1 research outputs found

    λΉ›μ˜ 이쒅 μ–‘μž μ–½νž˜μ„ ν†΅ν•œ 손싀에 κ°•ν•œ μ–‘μžκ³΅κ°„μ΄λ™

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μžμ—°κ³Όν•™λŒ€ν•™ λ¬Όλ¦¬Β·μ²œλ¬Έν•™λΆ€(물리학전곡), 2021. 2. μ •ν˜„μ„.The optical system is one of the promising candidates for quantum information processing. Using quantum resources possible for the optical state, one can gain quantum advantages in many useful applications. Quantum teleportation is one of the outstanding protocols using entanglement. However, the unavoidable photon loss damages the entanglement, especially for the optical qubit having many photons. This dissertation discusses the usage of the hybrid entanglement between two different qubit encodings to achieve both the high teleportation success probability and the high fidelity between the input and target qubit. For the high success probability, I utilize the many-photon qubit encoding such as the coherent-state qubit with large amplitude and multiphoton qubit of polarized photons since these encodings have the nearly-deterministic Bell-state measurement schemes. The small-photon qubit encoding, in contrast, shows the better behavior on the photon loss. This encoding includes a vacuum-and-single-photon (VSP) qubit, polarized single-photon (PSP) qubit, and coherent-state qubit with a small amplitude. I consider the hybrid entanglement for a coherent-state qubit to a VSP qubit and a multiphoton qubit to all small-photon qubits. First, the analysis of the hybrid entanglement of a coherent-state qubit shows that the success probability withstands more photon losses as the amplitude of coherent-state qubit increases. The fidelity is affected by the losses both on the coherent-state qubit and VSP qubit, but the loss of the coherent-state qubit affects it more severely especially for large amplitude. Second, the hybrid entanglement of a multiphoton qubit shows that the fidelity is determined by the loss of the small-photon qubit side while the success probability depends on loss only in the multiphoton qubit side. Especially, the hybrid entanglement with the VSP qubit tolerates 10 times more photon-loss rate than the direct transmission in high fidelity regime (F>90%). For the success probability, I propose the optimal photon number consisting of a multiphoton qubit. The generation methods for the required entangled states are additionally discussed. I further investigate the quantum resources of light other than entanglement: coherence and nonclassicality. I propose physically motivated coherence measures from the role of coherence in the quantum Fisher information and expectation values of quantum observables. For the latter measure, the semidefinite programming provides an efficient method to compute the involved optimization. The suggested nonclassicality measure is based on the negativity of the Glauber-Sudarshan P function. The singular behavior of the P function is dealt with by the filtering on the Fourier space. The negativity is proven to be equivalent to the robustness of mixing with the classical state, which gives its operational meaning.κ΄‘ν•™ μ‹œμŠ€ν…œμ€ μ–‘μž 정보 μ²˜λ¦¬μ—μ„œ μœ λ§ν•œ 후보 쀑 ν•˜λ‚˜μ΄λ©° μ–‘μž μžμ›μ„ ν™œμš©ν•˜μ—¬ μ–‘μžμ  이점을 얻을 수 μžˆλŠ” λ§Žμ€ μ‘μš©μ΄ μ‘΄μž¬ν•œλ‹€. μ–‘μž ν…”λ ˆν¬ν…Œμ΄μ…˜μ€ 잘 μ•Œλ €μ§„ ν”„λ‘œν† μ½œ 쀑 ν•˜λ‚˜λ‘œμ„œ μ–‘μž μ–½νž˜μ„ μ΄μš©ν•œλ‹€. κ·ΈλŸ¬λ‚˜ κ΄‘μž 손싀은 μ–‘μž μ–½νž˜μ— λΆˆκ°€ν”Όν•˜κ²Œ 손상을 μ£Όκ³ , μ΄λŠ” λ§Žμ€ κ΄‘μžλ‘œ κ΅¬μ„±λœ νλΉ—μ˜ 경우 더 μ‹¬κ°ν•œ 영ν–₯을 λΌμΉœλ‹€. 이 논문은 μ„œλ‘œ λ‹€λ₯Έ 두 μ’…λ₯˜μ˜ 큐빗 인코딩 μ‚¬μ΄μ˜ μ–½νž˜μ„ μ΄μš©ν•˜λŠ” 이쒅 μ–‘μž μ–½νž˜μ„ μ‚¬μš©ν•˜κ³  높은 ν…”λ ˆν¬ν…Œμ΄μ…˜ 성곡 ν™•λ₯ κ³Ό μˆœκ²°μ„±μ„ λ™μ‹œμ— λ‹¬μ„±ν•˜λŠ” 방법에 λŒ€ν•΄ λ…Όμ˜ν•œλ‹€. 높은 성곡 ν™•λ₯ μ„ μœ„ν•΄ 이 λ…Όλ¬Έμ—μ„œλŠ” 거의 확정적인 벨 츑정을 μˆ˜ν–‰ν•  수 μžˆλŠ” 큰 μ§„ν­μ˜ 결맞음 큐빗과 νŽΈκ΄‘λœ κ΄‘μžλ‘œ κ΅¬μ„±λœ λ‹€κ΄‘μž 큐핏을 κ³ λ €ν•œλ‹€. ν•œνŽΈ, 적은 κ΄‘μžλ₯Ό 가진 큐빗듀은 κ΄‘μž 손싀에 μ˜ν•œ 영ν–₯이 μƒλŒ€μ μœΌλ‘œ 적닀. μ΄λŸ¬ν•œ νλΉ—μ˜ ν›„λ³΄λ‘œ 진곡-단일 κ΄‘μž 큐빗, νŽΈκ΄‘λœ 단일 κ΄‘μž 큐빗, μž‘μ€ μ§„ν­μ˜ 결맞음 큐빗이 κ³ λ €λœλ‹€. 큰 μ§„ν­μ˜ 결맞음 큐빗은 진곡-단일 κ΄‘μž 큐빗과 이쒅 μ–½νž˜μ„, 그리고 λ‹€κ΄‘μž 큐빗은 μ„Έκ°€μ§€μ˜ μž‘μ€ κ΄‘μž νλΉ„νŠΈμ— λŒ€ν•œ μ–½νž˜μ„ κ³ λ €ν•œλ‹€. λ¨Όμ €, 큰 μ§„ν­μ˜ 결맞음 큐빗을 μ΄μš©ν•œ 이쒅 μ–‘μž μ–½νž˜μ— λŒ€ν•œ 뢄석은 νλΉ—μ˜ 진폭이 클수둝 성곡 ν™•λ₯ μ΄ 더 λ§Žμ€ κ΄‘μž 손싀에 λŒ€ν•΄μ„œλ„ λ†’κ²Œ μœ μ§€λœλ‹€λŠ” 것이 λ‚˜νƒ€λ‚œλ‹€. μˆœκ²°μ„±μ€ 결맞음 큐빗과 진곡-단일 κ΄‘μž 큐빗 λͺ¨λ‘μ˜ 손싀에 영ν–₯을 λ°›μ§€λ§Œ, 진폭이 클수둝 결맞음 νλΉ—μ˜ 손싀에 λŒ€ν•œ 영ν–₯을 더 크게 λ°›λŠ” 것을 λ³Ό 수 μžˆλ‹€. λ‘˜μ§Έλ‘œ, λ‹€κ΄‘μž νλΉ—μ˜ 이쒅 μ–‘μž μ–½νž˜μ—μ„œλŠ” μˆœκ²°μ„±μ΄ μž‘μ€ κ΄‘μž νλΉ—μ—μ„œ μΌμ–΄λ‚˜λŠ” μ†μ‹€μ—λ§Œ 영ν–₯을 λ°›λŠ” 반면 성곡 ν™•λ₯ μ€ λ‹€κ΄‘μž νλΉ—μ˜ μ†μ‹€μ—λ§Œ 영ν–₯ λ°›μŒμ„ 보인닀. 특히 높은 μˆœκ²°μ„± μ˜μ—­μ—μ„œ (F>90%) 진곡-단일 κ΄‘μž 큐빗은 λ‹€κ΄‘μž 큐빗을 직접 μ „μ†‘ν•˜λŠ” 방법 보닀 10λ°° λ§Žμ€ κ΄‘μž 손싀λ₯ μ„ κ²¬λ”˜λ‹€λŠ” 것을 보인닀. 성곡 ν™•λ₯ μ— λŒ€ν•΄, 이 논문은 주어진 손싀λ₯ μ— λŒ€ν•΄ λ‹€κ΄‘μž νλΉ—μ˜ 졜적의 κ΄‘μž 수 λ˜ν•œ μ œμ‹œν•œλ‹€. μΆ”κ°€μ μœΌλ‘œ 이쒅 μ–‘μž μ–½νž˜μ„ 생성할 수 μžˆλŠ” μ‹€ν—˜μ  방법이 λ…Όμ˜λœλ‹€. 여기에 더 λ‚˜μ•„κ°€ μ–‘μž μ–½νž˜ 외에 빛이 κ°€μ§ˆ 수 μžˆλŠ” μ–‘μž μžμ›μΈ μ–‘μž 결맞음과 비고전성을 μžμ› 이둠 κ΄€μ ν•˜μ—μ„œ 닀룬닀. λ¨Όμ € 결맞음 이둠에 λŒ€ν•΄ μ–‘μž 츑도 세기와 μ–‘μž κ΄€μΈ‘λŸ‰μ˜ ν‰κ· κ°’μ΄λΌλŠ” 물리적인 ν˜„μƒμ— κΈ°μ΄ˆν•œ 츑도λ₯Ό μ œμ‹œν•œλ‹€. ν›„μžμ˜ 경우 μ–‘ν–‰λ ¬ ν”„λ‘œκ·Έλž˜λ°μ„ 톡해 ν•„μš”ν•œ μ΅œμ ν™” 계산을 μˆ˜ν–‰ ν•  수 μžˆμŒμ„ 보인닀. 이 λ…Όλ¬Έμ—μ„œ μ œμ‹œλœ λΉ„κ³ μ „μ„±μ˜ μΈ‘λ„λŠ” κΈ€λΌμš°λ²„-μˆ˜λ‹€λ₯΄μƒ¨ P-ν•¨μˆ˜μ˜ μŒμˆ˜μ„±μ— κΈ°μ΄ˆν•˜λ©°, P-ν•¨μˆ˜μ˜ νŠΉμ΄μ μ„ 필터링을 톡해 푸리에 κ³΅κ°„μ—μ„œ 닀룬닀. μ΄λŸ¬ν•œ μŒμˆ˜μ„±μ€ κ³ μ „ μƒνƒœμ™€ ν˜Όν•©μ„ κ²¬λ””λŠ” 정도와 κ°™λ‹€λŠ” 것을 증λͺ…ν•˜μ—¬, μ‘°μž‘μ μΈ κ΄€μ μ—μ„œ 의미 λ˜ν•œ μ œμ‹œν•œλ‹€.Abstract i I. Introduction 1 II. Hybrid entanglement of light and teleportation of many-photon qubit encodings 5 2.1 Introduction 5 2.2 Photon-loss model 7 2.3 Teleportation using the hybrid entanglement between a VSP qubit and a coherent-state qubit 8 2.3.1 Loss on hybrid entanglement 8 2.3.2 Output state of the teleportation 9 2.3.3 Fidelity 12 2.3.4 Success probability 13 2.4 Teleportation of a multi-photon qubit using a carrier qubit 15 2.4.1 Review of multiphoton qubit 15 2.4.2 Loss on hybrid entangled states 17 2.4.3 Output states and their fidelities 22 2.4.4 Success probabilities 31 2.5 Generation of hybrid entangled states 34 2.6 Remarks 38 III. Operational quantum resources beyond entanglement 43 3.1 Introduction 43 3.2 Measuring coherence via observable quantum effects 45 3.2.1 Preliminaries 45 3.2.2 Coherence and Quantum Fisher Information 47 3.2.3 Coherence measures from quantum observables 54 3.2.4 Examples 63 3.3 Measuring Nonclassicality via negativity 65 3.3.1 Nonclassicality filtering 65 3.3.2 Negativity as a linear optical monotone 70 3.3.3 Operational interpretations of the negativity 72 3.3.4 Approximate nonclassicality monotones 75 3.3.5 Examples 79 3.4 Remarks 81 IV. Conclusion 85 Bibliography 89 Abstract in Korean 103Docto
    corecore