the observed

videos increase. This indicates that FGMC enables the concepts to be represented

with more diverse and descriptive image patches and words. Also, we can indicate

that the introduction of the hierarchy improves the model performance, comparing

the results of DCHs to those of SPCs.

Table 5.2 presents the performance of image-to-text translation on the MIR

Flickr.com dataset. We used FGMC as the method for learning DCHs. Dissimi-

lar to Table 5.1, ovall performaces are lower than those of the Pororo dataset. We

indicate that this is caused by the difficulty of representing natural images with
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Table 5.2: Scene-to-sentence translation performance on Flickr.com dataset

Measure cLDAs mDBMs DCHs(FGMC) SPCs

ST(30) 0.241 0.213 0.198 0.263

ST(100) 0.533 0.341 0.412 0.579

Precision 0.004 0.005 0.011 0.004

Recall 0.101 0.090 0.192 0.111

F-score 0.007 0.009 0.019 0.006

visual features. Also, the tagged words are sparse compared to the subtitles of

video scenes. Therefore, we confirmed that automatic tagging and sentence gen-

eration for images are still a very challenging problem. For effective comparison,

we define a score, successful tagging (ST) that is 1 when the generated word set

includes the real tag words of the given scenes, 0 otherwise. ST(n) denotes the

average sucessful tagging when the size of a generate word set is n. Comparing the

performances of each model, DCHs provide competitive results to cLDAs and out-

perform mDBMs. From Table 5.2, we indicate that the proposed model can provide

competitive performances of vision-language translation on a natural images.

5.4.3 Sentence-to-Scene Generation

Figure 5.6 shows the generated intermediate images for given sentences as a query

by story-aware vision-language translation. The generated scenes are synthesized

by the weighted overlapping of image patches associated with the words in the

sentences based on the constructed knowledge. This mechanism is inspired by the

cross-modal reconstruction of mental imagery upon stimuli in human brains. When
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Query sentences Episodes 1~52 (1 season) Episodes 1~104 (2 seasons) Episodes 1~183 (all seasons)

Tongtong, 

please change 

this book 

using magic.

Kurikuri, 

Kurikuri-

tongtong!

I like cookies.

It looks 

delicious

Thank you, 

loopy

Figure 5.6: Generated intermediate images from given sentences as the increase of

the observed videos

a child hears dialogue sentences, that is, he recalls the scenes or images related to

the sentences. As the number of observed videos increase, the images become more

complex and diverse. Comparing two query sentences, the first query sentences

are related to Tongtong, a dragon magician and the second sentences are associated

with Loopy, a chatter girl who likes cooking. Note that Tongtong does not appear

until episode 56 and he casts ”Kurikuri” for spell. Therefore, the images generated

by the model learning from episode 1 to episode 52 seem to be unrelated to the

first query sentences. However, once the concepts on Tongtong were constructed

by observing Tongtong-related episodes, various images related to Tongtong recalled

from the query sentences. Dissimilar to Tongtong, Loopy continuously comes on
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Ep 1 Ep 1~13

Ep 1~26 Ep 1~52

Characters High

Low

Figure 5.7: Changes of the relationships between main characters as the story

proceeds

since episode 1 even if she less frequently appears than Pororo and Crong. In

addition, she likes to make cookies. From the fact that the recalled images by the

second query mainly mostly contain Loopy, cookies, and diverse objects related to

Loopy, we indicate that the concept knowledge constructed by learning of DCHs

enables the translation to be story-aware.
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Figure 5.8: Visual-linguistic video summarization based on the changes of character

relationships

5.4.4 Visual-Linguistic Story Summarization of Cartoon Videos

Figure 5.7 presents the change of the relationships between two characters in Pororo

season 3 as the stories unfold. Through all the episodes, 13 main characters appear

in the story and the character relationships continuously changes to determine the

stories. In Figure Figure 5.7, red and blue denote strong and weak relationships,

respectively. The relationships are computed using KL divergence between the

distribution of the words and the patches associated with each character. As shown

in Figure Figure 5.7, Pororo and Crong are strongly associated during all the episodes

in general and this is consistent with the fact that Pororo is the older brother of Crong

and they live together. In addition, The we can validate the fact that Eddy made

Rody in the third episode and they live together after, comparing the result of one
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episode one to that of 13 episodes.

Figure 5.8 visualized the significant events corresponding to the relation changes

as the stories proceed. This relation changes can be the summarization of the video

story and the large changes mean the emergence of significant events.

5.5 Summary

We have presented a story-aware vision-language translation method based on the

content knowledge, which is constructed via learning visual-linguistic concepts

from cartoon videos. The story-aware translation is different from conventional

vision-language conversion since it generates dialogues and narrations from scene

images or immediate images from sentences, considering the contents of the ob-

served videos. To achieve the story-aware vision-language translation, we have

proposed a deep concept hierarchy (DCH) for learning the multimodal concepts

used as knowledge for the translation. DCH represents grounded knowledge of

vision and language by characterizing multiple levels of concepts with hypergraph

structures. Unlike other deep learning models, the DCH structure can be flexibly

and incrementally organized. This flexibility enables the model to handle concept

drifts in stream data such as videos. To deal with the complexity problem for

structure learning of DCH, we have proposed a graph Monte-Carlo method. In

essence, the graph MC stochastically and constructively searches for a hierarchi-

cal hypergraph that matches the empirical distribution of the observed data. We

compared three strategies for the graph MC: uniform graph Monte-Carlo (UGMC),

poorer-richer graph Monte-Carlo (PRGMC), and fair graph Monte-Carlo (FGMC)

depending on the probability of selecting vertices. Using the graph MC, DCH

dynamically learns concepts from videos, thus automatically constructing knowl-

edge with visual and linguistic representation on the video stories and is used to
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vision-language translation considering the video stories. Using the graph MC,

DCH dynamically learns concepts from videos, thus automatically constructing

knowledge with visual and linguistic representation on the video stories and is

used to vision-language translation considering the video stories. Vision-language

translation views the vision-language conversion as a machine translation and we

formulated it in terms of the statistical machine translation. For allowing the trans-

lation to be story-aware, in addition, we introduced concept parameters into the

formulation. This enables the translated results to vary despite the same queries,

depending on characters as well as the amount of observed videos. We evaluated

our method on cartoon videos, ”Pororo”, consisting of 183 episodes in addition to

a benchmarking dataset.

Experimental results showed that DCH combined with the graph MC algorithm

can represent and learn visual and linguistic concepts at multiple abstraction levels

in the form of the probability distribution of visual-textual variables from the videos.

Also, we confirmed that the hierarchy improved the concept representation. In

addition, we found that PRGMC and FGMC work better in earlier and later steps of

video observation by presenting the visual-language translation. Furthermore, we

presented that the proposed DCH showed a competitive performance compared to

conventional models including deep learning models.

The present work can be mainly extended to two directions. Overall, our ex-

perimental results demonstrate that DCH combined with the graph MC algorithms

captures the mixed visual-linguistic concepts at multiple abstraction levels by se-

quentially estimating the probability distributions of visual and textual variables

extracted from the video data. In future work, it would be interesting to see how

the methods scale up on a much larger dataset with more complex story structures

than the educational cartoon videos for children. The second direction is to be
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extended into learning from real-life sensor data stream for achieving human-level

artificial intelligence based on lifelong learning. For achieving this, our method can

be implemented using high-performance computing.



Chapter 6

Concluding Remarks

6.1 Summary of the Dissertation

We have proposed a multimodal hypernetwork with deep architecture for learning

concept knowledge from dynamic multimodal data, i.e., deep hypernetwork, in this

dissertation. A hypernetwork is a higher-order probabilistic graphical model using

flexible hypergraph structures explicitly characterizing higher-order relationships

among data variables.

In this dissertaion, hypernetworks are extend to represent associations among

visual and linguistic features to model multimodal data such as annotated images

and cartoon videos, called multimodal hypernetwork. By denoting an image patch

and a word to a visual and a textual vertex, an hyperedge encodes the high-order

relationship among visual-textual features, and thus multimodal hypernetwork

represent the multimodal association contained in the observed data. We proposed

a incremental method for learning from large-scale data and this is formulated

in terms of the sequential Bayesian sampling. A multimodal hypernewtork was

successfully applied to the text-to-image retrieval on 3000 images of the SBU pho-

94
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tograph dataset.

Non-stationary multimodal data such as videos implicate concept drifts which

are the changes of stories. In addition, a multimodal hypernetwork requires a large

number of hyperedges for modeling large amount of data and this may cause the

scalability problem. In this dissertation, for handling these two issues, we proposed

a deep architecture of hypernetworks using a multiple layers of hypernetworks for

learning from non-stationary multimodal data, called deep hypernetwork. Deep

hypernetwork is different from conventional deep learning models with respect to

the node connection between layers. The nodes between two adjacent layer are

not fully connected in deep hypernetworks and this reduces the model complexity.

Learning of deep hypernetwork involves two main technical issues; i) searching

a huge combinatorial feature space representing a hypernetwork and ii) tracing

concept drifts as the increase of the observed data. For efficient learning of hy-

pernetworks, we proposed a stochastic method for constructing hypergraphs, i.e.,

graph Monte-Calro (graph MC). We defined the graph MC as three types such as

uniform graph MC (UGMC), poorer-richer graph MC (PRGMC), and fair graph MC

(FGMC) depending on its learning strategy. For dealing with concept drifts, the

number of the nodes of each layer can flexibly changes as the learning proceeds.

Also, the weights of the connections are updated while observing new data and

this is formulated in terms of Bayesian inference. This learning mechanism allows

a deep hypernetwork to effectivley model a hierarchy of concepts of the video

contents and robustly trace the concept drift as the progress of the story.

Constructed concept hierarchies can be considered as the knowledge on the

observed videos and this concept knowledge can be used for transforming between

visual and linguistic contents. We view the vision-language conversion as the

machine translation and formulated it in terms of the statistical machine translation,
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vision-language translation (V-L translation). Since the scenes and the subtitles are

translated from each other considering the story, this makes the proposed method

different from other vision-language conversion models, and we call it story-aware

vision-langauge translation.

We used a famous cartoon video for children, Pororo, with 183 episodes as

non-stationary multimodal data for evaluating the methods proposed in this dis-

sertation. Experimental result showed that the deep hypernetworks outperform

conventional multimodal hypernetwork with no hierarchy as well as conventional

deep learning models. In contrast to topic models, the proposed model can precisely

generated sentences from the given scene images while reflecting the observed story.

Furthermore, our model can generated legible intermediate images from the given

sentences, which can be used for retrieving original images. Also, we presented our

method can robustly trace the concept drift implicated in the data by investigating

the model structures, translating between the scenes and the subtitles, visualizing

the development of visual-linguistic concept maps.

6.2 Directions for Further Research

The presented work is the start point for implementing lifelong learning to achieve

human-level intelligence. For achieving this goal, this work should be extended

into several directions. One is to add more modality such as audio into the model.

The addition of audio enables the model to enhance the efficiency of language

learning and to represent emotional features. For modeling human behaviors in

real-world and real-life, it is essential for introducing more modality representing

data generated diverse sensors equipped in smartphone and google glass into the

model. The second direction is to improve theoretical soundness of the learning.

The third is to introduce a dynamic architecture into the models by using prediction
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results as input information for learning. The fourth is to implement the method

using high performance computing architecture for efficiently dealing with dynamic

data. A hypernetwork uses the representation suitable for parallel and distributed

computing since it consists of many hyperedges. The implementation based on

high performance computing enables the model to efficiently learn from large-scale

dynamic multimodal data.
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