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Abstract

Loss-tolerant teleportation using
hybrid entanglement of light

Seongjeon Choi

Department of Physics and Astronomy

The Graduate School

Seoul National University

The optical system is one of the promising candidates for quantum informa-

tion processing. Using quantum resources possible for the optical state, one

can gain quantum advantages in many useful applications. Quantum tele-

portation is one of the outstanding protocols using entanglement. However,

the unavoidable photon loss damages the entanglement, especially for the

optical qubit having many photons.

This dissertation discusses the usage of the hybrid entanglement be-

tween two different qubit encodings to achieve both the high teleportation

success probability and the high fidelity between the input and target qubit.

For the high success probability, I utilize the many-photon qubit encoding

such as the coherent-state qubit with large amplitude and multiphoton qubit

of polarized photons since these encodings have the nearly-deterministic

Bell-state measurement schemes. The small-photon qubit encoding, in con-

trast, shows the better behavior on the photon loss. This encoding includes
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a vacuum-and-single-photon (VSP) qubit, polarized single-photon (PSP)

qubit, and coherent-state qubit with a small amplitude. I consider the hybrid

entanglement for a coherent-state qubit to a VSP qubit and a multiphoton

qubit to all small-photon qubits.

First, the analysis of the hybrid entanglement of a coherent-state qubit

shows that the success probability withstands more photon losses as the

amplitude of coherent-state qubit increases. The fidelity is affected by the

losses both on the coherent-state qubit and VSP qubit, but the loss of the

coherent-state qubit affects it more severely especially for large amplitude.

Second, the hybrid entanglement of a multiphoton qubit shows that the fi-

delity is determined by the loss of the small-photon qubit side while the

success probability depends on loss only in the multiphoton qubit side. Es-

pecially, the hybrid entanglement with the VSP qubit tolerates 10 times

more photon-loss rate than the direct transmission in high fidelity regime

(F ≥ 90%). For the success probability, I propose the optimal photon num-

ber consisting of a multiphoton qubit. The generation methods for the re-

quired entangled states are additionally discussed.

I further investigate the quantum resources of light other than entangle-

ment: coherence and nonclassicality. I propose physically motivated coher-

ence measures from the role of coherence in the quantum Fisher information

and expectation values of quantum observables. For the latter measure, the

semidefinite programming provides an efficient method to compute the in-

volved optimization. The suggested nonclassicality measure is based on the

negativity of the Glauber-Sudarshan P function. The singular behavior of

the P function is dealt with by the filtering on the Fourier space. The nega-
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tivity is proven to be equivalent to the robustness of mixing with the classical

state, which gives its operational meaning.

Keywords : Teleportation, Hybrid entanglement, Quantum coherence, Non-

classicality

Student Number : 2015-20354
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Chapter 1

Introduction

The revolutionary development of quantum optics in the late 20th cen-

tury allows physicists to prepare and control an individual quantum system.

Beyond passively observing quantum effects, the engineering ability on the

quantum system opens up the quantum technology that takes advantage of

the characteristics of quantum mechanics. The contemporary discoveries of

the fundamental protocols, therefore, do not seem just coincidences: C. H.

Bennett and G. Brassard invented the radically innovative secret-key sharing

protocol [1]. Shor’s algorithm [2] and Grover’s algorithm [3] became fun-

damental for the quantum algorithms. Braunstein and Caves gave the idea

of quantum metrology [4].

Quantum teleportation is one of the distinctive protocols in quantum

information processing. Discovered by C. H. Bennett, G. Brassard, and C.

Crepeau [5], teleportation indirectly transfers quantum information without

the information itself moving through physical space. This striking feature

has no imitation in the classical information theory. Although the informa-

tion is transferred only after enough amount of classical information is trans-

mitted despite its seemingly ‘non-local’ appearance, teleportation has use-

ful applications in quantum communication [6, 7] and quantum computing

[8, 9, 10].

One of the main obstacles of optical quantum information is the in-
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evitable decoherence due to photon loss. Especially for long-distance quan-

tum information processing, it is highly desirable to find teleportation pro-

tocols loss-tolerant under the photon loss. There has been suggested such

as purification protocol [11, 12], entanglement swapping with quantum re-

peaters [13], and error-correcting protocol [14, 15, 16, 17] in repeater nodes.

Additionally, the study on the robust qubit encodings and their hybrid has

been introduced. This dissertation particularly focuses on the hybrid ap-

proach aiming to combine the merits of different qubit encodings. This ap-

proach is believed to be possible in the near future.

For teleportation, a special kind of correlation, entanglement, must be

shared between the sender and receiver, which the classical mechanics can-

not provide. The entanglement, however, is not the only distinctive feature

in the optical system: there are other quantum characteristics of optical sys-

tem [18, 19, 20, 21]. The famous particle-wave duality of light tells that the

light is not particle nor wave: the quantum nature of light has both of them

[22]. In other words, if an optical state is solely described by the particles

or waves without superposition, the system is classical and cannot show the

quantum power. The resource theory framework provides the quantitative

understanding of the quantumness in the perspective of each characteristic.

The degree of deviation from the classical particle and wave description is

called quantum coherence and nonclassicality, respectively. The central is-

sue of the resource theory framework is to find operational measures. The

operational measure does not merely quantify, but the measured quantity

itself has a physical implication in some operational scenario.

In this dissertation, the usage of the hybrid entanglement is discussed

2



for loss-robust qubit teleportation and investigate the operational measures

that may quantify the coherence and nonclassicality. In chapter 2, I consider

the hybrid entanglement between a many-photon qubit and a small-photon

qubit. The former has merit on the Bell-state measurement, and the latter on

the loss-tolerance. In chapter 3, I introduce the resource-theoretic measures

for coherence and nonclassicality. I drive the coherence measures from the

famous quantum effects such as metrological power and expectation val-

ues of quantum observables. For the nonclassicality, I show that the famous

phase-space negativity can be a genuine measure and that it is equivalent to

the robustness of the mixing with classical states.
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Chapter 2

Hybrid entanglement of light and
teleportation of many-photon qubit
encodings

2.1 Introduction

Photonic qubits are particularly useful for quantum information trans-

fer over a long distance. There are several different ways to encode qubit

information in traveling light fields. Probably the most well-known type

uses the horizontal and vertical polarizations of a single photon (PSP), |H〉
and |V 〉 [8, 23], which is often called “dual-rail encoding.” Another method

is to utilize the vacuum and the single-photon (VSP) states, |0〉 and |1〉,
called “single-rail encoding,” with its own merit [24, 25]. Recently, Lee

et al. suggested multiphoton encoding with the horizontal and vertical po-

larizations of N photons, {|H〉⊗N =
⊗N

i=1 |H〉i , |V 〉⊗N =
⊗N

i=1 |V 〉i}. Not

only restricted to the discrete qubit encoding, one can alternatively uti-

lize continuous-variable-based qubit encoding such as one with two coher-

ent states with opposite phases, |±α〉, where ±α are coherent amplitudes

[26, 27]. The characteristic of the coherent-state qubit is subject to the am-

plitude α.

The aforementioned qubit encodings can be divided into two groups
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according to the mean-photon number n̄. The first one is the small-photon

qubit encoding, which includes the PSP qubit, VSP qubit, and the coherent-

state qubit with a small α. The mean photon numbers in these encodings

are less than two. With the linear optics, only two among four Bell states

can be discriminated for the PSP qubit and VSP qubit, so the success prob-

ability of Bell measurement is generally limited to 1/2 [28, 29]. The suc-

cess probability of the coherent-state qubit is also small since it is given by

1−O(e−2α2
) [26]. This affects the success probabilities of gate operations

for linear optics quantum computing [8] depending on the gate teleportation

scheme [10], which is an obstacle against the implementation of scalable

optical quantum computation.

The second group contains the multiphoton qubit and the coherent-

state qubit with a large α. In contrast to the first one, these qubits have the

nearly-deterministic Bell-state measurement scheme approaching the unity

as n̄ → ∞. However, the many-photon qubits are fragile under the photon

loss since these qubits generally form macroscopic superposition, which is

weak under loss.

These two groups have their own merits. The hybrid approach aims to

combine the advantages of qubit encodings and redeem the weaknesses. In

this chapter, I consider the hybrid entanglement of small-photon and many-

photon qubits and investigate teleportation schemes via the hybrid entan-

glement. The evaluation of this approach will be evaluated by the fidelity

between the input and output states and the success probability of quantum

teleportation under photon loss. This study may be useful for designing and

building up loss-tolerant quantum communication networks.
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2.2 Photon-loss model

In this chapter, the photon-loss environment is described by the master

equation under the Born-Markov approximation with the zero-temperature

[30]:

∂ρ
∂τ

= γ
N∑

i=1

(
âiρâ†

i −
1

2
â†

i âiρ− 1

2
ρâ†

i âi

)
(2.1)

where âi(â
†
i ) represents the annihilation (creation) operator of mode i and

γ is the decay constant determined by the coupling strength of the system

and the environment. This evolution is equivalently described by the beam-

splitter model where each input mode is mixed with the vacuum state at a

beam splitter with transmittance t = e−γτ/2 and reflectance r =
√

1− t2 [31]

and in the Heisenberg picture, the beamsplitter is depicted as

⎛
⎜⎝â

b̂

⎞
⎟⎠→

⎛
⎜⎝â′

b̂′

⎞
⎟⎠=

⎛
⎜⎝t −r

r t

⎞
⎟⎠
⎛
⎜⎝â

b̂

⎞
⎟⎠ . (2.2)

where â(b̂) is the annihilation operator on system (ancillary) mode. The out-

put state is then obtained by tracing out the ancillary modes. Since the evo-

lution of a single photon state is given by |1〉〈1| → t2 |1〉〈1|+ r2 |0〉〈0|, I call

the sqaure of the reflactance r2 the photon-loss rate η.

Under the photon loss, each qubit has its noise behavior according to

its physical realization. For instance, a VSP qubit basis consists of a vacuum

state |0〉 and a single-photon state |1〉. The vacuum does not change under

loss and the single-photon decays to the vacuum. The loss on the coherent-
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state qubit, in contrast, induces dephasing and amplitude damping. The loss

of the hybrid entangled states is shown in the mixture of both noise behav-

iors.

2.3 Teleportation using the hybrid entanglement
between a VSP qubit and a coherent-state
qubit

2.3.1 Loss on hybrid entanglement

Let me consider a hybrid entangled state of a single-rail qubit and a

coherent state qubit:

|ψ〉sc =
1√
2

( |0〉s |α〉c + |1〉s |−α〉c

)
, (2.3)

where |±α〉 are coherent states of amplitudes ±α. Here, the subscripts s

and c stand for the VSP qubit and the coherent-state qubit, respectively, and

±α are assumed to be real without loss of generality. Note that this type of

entanglement was experimentally demonstrated [32].

The effect of the photon loss in Eq. (2.2) on the initial hybrid channel

|ψ〉sc leads to the following evolution:

ρsc (α ; t) =
1

2

(
|0〉s 〈0|⊗ |tcα〉c 〈tcα|+{

t2
s |1〉s 〈1|+(1− t2

s ) |0〉s 〈0|
}

⊗|−tcα〉c 〈−tcα|+ t e−2α2(1−t2
c ) {|0〉s 〈1|⊗ |tcα〉c 〈−tcα|+H.c.}

)
,

(2.4)

8



where ts and tc correspond to the transmittance of the beamsplitter model for

the VSP and coherent-state qubit part, respectively, which is related to the

photon-loss rate as η = 1− t2. Here, I assume the asymmetric environment,

i.e. the photon-loss rates on the VSP qubit and coherent-state qubit can be

different. The basic scheme is to keep the coherent-state qubit from photon

loss at the cost of the loss on the VSP qubit. The justification follows in

subsequent sections.

2.3.2 Output state of the teleportation

Now, consider the case where the input qubit is a coherent state qubit

in the form of

|ψin〉= N (a |tcα〉c +b |−tcα〉c), (2.5)

where N =
{

1+ e−2t2
c α2

(ab∗+a∗b)
}−1/2

, and the target state is a VSP

qubit as |ψt〉 = a |0〉s + b |1〉s. I use the notation c → s for the teleportation

from coherent-state qubit to a VSP qubit.

To perform quantum teleportation, the sender needs to perform a Bell-

state measurement and the receiver should carry out single-qubit transforms

based on the outcome of the Bell-state measurement. In this case, the sender

should perform the Bell-state measurement of the coherent-state qubit en-

coding described below. To reflect feasible conditions, I assume that avail-

able resources in addition to hybrid entanglement are passive linear optical

elements and photon detection.

The Bell-state measurement for coherent state qubits can be performed

9



by using a 50:50 beam splitter and two photon-number parity measurements

[26]. The four Bell states in the dynamic coherent state basis are

|B1,2〉cc′ =N± (|tα〉c |tα〉c′ ± |−tα〉c |−tα〉c′) ,

|B3,4〉cc′ =N± (|tα〉c |−tα〉c′ ± |−tα〉c |tα〉c′) , (2.6)

where N± =
(
2±2exp

(−4t2α2
))−1/2

are normalization factors. The Bell

states evolve through the 50:50 beam splitter as

|B1〉cc′ → N+ |even〉c |0〉c′ , |B2〉cc′ → N− |odd〉c |0〉c′ ,

|B3〉cc′ → N+ |0〉c |even〉c′ , |B4〉cc′ → N− |0〉c |odd〉c′ , (2.7)

where |even〉=
∣∣∣√2 tα

〉
+
∣∣∣−√

2 tα
〉

has nonzero photon-number probabil-

ities only for even numbers of photons and |odd〉 =
∣∣∣√2 tα

〉
−
∣∣∣−√

2 tα
〉

has only for odd numbers of photons. The parity measurement projection

operators O j,

Ô1 =

∞∑
n=1

|2n〉c 〈2n|⊗ |0〉c′ 〈0| ,

Ô2 =
∞∑

n=1

|2n−1〉c 〈2n−1|⊗ |0〉c′ 〈0| ,

Ô3 =

∞∑
n=1

|0〉c 〈0|⊗ |2n〉c′ 〈2n| ,

Ô4 =
∞∑

n=1

|0〉c 〈0|⊗ |2n−1〉c′ 〈2n−1| , (2.8)

where subscript j corresponds to the j-th Bell state, can be used to dis-
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criminate between the four states. It should be noted that there is a nonzero

probability of getting |0〉c |0〉c′ for which neither of the detectors registers

any photon. Such a case is regarded as a failure event, and the failure prob-

ability is Pf = exp [−2t2α2] [26, 33]. The failure event is further discussed

in the context of the success probability of the teleportation process later in

this section.

According to the standard teleportation protocol, when |B1〉cc′ is mea-

sured, no additional operation is required. The output state with the normal-

ization factor is

ρc→s
out =

Trcc′
{
(Ô1)cc′(ÛBS)cc′

[
ρsc′ (α ; t)⊗|ψ〉c 〈ψ|

]
(Û†

BS)
}

Tr
{
(Ô1)cc′(ÛBS)cc′

[
ρsc′ (α ; t)⊗|ψ〉c 〈|ψ

]
(Û†

BS)
}

=
(|a|2 +(1− t2

s )|b|2
) |0〉〈0|+ t2

s |b|2 |1〉〈1|

+ ts e−2α2(1−t2
c ) (ab∗ |0〉〈1|+a∗b |1〉〈0|) , (2.9)

where ÛBS represents the 50:50 beam splitter operator defined as UBS =

exp
[

π
4
( â†

0â1 − â1â†
0 )
]
. If |B2〉cc′ is measured, the Pauli-Z operation for the

VSP qubit is required to recover the input state, which can be performed

by a π-phase shifter. When |B3〉cc′ and |B4〉cc′ are measured, the Pauli-X

operation is needed to implement the bit flip, |0〉 ↔ |1〉, which is difficult to

realize using linear optics which reserves the photon number. However, the

quantum information, stored in two coefficients a and b, is still transmitted

and the receiver knows how the input state is changed that can be recovered

by the classical post-processing after measurements.
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2.3.3 Fidelity

The teleportation process may be evaluated by the fidelity between the

input and the output state. Since using the hybrid entanglement changes the

qubit encoding, the target state is set to be the ideal output state |ψt〉s =

a |0〉s +a |1〉s. For the output state in Eq. (2.9), the fidelity is given by

Fc→s = s 〈ψt |ρc→s
out |ψt〉s

=|a|4 +
(
(1− t2

s )+2 ts e−2α2(1−t2
c )
)
|a|2|b|2 + t2

s |b|4.

I average the fidelity over all possible input states. It can be found by parametriz-

ing the coefficients of the input state as a = cos [θ/2 ]exp[ iφ/2 ] and b =

sin [θ/2 ]exp[−iφ/2 ], where 0 ≤ θ < π and 0 ≤ φ < 2π. Therefore, the an-

alytic form of the average fidelity Fave
c→s is

Fave
c→s =

1

4π

∫ π

0

dθ sinθ
∫ 2π

0

dφ Fs→c

=
1

2
+

t2
s

6
+

tse−2α2(1−t2
c )

3
. (2.10)

The average fidelity shows that, in the limit of the perfect loss on the

VSP qubit, ts → 0 and tc = 1, the fidelity is bounded by 1/2 since the out-

put VSP qubit decay to the vacuum |0〉, regardless of the input. On the

other hand, when ts = 1 and tc → 0 with large α, the average fidelity is

bounded by 2/3 which is the classical limit without entanglement. Note that

the phase information, ab∗ and a∗b, is dephased exponentially on the loss of

the coherent-state qubit, ηc = 1− t2
c , while it depends on the square root of

12



Figure 1: Contour graph of the average fidelities of teleportation of c → s
as a function of the loss rate on the coherent-state qubit side ηc and the VSP

qubit side ηs for |α|2 = 1,2, and 3.

the loss on the VSP qubit, ηs = 1− t2
s .

In Fig. 1, I present the contour graph of the average fidelity in Eq. 2.10.

The graph shows the dependence on the loss rate ηc is severe for large α.

When the coherent-state qubit is in the single-photon region α ∼ 1, the fi-

delity depends similarly on ηc and ηs. In the many-photon qubit region,

however, ηc affects the fidelity more severely than ηs. As mentioned before,

this is due to the dephasing induced by ηc. On the other hand, the depen-

dence on ηs remains nearly constant for the small ηc region. This asserts that

the hybrid approach is needed for the loss-tolerant transfer of the quantum

information of the coherent-state qubit.

2.3.4 Success probability

Now, I analyze the success probability of the teleportation, Pc→s, which

is strongly related to the success probability of the Bell-state measurement.

The Bell-state measurement for coherent state qubits can identify all four

Bell states with the success probability of 1− e−2t2
c α2

[26, 33]. I pointed out

13



Figure 2: Success probabilities for teleportation from a coherent-state qubit

to a single-rail qubit (c → s) with several photon numbers (|α|2 = 1,2,3,4)

against the photon-loss rate on the coherent-state qubit side ηc.

that a local single-qubit operation, the Pauli-X operation which flips |0〉 and

|1〉, cannot be effectively performed using linear optics elements. However,

this case can be seen as a success since the quantum information in the input

state is still transferred.

The success probability of the teleportation is obtained by

Pc→s =
∑

i

〈
U†

BSÔiUBS

〉
=

1− e−2t2
c α2

1+ e−2t2
c α(ab∗+a∗b)

. (2.11)

The numerator comes from the normalization factor of the input state given

by the coherent-state qubit. This shows that the success probability does not

depend on the photon loss on the VSP qubit. The average success proba-

bility of the teleportation can be similarly obtained like Eq. (2.10). Figure

2 shows the average success probability obtained by the numerical integra-

tion. Note that the teleportation is nearly deterministic when the amplitude
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of the coherent-state is large. Moreover, the region that the success proba-

bility is nearly 1 also becomes broad. This shows that the hybrid with the

coherent-state qubit has merits on the teleportation success probability even

under loss.

2.4 Teleportation of a multi-photon qubit using
a carrier qubit

In this section, I investigate teleportation using a hybrid entangled state

between a multiphoton qubit and a small-photon qubit for the loss-tolerant

transfer of the quantum information in a multiphoton qubit. In what follows,

the small-photon qubit is also called the carrier qubit to stress the usage of

them for information carriers.

2.4.1 Review of multiphoton qubit

The multiphoton qubit is suggested by Lee. et al. [34, 35] mainly for

the Bell-state measurement. I first review the basic properties of the multi-

photon encoding for quantum computation. I temporally denote the multi-

photon qubit as |0L〉 := |H〉⊗N and |1L〉 := |V 〉⊗N only in this subsection.

To realize universal quantum computation, one needs to implement a set

of quantum operations, known as the universal gate set. It contains Pauli X

gate, arbitrary phase rotations, Hadamard gate, and CNOT gate.

Pauli X gate and phase rotations are easy to implement for the mulit-

photon qubit. Applying the polarization rotator: {|H〉 , |V 〉} → {|V 〉 , |H〉}
on each mode, we can do Pauli X gate. A phase rotation with an arbi-
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trary phase θ can be implemented by applying a phase-shifter {|H〉 , |V 〉}→
{|H〉 ,eiθ |V 〉} on one of N modes.

The implementation of the Hardamard gate and CNOT gate can be

accomplished by utilizing the teleportation. Teleportation with an entangled

state |H〉 ∝ |0L〉 |+L〉+ |1L〉 |−L〉 and a feed-forward yields the Hardamard

gate on the input qubit. Similarly, the CNOT gate can be implemented with

an entangled state

|0L0L〉 |0L0L〉+ |0L1L〉 |0L1L〉+ |1L0L〉 |1L1L〉+ |1L1L〉 |1L0L〉 .

In these cases, the required resources are the entangled states needed for the

teleportation.

For photonic qubits, one need to consider the photon loss, which is one

of the major error sources. Here, I demonstrate the property of the multipho-

ton qubit under photon-loss environment. Suppose transmitting a multipho-

ton qubit of N photons |ψin〉= a |H〉⊗N +b |V 〉⊗N over a lossy environment

directly. The output qubit of the transmission is obtained using Eq. (2.2) as

ρout(t) =|a|2[t2 |H〉〈H|+(1− t2) |0〉〈0|]⊗N
+ |b|2[t2 |V 〉〈V |+(1− t2) |0〉〈0|]⊗N

+ t2N [ab∗(|H〉〈V |)⊗N +H.c.]

=t2N |ψin〉〈ψin|+(1− t2N)ρloss,
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where

ρloss =

N∑
k=1

(t2)N−k(1− t2)k
∑

P∈Perm(N,k)

{
|a|2P [(|H〉〈H|)⊗N−k ⊗ (|0〉〈0|)⊗k]

+ |b|2P [(|V 〉〈V |)⊗N−k ⊗ (|0〉〈0|)⊗k]
}

(2.12)

is the loss term with one or more photons lost. I denote Perm(N,k) as the set

of permutations of tensor products with the number of elements
(N

k

)
, which

represents the cases that photons in k modes within the total N modes are lost

and photons in N−k modes remain in the polarization state. It is straightfor-

ward to see that ρloss is orthogonal to |ψin〉. The quality of the output state

is measured by fidelity F between the input and output states that is defined

as F(t) = 〈ψin|ρout(t) |ψin〉. The fidelity for the direct transmission is then

obtained as

Fdir = t2N = (1−η)N .

This shows that the multiphoton qubit becomes more fragile when photon

number N per qubit becomes larger. Although the success probability of the

Bell-state measurement using multiphoton qubits approaches the unity as

N gets larger [34], this fragility may be a weak point of the multiphoton

encoding when it is applied to quantum information transfer.

2.4.2 Loss on hybrid entangled states

For the teleportation between two different types of qubits, the sender

and the receiver need to share a hybrid entangled state between a multipho-
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ton qubit and a carrier qubit. The entangled state is expressed as
∣∣ψhyb

〉
=

1√
2
(|H〉⊗N |C0〉+ |V 〉⊗N |C1〉), where |C0〉 and |C1〉 are the basis states for

the carrier qubit. I consider the three types of hybrid entangled states

|ψmc〉= 1√
2

(
|H〉⊗N |α〉+ |V 〉⊗N |−α〉

)
,

∣∣ψmp

〉
=

1√
2

(
|H〉⊗N |H〉+ |V 〉⊗N |V 〉

)
,

|ψms〉= 1√
2

(
|H〉⊗N |0〉+ |V 〉⊗N |1〉

)
, (2.13)

where subscripts m, c, p and s denote multiphoton qubit, coherent-state

qubit, PSP qubit, and VSP qubit, respectively.

I assume an asymmetric environment that the transmittance (reflectance)

of every mode of the multiphoton qubit is tM (rM) and that of the carrier qubit

is tC (rC). Using Eq. (2.2), the shared hybrid entangled states are obtained as

ρmc(tM, tC) =
t2N
M
2

{
(|H〉〈H|)⊗N ⊗|tCα〉〈tCα|+(|V 〉〈V |)⊗N ⊗|−tCα〉〈−tCα|

+ e−2α2r2
C
[
(|H〉〈V |)⊗N ⊗|tCα〉〈−tCα|+H.c

]}
+(1− t2N

M )ρloss
mc ,

(2.14)

ρmp(tM, tC) =t2N
M

{
t2
C

∣∣ψmp

〉〈
ψmp

∣∣+ r2
C
[
(|H〉〈H|)⊗N+(|V 〉〈V |)⊗N

]
⊗|0〉〈0|

}

+(1− t2N
M )ρloss

mp , (2.15)
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and

ρms(tM, tC) =
t2N
M
2

{
(|H〉〈H|)⊗N ⊗|0〉〈0|+(|V 〉〈V |)⊗N ⊗ (t2

C |1〉〈1|+ r2
C |0〉〈0|)

+ tC
[
(|H〉〈V |)⊗N ⊗|0〉〈1|+H.c.

]}
+(1− t2N

M )ρloss
ms , (2.16)

where the loss terms ρloss represent the events where one or more photons

are lost from the multiphoton qubit. Explicit expressions of the loss terms

are

ρloss
mc =

1

2

N∑
k=1

(t2
M)N−k(1− t2

M)k
∑

P∈Perm(N,k){
P
[
(|H〉〈H|)⊗N−k ⊗ (|0〉〈0|)⊗k]⊗|tCα〉〈tCα|

+P
[
(|V 〉〈V |)⊗N−k ⊗ (|0〉〈0|)⊗k]⊗|−tCα〉〈−tCα|

}
,

ρloss
mp =

1

2

N∑
k=1

(t2
M)N−k(1− t2

M)k
∑

P∈Perm(N,k){
P
[
(|H〉〈H|)⊗N−k ⊗ (|0〉〈0|)⊗k]⊗ (t2

C |H〉〈H|+ r2
C |0〉〈0|)

+P
[
(|V 〉〈V |)⊗N−k ⊗ (|0〉〈0|)⊗k]⊗ (t2

C |V 〉〈V |+ r2
C |0〉〈0|)

}
,

and

ρloss
ms =

1

2

N∑
k=1

(t2
M)N−k(1− t2

M)k
∑

P∈Perm(N,k){
P
[
(|H〉〈H|)⊗N−k ⊗ (|0〉〈0|)⊗k]⊗ (t2

C |1〉〈1|+ r2
C |0〉〈0|)

+P
[
(|V 〉〈V |)⊗N−k ⊗ (|0〉〈0|)⊗k]⊗|0〉〈0|

}
.
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All these terms do not contain entanglement. This is attributed to the fact that

when a photon from the multiphoton qubit is lost, the resulting multiphoton

qubit effectively becomes completely dephased.

I now investigate the amount of entanglement contained in the hybrid

entangled states. Entanglement in any bipartite mixed state can be measured

by the negativity N (ρ) [36], which is defined as

N (ρ)≡
∥∥ρTA

∥∥−1

2
=
∑
λi<0

|λi| (2.17)

where ρTA is the partial transpose of ρ with respect to subsystem A, ‖·‖ is

the trace norm, and {λi} is the set of eigenvalues of ρTA . The negativity is an

entanglement measure, i.e., it does not increase under any local operations

and classical communications.

Using Eq. (2.17), analytical expressions of the negativity of the hy-

brid entangled states can be obtained from Eqs. (2.14), (2.15) and (2.16).

Although |tCα〉 and | − tCα〉 in Eq. (2.14) are not orthogonal, they are two

linear independent state vectors that can be treated in a two-dimensional

Hilbert space as done in Ref. [26]. Further, since the loss terms, ρloss, are

orthogonal to the remaining terms and contain no entanglement, I can con-

sider only the remaining terms in a 2⊗ 2 dimensional Hilbert space. The

20



Figure 3: Degrees of entanglement (negativity) against the photon-loss rate

for the multiphoton qubit ηM = 1− t2
M and for the carrier qubit ηC = 1− t2

C
of hybrid entanglement between (a) the multiphoton qubit and the coherent-

state qubit ρmc, (b) the multiphoton qubit and the PSP qubit ρmp, and the

multiphoton qubit and the VSP qubit ρms. The number of photons N for the

multiphoton qubit is set to be N = 4. The amplitude of the coherent-state

qubit is chosen to be α = 1.2.

degrees of negativity are then obtained as

N (ρmc) =
t2N
M

4
√

1− e−4t2
Cα2

×
[√

1−2
(

2e−4t2
Cα2 −1

)
e−2r2

Cα2
+ e−4r2

Cα2

+e−2r2
Cα2 −1

]
,

N (ρmp) = N (ρms) =
1

2
t2N
M t2

C.

Here, the negativities of ρmp and ρms are same, because entanglement dis-

appears when at least one photon is definitely lost in both cases.

Figure 3 shows the dependence of the negativity on the photon loss

rates of both the sides, ηM = 1− t2
M and ηC = 1− t2

C. It is generally shown
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2’

2

Figure 4: Schematic of the Bell-state measurement for multiphoton-qubit

encoding using beam splitters (BSs), Half-wave plates (HWPs), and on-off

photodetectors (PDs). Two on-off photodetectors and one polarizing beam

splitter (PBS) are used to measure the polariziation of a single photon. The

mode labels 1,2, ...,N (1′,2′, ...,N′) represent the corresponding modes of

the first (second) multiphoton qubit.

that the dependence is sharper for the loss rate, ηM, of the multiphoton qubit

than that of the carrier qubit, ηC. This implies the desirable property that

entanglement in the hybrid entangled state is more robust to the photon loss

on the carrier qubit than that on the multiphoton qubit.

2.4.3 Output states and their fidelities

Let me consider quantum teleportation with the hybrid entangled states

ρmc, ρmp, and ρms as the quantum channel. I employ the Bell-state measure-

ment scheme for the multiphoton qubits proposed in Ref. [34]. Its schematic

diagram is presented in Fig. 4. In the multiphoton qubit encoding, the Bell
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states are defined as

∣∣BN
1,2

〉
=

1√
2

(
|H〉⊗N |H〉⊗N ±|V 〉⊗N |V 〉⊗N

)
,

∣∣BN
3,4

〉
=

1√
2

(
|H〉⊗N |V 〉⊗N ±|V 〉⊗N |H〉⊗N

)
, (2.18)

where ± is chosen in the same order of the two number labels of
∣∣BN

i

〉
in each line. Let us denote the ith photons of each party as |·〉i and |·〉i′ . I

pairwise measure |·〉i |·〉i′ by the standard 2-photon Bell-state measurement

scheme as

|H〉i |H〉i′ =
1√
2
(|B1〉ii′ + |B2〉ii′), |V 〉i |V 〉i′ =

1√
2
(|B1〉ii′ − |B2〉ii′),

|H〉i |V 〉i′ =
1√
2
(|B3〉ii′ + |B4〉ii′), |V 〉i |H〉i′ =

1√
2
(|B3〉ii′ − |B4〉ii′).

Therefore, the Bell-state measurement of the multiphoton qubit is repre-

sented by the N Bell-state measurements of the PSP qubit as

∣∣BN
1,2

〉
=

1√
2

N+1

(∏
i

(|B1〉ii′ + |B2〉ii′)±
∏

i

(|B1〉ii′ − |B2〉ii′)

)
, (2.19)

∣∣BN
1,2

〉
=

1√
2

N+1

(∏
i

(|B3〉ii′ + |B4〉ii′)±
∏

i

(|B3〉ii′ − |B4〉ii′)

)
. (2.20)

I choose that |B1〉 and |B3〉 is the identifiable outcomes so that the measure-

ment results can be B1, B3, or ambiguous outcome of B2 or B3. From Eq.

(2.20),
∣∣BN

1

〉
and

∣∣BN
3

〉
consist of an even number of |B2〉 and |B4〉 while

∣∣BN
2

〉
and

∣∣BN
4

〉
do of an odd number. For example, after N measurements, if B1

occurs at least one time and the ambiguous results are odd times, I conclude
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the input is B2. Therefore, the failure event is when all measurement results

are ambiguous, which occurs with a average probability 1−1/2N assuming

the four Bell states come with a uniform probability 1/4. This scheme only

use linear optics and on-off photodetectors.

When one or more photons are lost from the multiphoton qubit in hy-

brid entangled states, there is a chance that
∣∣BK

i
〉

with K < N is detected.

However, although I accept these events as a success, the fidelity is not im-

proved. I pointed out earlier that ρloss does not contain entanglement due to

the dephasing induced by photon loss. The teleportation fidelity between the

input and output qubits cannot then exceed the classical limit, which I will

discuss further at the end of this section. I thus take only the detection of

N-photon Bell states as the successful events.

Similarly to the standard teleportation scheme, a sender jointly mea-

sures the input state of a multiphoton qubit |ψin〉 = a |H〉⊗N + b |V 〉⊗N and

the multiphoton-qubit part of the hybrid entangled states on the multiphoton

Bell-state basis in Eq. (2.18). After the Bell-state measurement with out-

come i, the input state |ψin〉 and the hybird entangled state under photon

loss, ρhyb(tM, tC), are projected to

ρout,i(tM, tC) =

〈
BN

i

∣∣(|ψin〉〈ψin|⊗ρhyb(tM, tC))
∣∣BN

i

〉
tr
[∣∣BN

i

〉〈
BN

i

∣∣(ψin ⊗ρhyb(tM, tC))
] . (2.21)

With the heralded measurement outcome i, the receiver may recover the

state ρout = ρout,1 by a proper local unitary based on the outcome i.

Before proceeding further, I point out that the output state does not de-

pend on loss ηM on the multiphoton-qubit part. The hybrid entangled state
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can be represented as ρhyb(tM, tC) = t2N
M σhyb(tC)+ρloss, where σhyb(tC) cor-

responds to the state when no photon is lost from the multiphoton qubit. The

facter t2N
M indicates that this event happens with a probability of t2N

M = (1−
ηM)N . Since the loss term ρloss is orthogonal to the qubit basis {|H〉⊗N , |V 〉⊗N},

only σhyb(tC) remains after the projection on
∣∣Bi

N
〉
. The factor t2N

M in both

the numerator and the denominator of Eq. (2.21) then cancels out. Thus,

ρout(tM, tC) is independent of tM so that it can be represented as ρout(tC).

I set the target state of the teleportation to be |ψt〉= a |C0〉+b |C1〉. The

quantum fidelity between the output state ρout and the target state |ψt〉 is

defined as

F(tC) = 〈ψt|ρout(tC)|ψt〉 .

Now, I examine the candidates of the carrier qubit. First, I consider

quantum teleportation from a multiphoton qubit to a coherent-state qubit.

When
∣∣BN

1

〉
is detected, I can express the output qubits after Bell-state mea-

surement by

ρm→c
out,1 =M+

[|a|2 |tCα〉〈tCα|+ |b|2 |−tCα〉〈−tCα|

+ e−2α2r2
C(ab∗ |tCα〉〈−tCα|+H.c.)

]
,

where M+ =
[
1+ e−2α2

(ab∗+ a∗b)
]−1

. When
∣∣BN

3

〉
is detected, the output

qubit undergoes a bit flip as ρm→c
out,3 = Xcρm→c

out,1 X†
c with Xc : |±tCα〉→ |∓tCα〉.

This effect can be corrected by applying a π-phase shifter. However, when
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∣∣BN
2

〉
is detected, the output qubit becomes

ρm→c
out,2 =M−

[|a|2 |tCα〉〈tCα|+ |b|2 |−tCα〉〈−tCα|

− e−2α2r2
C(ab∗ |tCα〉〈−tCα|+H.c.)

]
,

which cannot be corrected to ρm→c
out,1 by applying a unitary operation because

of the nonorthogonality of the coherent-state qubit basis. In other words, the

required operation Zc : |±tCα〉 → ±|±tCα〉 cannot be performed in a fully

deterministic way. There are, however, approximate methods to perform the

required Zc operation using the displacement operation [26, 37] or the gate

teleportation protocol [38]. I also note that the transformation of ρm→c
out,4 →

ρm→c
out,2 can be carried out by the Xc gate. Therefore, the output qubit is one

of the non-exchangable states, ρm→c
out,1 or ρm→c

out,2 . I denote these two states as

ρm→c
out,±. Nevertheless, the measurement outcome i heralds the transformation

of the output states. Thus, the output qubit has the quantum information of

the initial qubit.

Given the transmittance tC, I take the dynamical qubit basis {|tCα〉 , |−tCα〉}
as the output qubit basis. As an analogy of the input state, I set the two target

states as

∣∣ψm→c
t,±

〉
= N±(a |tCα〉±b |−tCα〉),

where N±=
{

1± (ab∗+a∗b)exp
(−2t2α2

)}−1/2
are the normalization con-
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stants. Then, I obtain the fidelity between ρm→c
out,± and

∣∣ψm→c
t,±

〉
respectively:

Fm→c
± (tC;a,b) =

〈
ψm→c

t,±
∣∣ρm→c

out,±
∣∣ψm→c

t,±
〉

= M±N2
±
[|a|2|a±bS|2 + |b|2|aS±b|2 ±2e−2α2r2

C Re [ab∗(a∗ ±b∗S)(aS±b)]
]
,

where S = 〈tCα|−tCα〉= e−2t2
Cα2

is the overlap between the output coherent-

state qubit basis states. The average fidelity is now computed over all input

states. I use a parametrization a= cos(θ/2)exp(iφ/2) and b= sin(θ/2)exp(−iφ/2)

with uniformly random sampling on the Bloch sphere. Note that Fm→c
+ (tC;a,b)=

Fm→c− (tC;a,−b), so the average fidelities of both cases are equal. Finally, I

get the following integration:

Fm→c
ave (tC) =

〈
Fm→c
± (tC;a,b)

〉
θ,φ

=
1

4π

∫ π

0

dθsinθ
∫ 2π

0

dφFm→c
± (tC;θ,φ). (2.22)

The analytic expression of this integration is given in Ref. [39] but

is too lengthy to present here. I show the average fidelity varying ampli-

tude α of the coherent-state qubit in Fig. 5 (a). The plot shows that as the

mean photon number α2 is smaller, the average fidelity approaches the unity.

However, a small value of α makes the overlap between |±α〉 large so that

its ability for quantum information processing (for example, the probability

to perform Zc gate) becomes low.

In the case of the quatum teleporatation from multiphoton qubit to PSP

qubit, I use the hybrid entangled state in Eq. (2.15). Since all single-qubit
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Figure 5: Average fidelities of direct transmission with N = 4 (black solid)

and hybrid archtectures with different carrier qubits: coherent state qubits

(denoted by c) for α = 1.2 (yellow dot-dashed) and α = 1.6 (red dot-dot-

dashed), a PSP qubit (p, green dashed), and a VSP qubit (s, blue dotted)

against the photon-lose rate for the carrier-qubit part ηC = 1− t2
C. The gray

horizontal dotted line is the classical limit Fcl = 2/3.

operations can be implemented in linear optics [8, 23], I set the unique target

state:
∣∣ψm→p

t

〉
= a |H〉+b |V 〉. When a Bell state

∣∣BN
1

〉
is detected, the output

state is

ρm→p
out,1 = t2

C
(|a|2 |H〉〈H|+ |b|2 |V 〉〈V |+ab∗ |H〉〈V |+a∗b |V 〉〈H|)+ r2

C |0〉〈0|

= t2
C

∣∣ψm→p
t

〉〈
ψm→p

t

∣∣+ r2
C |0〉〈0| .

When the other Bell states are detected, after receiving the measurement

outcome, the receiver can recover the target state by a proper single-qubit

unitary operation. The fidelity is then readily obtained as
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Fm→p(tC) = t2
C.

The last case is teleportation from a multiphoton qubit to a VSP qubit

with the entangled state in Eq. (2.16). In this case of the VSP qubit, the situ-

ation is similar to the case of the coherent-state qubit. While the Z operation

is deterministic in linear optics, the X operation, X : |0〉↔ |1〉, is probabilis-

tic [25]. Therefore, I distinguish the output qubit of
∣∣BN

1

〉
detection, denoting

ρm→s
out,+, from

∣∣BN
2

〉
, denoting ρm→s

out,−. The output qubit when
∣∣BN

1

〉
is detected

is obtained similarly as

ρm→s
out,+ = (|a|2 + |b|2r2

C) |0〉〈0|+ |b|2t2
C |1〉〈1|+(ab∗tC |0〉〈1|+H.c.).

I then obtain the input-dependent fidelity as

Fm→s(tC) = |a|4 + |a|2|b|2(1+ tC)+ |b|4t2
C.

In this case, the average fidelity has a simple analytic expression:

Fm→s
ave (tC) =

1

3
t2
C +

1

6
tC +

1

2
.

I need to consider the classical fidelity Fcl that is defined as the max-

imum average fidelity obtained by teleportation protocol without entangle-

ment. It is well known that Fcl = 2/3 for a qubit with an orthonormal basis

[40]. If I use the coherent-state qubit of |±α〉 as the carrier qubit, however,
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Fm→c
cl is

Fm→c
cl (tC) =

S+3S2 − (S4 −1)

4S3
sinh−1

[
S√

1−S2

]
,

where S = 〈−tCα|tCα〉 = e−2t2
Cα2

[39]. In this case, the classical limit be-

comes larger 2/3 due to the nonorthogonality S. Of course, Fm→c
cl converges

to 2/3 as S → 0. In Fig. 5, the average fidelity Fm→c
cl is approximately 2/3

for the area of α ≥ 1.2 and η ≤ 0.5.

In Fig. 5, I present the average fidelities between the output qubit and

the target state against the photon-loss rate ηC for the different types of the

carrier qubit. For the coherent-state qubit, I choose amplitudes of α = 1.2

and 1.6, which are approximately the minimum and optimal amplitudes,

respectively, for the fault-tolerant quantum computing using the 7-qubit

Steane code [41]. Obvious, better fidelities over the direct transmission can

be obtained using the teleportation protocol. Among the carrier qubits, the

VSP qubit is better than the PSP qubit. The reason for this can be understood

as follows. When photon loss occurs, the PSP qubit gets out of the original

qubit space because of the vacuum portion. However, the VSP qubit remains

in the original qubit space even under the photon loss.

The comparison between the coherent-state qubit and the other types of

qubits depends on amplitude α. With small values of α, the coherent-state

qubit shows higher average fidelity than the others. I numerically obtain

that, when α < 1.23 (α < 0.78), the average fidelity of the corresponding

coherent-state qubit is higher than that of the PSP qubit (the VSP qubit)

for any rates of photon loss. However, one should note that the overlap be-
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Table 1: Maximum photon-loss rates for the carrier qubit, ηC, required to

reach the fidelity of 99.9%, 99%, and 90% with the coherent-state (CS)

qubit, the PSP qubit, and the VSP qubit. The direct transmission (DT) of the

multiphoton qubit with the photon number N = 4 is given for comparison

under the same photon-loss rate.

F DT
CS

PSP VSP
1.2 1.6

99.9% 0.025 0.10 0.059 0.10 0.24

(×10−2)99% 0.25 1.1 0.59 1.0 2.4

90% 2.6 12 7.0 10 24

tween two coherent states |±α〉 is 〈α|−α〉 = exp(−2α2) ≈ 0.0485 (0.296)

for α = 1.23 (0.78), which could be a negative factor depending on the task

to perform.

In Table 1, I summarize the maximum photon-loss rates for the carrier

qubit, ηC, which can be tolerated while preserving the fidelity to be 99.9%,

99%, and 90% within our hybrid architectures. In this high fidelity regime,

the VSP qubit tolerates approximately 10 times larger photon loss than the

direct transmission.

2.4.4 Success probabilities

Only when the input qubits are in the logical qubit basis and the iden-

tification between
∣∣BN

1

〉
and

∣∣BN
3

〉
is successful, the Bell-state measurement

successes. Let us denote qi as the probability of the successful identifica-

tion of
∣∣BN

i

〉
when

∣∣BN
i

〉
is given. This qi varies according to the Bell-state

measurement scheme, and I follows the Bell-state measurement scheme of

multiphoton qubit that qi = 1−1/2N−1 for i = odd and qi = 1 for i = even
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Figure 6: Success probability Psuccess of the multiphoton Bell-state mea-

surement against the photon-loss rate for the multiphoton qubit ηM = 1− t2
M

for photon numbers of N =1, 2, 3, and 4.

[34]. The success probability of the teleportation with the hybrid entangled

state ρhyb is then given as

P =
∑

i

qi tr
[∣∣BN

i
〉

SS′
〈
BN

i

∣∣( |ψin〉S 〈ψin|⊗ (ρhyb)S′R
)]
, (2.23)

where S and S’ represents the sender’s modes and R does the receiver’s

mode. Note that the success probability P does not depend on tC since

tr
[∣∣BN

i
〉

SS′
〈
BN

i

∣∣(|ψin〉S 〈ψin|⊗ (ρhyb)S′R
)]

= trSS′
[∣∣BN

i
〉

SS′
〈
BN

i

∣∣(|ψin〉S 〈ψin|⊗ (trR ρhyb)S′
)]

and trR ρhyb(tM, tC) = trR(ΦtM ⊗ I)(
∣∣ψhyb

〉〈
ψhyb

∣∣) from the trace-preserving

property of Φt where R represents the receiver’s mode and ΦtM is the quan-

tum channel of photon loss with transmittance tM.
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Now, I examine the success probability for each carrier qubit. For the

case of teleportation to a coherent-state qubit with ρmc in Eq. (2.14), the

success probability of the teleportation, Pm→c, is obtained using Eq. (2.23)

as

Pm→c(tM,N;a,b) = t2N
M

[(
1− 1

2N

)
− e−2α2

2N (ab∗+a∗b)

]
.

The last term is from the nonorthogonality of the coherent state qubit. I also

obtain the averaged success probability Pm→c
ave by averaging Pm→c(tM,N;

a,b) on all possible input state with the same parametrization of Eq. (2.22)

as

Pm→c
ave (tM,N) = t2N

M

(
1− 1

2N

)
.

For the discrete variable qubits, I have trR(ΦtM ⊗I)
∣∣ψhyb

〉〈
ψhyb

∣∣=ΦtM(I/2).

Therefore, without dependence on the carrier qubit, I obtain

P(tM,N) = t2N
M

(
1− 1

2N

)
. (2.24)

In Fig. 6, I plot the success probability P(tM,N) as a function of the

photon loss rate for the multiphoton qubit, ηM, by changing the photon num-

ber N of the multiphoton qubit. The success probability in Eq. (2.24) shows

an interesting feature: while the success probability of Bell-state measure-

ment increases with N for tM = 1, if tM is less than 1, larger N rather makes

the success probability lower. This supports the general belief that a “macro-

scopic object” is fragile under loss if I regard the larger N means the qubit

33



is more “macroscopic” [42]. It is straightforward to obtain the optimal num-

ber of photons per a multiphoton qubit, Nopt = �log2(1+1/ηM)�, that max-

imizes the success probability P(tM,N).

2.5 Generation of hybrid entangled states

In this section, I discuss how to generate the hybrid entangled states

|ψsc〉 in Eq. (2.3) and |ψmc〉,
∣∣ψmp

〉
and |ψms〉 in Eq. (2.13).

First, let me discuss the hybrid entangled state between a VSP qubit

and coherent-state qubit |ψsc〉. This hybrid entangled state is experimentally

generated in Ref. [32, 43]. Here, I review the most relative scheme [32]. The

conceptual schematic is presented in Fig. 7 (a). The essential procedure of

this scheme is to implement a superposition of creation operators

ra†
1 + ta†

2, (2.25)

where |t|2 + |r|2 = 1. A single-mode creation operator a† is implemented

using a parametric downconverter, which is heralded when a idler photon

is detected. To make two creation operators superposed, the information of

the location that the creation occurs is erased using a beamsplitter on two

idler photons. The operator in Eq. (2.25) is, then, applied on the input state

|0〉1 |αi〉2. The resulting state is

|ψ〉12 =
1√
2

⎛
⎝|1〉1 |αi〉2 + |0〉1

a†√
|αi|2 +1

|αi〉2

⎞
⎠, (2.26)
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when they choose t =
√

1+|αi|2
2+|α|2 . It is known that the photon-added state is a

good approximation of a coherent stata with a large amplitude as a†√
|α|2+1

|α〉≈
|gα〉 where g= 1

2
+
√

1
4
+ 1

|α|2 . The fidelity is given by F = g2 |α|2
|α|2+1

e−|α|2(g−1)2
.

Therefore, Eq. (2.26) is a superposition with α and gα. Finally, a displace-

ment operator D(−g+1
2

αi) is applied on the mode 2 so that they obtains the

desired hybrid state as

|ψsc〉= D(−α+gα
2

) |ψ〉12 ≈
1√
2

(|1〉1

∣∣−α f
〉

2
+ |0〉1

∣∣α f
〉

2

)
, (2.27)

where α f =
g−1

2
αi. The final amplitude α f become larger with a smaller

αi. However, the small αi makes the fidelity of a† |αi〉 ≈ |gαi〉 low. They

showed that starting with αi = 2, F ≈ 0.991 and α f ≈ 0.21, but with αi = 1,

F ≈ 0.946 and α f = 0.31.

Second, for the generation of |ψmc〉,
∣∣ψmp

〉
and |ψms〉, I may start with

a GHZ state of PSP qubits:

|GHZ(N)〉= (|H〉⊗N + |V 〉⊗N)/
√

2

It is then clear that
∣∣ψmp

〉
= (|H〉⊗N |H〉+ |V 〉⊗N |V 〉)/√2 is simply a GHZ

state with N +1 modes |GHZ(N +1)〉. In addition to a GHZ state of N +1

photons |GHZ(N +1)〉, I need to find out methods to convert one of the po-

larization qubits in the GHZ state to the desired carrier qubit by a conversion

gate

V = |C0〉〈H|+ |C1〉〈V | .

In this way, desired hybrid entangled states may be obtained.
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There are a number of proposals for the generation of the GHZ state.

A linear optical setup, called the (Type-I) fusion gate, is designed to fuse

|GHZ(N)〉 and |GHZ(2)〉 to generate |GHZ(N +1)〉 with a probability of

50% [44]. In a similar method (Supplementary Material of Ref. [45]), 6 sin-

gle photons are fused by the fusion gate followed by a Bell-state projection

to generate |GHZ(3)〉. The Bell-state measurements on copies of |GHZ(3)〉
also provide a probabilistic method to generate a GHZ state with an ar-

bitrary high photon number [45, 46]. Using the Bell-state measurements,

this method is made robust to photon loss [45]. Alternatively, a method

based on a nonlinear interaction, called coherent photon conversion, was

proposed to implement a deterministic photon-doubling gate |HH〉〈H|+
|VV 〉〈V | [47]. So far, the multiphoton GHZ-type entanglement has been ex-

perimentally observed with postselection in most experiments (for example,

[48, 49, 50, 51, 52]), which cannot be used as a teleportation channel. Never-

theless, a direct generation of a three-photon GHZ state was experimentally

performed [53].

Several methods converting one single-photon polarization qubit to the

vacuum-and-single-photon qubit have been proposed [54, 55, 56]. Figure 7

(b) depicts the technique proposed in Ref. [56], where the conversion gate

Vs→p = |0〉〈H|+ |1〉〈V | was experimentally demonstrated by bell-state mea-

surement and post-selection. They use a two-mode squeezed vacuum state

|TMSVV H〉1,2 =
√

1− γ2
∑∞

n=0 γn |nV ,nH〉1,2 and a polarized coherent state

|αV 〉3 = e−|α|2/2
∑

n
αn√

n!
|nV 〉 as resource states where γ is a squeezing pa-

rameter and α is an amplitude of the coherent state. Here, nH and nV denote

the photon numbers in the horizontal and vertical modes. They choose the
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amplitude α = γ so that the lights in the mode 2 and 3 are combined to a sin-

gle spatial mode 2’ by a polarizing beam splitter(PBS), which reflects only

the vertical polarized photon, as

|TMSVV H〉1,2 |αV 〉3 ∝ |0,0,0〉1,2,3 + γ |1V ,1H ,0〉1,2,3 + γ |0,0,1V 〉1,2,3 +O(γ2)

→ |Ω〉 ∝ |0,0〉1,2′ + γ |0,1V 〉1,2′ + γ |1V ,1H〉1,2′ +O(γ2).

Then, the following setup jointly projects the mode 2’ and input state on

|ψ±〉 = 1√
2
(|1H ,1V 〉 ± |1V ,1H〉). When |ψ+〉 is measured, the second and

third terms in |Ω〉 serve, and the output state is transformed as Vp→s |ψin〉
where Vp→s = |0V 〉〈1H |+ |1V 〉〈1V |. When |ψ−〉, the output qubit is bit-flipped.

In the ideal situation where no photon is lost, the success probability is given

by P[Vp→s](γ) = γ4(1−γ2)e−γ2
/4 determined by the squeezing parameter of

the two-mode squeezed state. The maximum of the success probability is

P[Vp→s](γ�)≈ 1.98% where γ� = 2−√
2 ≈ 0.586.

In Ref. [57], the authors suggest a method for conversion operation

Vp→c = |α〉〈H|+ |−α〉〈V | using linear optics with single-photon detectors

that can distinguish a single photon from two. The resource state is an op-

tical (Schrödinger) cat state, |SCS(α/t)〉 = A(α/t)(|α/t〉+ |−α/t〉), where

A(α) = (2+ 2e−2α2
)−1/2 is the normalization factor. In Figure 7 (c), the

schematic diagram is described. The optical cat state is split into the two-

mode state |α〉2 |β〉3 + |−α〉2 |−β〉3 = |α〉2 D3(β) |0〉3 + |−α〉2 D3(−β) |0〉3

via a beam splitter(BS) with transmittance t where β = rα/t and D(β) =

exp
(
βa† −β∗a

)
. At the same time, the input state is displaced by D4(β).

Then, through a beam splitter, the displacement in the mode 3 and 4 are
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interfered as D3(β)D4(β) → D3′(
√

2β) and D3(−β)D4(β) → D4′(−
√

2β).

Meanwhile, a single-photon polarization qubit |ψin〉 = cH |H〉+ cV |V 〉 be-

comes equally superposed in the mode 3’ and 4’ as UBS |ψin〉 = (|ψin〉3′ +

|ψin〉4′)/
√

2. Before the measurement, the total state is then proportional to

|α〉2 (|φin〉3′ |0〉4′ + |
√

2β〉3′ |ψin〉4′)+ |−α〉2 (|ψin〉3′ |−
√

2β〉4′ + |0〉3′ |φin〉4′),

where |φin〉 = D(β) |ψin〉. The heralded transform Vp→c occurs conditioned

on the detection Π= |1V 〉〈1V |3′ ⊗|1H〉〈1H |4′ . When Π′= |1H〉〈1H |3′ ⊗|1V 〉〈1V |4′
occurs, the resulting qubit is bit-flipped. Assuming no photon loss, the suc-

cess probability of the conversion Vp→c is P[Vp→c](t,α)= 〈Π〉=A(α/t)2( 1
t2 −

1)α2e−2(1/t2−1)α2
. If the bit-flip is allowed, the success probability becomes

double. This scheme allows the conversion Vp→c = |α〉〈H|+ |−α〉〈V | us-

ing an optical cat state with an amplitude slightly larger than α. Within

our knowledge, the recent record of the amplitude of the optical cat state

is α = 1.85 [58]. Therefore, I can obtain a hybrid entangled state between a

multiphoton qubit and a coherent-state qubit with α< 1.85, which is enough

to show the robustness of the teleportation scheme for qubit transmission.

2.6 Remarks

It is important to identify an efficient qubit encoding for a given quan-

tum information task. For example, the many-photon encoding enables one

to perform a nearly deterministic Bell-state measurement, which is a re-

markable advantage for quantum communication and computation. How-

ever, a many-photon qubit is vulnerable to photon loss and this is a formidable
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obstacle particularly against long-distance quantum communication. To over-

come this problem, I have suggested a teleportation scheme via hybrid en-

tanglement between a many-photon qubit and another type of small-photon

optical qubit serving as a loss-tolerant carrier. In our scheme, the loss-tolerant

carrier qubit is sent through a lossy environment. For the coherent-state

qubit case, I consider the VSP qubit, and for the multiphoton qubit, the

coherent-state qubit, the PSP qubit, and the VSP qubit are considered as the

loss tolerant carrier qubit.

In the case of the coherent-state qubit, I have found that the fidelity de-

pends on both sides of the photon losses, but the loss on the coherent-state

qubit side effects more severely than the opposite side due to the dephasing

effect. In the extreme case where the loss occurs on only one side, the fi-

delity is bounded by 1/2 from the loss on the VSP qubit side and 2/3 by the

coherent-qubit side. The success probability of the teleportation is indepen-

dent of the loss on the VSP qubit side. The dependence on the coherent-state

qubit side, however, is not severe: the region that the success probability is

maintained is widened for large amplitude. Therefore, I conclude that the

hybrid entanglement has merit mainly on the fidelity.

For the multiphoton case, I have found that the average fidelities of

the teleportation with the considered hybrid entangled states are better than

the direct transmission. The VSP qubit in hybrid entanglement serves as the

best carrier showing about 10 times better tolerance on the photon-loss rate

than the direct transmission of the multiphoton qubit for the fidelity larger

than 0.9. Our numerical analysis further shows that the coherent-state qubit

shows higher average fidelity than the others with small values of α. When
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α< 1.23 (α< 0.78), the average fidelity of the corresponding coherent-state

qubit is higher than that of the PSP qubit (the VSP qubit) for any rates of

photon loss. These results would be useful information when choosing the

proper carrier qubit depending on the quantum tasks under consideration. I

have also investigated the average success probability of the teleportation.

It was shown that the success probability depends only on the loss of the

multiphoton-qubit part. Although the Bell-state measurement scheme of the

multiphoton qubit is nearly deterministic without loss, the photon loss limits

the maximum success probability.

It would be an interesting future work to construct a full quantum re-

peater with hybrid entanglement based on our scheme and entanglement

purification protocols. For example, Sheng et al. [13] proposed an optical

scheme for entanglement purification of hybrid entanglement that enables

one to purify the bit and phase flip errors, as well as photon losses from the

coherent states. Since Bell-state measurements and entanglement purifica-

tion are two key elements in a quantum repeater, this work may be combined

with this scheme [13] to develop a hybrid quantum repeater. Other purifica-

tion schemes for carrier qubits [59, 60, 61, 62, 63, 64, 65, 11] used in our

paper may be needed to construct a quantum repeater, which deserves fur-

ther investigations.
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Figure 7: Conceptual schematics for (a) generating hybrid entangled state

between a coherent-state qubit and VSP qubit and implementing conversion

gates (b) Vp→s and (c) Vp→c.
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Chapter 3

Operational quantum resources
beyond entanglement

3.1 Introduction

Quantum information theory reveals that quantum entanglement is a

kind of resource, the requirement to achieve quantum advantages. However,

it has been pointed that the quantum theory shows striking differences from

the classical theory even for the single party where there is no room for the

entanglement [18]. Inspired by the entanglement theory, the framework of

quantum resource theory has been studied as a branch of the quantum the-

ory, which aims to quantify a particular quantum feature in a similar way

to the entanglement theory. I mainly deal with two major quantum resource

theories which have great implication on the light system for the quantum

information: resource theory of coherence [18] and resource theory of non-

classicality [20, 21].

Quantum coherence generally refers to the generalization of the quan-

tum superposition for the mixed state. The study of quantum resources has

seen another revival of interest over the last several years due to the recent

identification and characterization of a resource theory of coherence [18].

While the coherence of quantum systems has always, in some form or an-
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other, been recognized as a fundamental aspect of the field [66, 67, 68],

the newly developed resource theory now provides a framework that al-

lows for a more quantitative understanding of the subject. Since this de-

velopment, coherence has now been studied within the contexts of quan-

tum correlations [69, 70, 71], macroscopic quantumness [72, 73], nonclas-

sical light [74, 75, 76], interferometric experiments [77], quantum estima-

tion [78], and quantum algorithms [79, 80].

On the other hand, the nonclassicality comes from an idea of the most

“classical” quantum state. Given the answer, one can capture a quantum

state having genuine quantum nature. For the light system, the most com-

monly agreed answer is the coherent state. The coherent state is initially sug-

gested as a state minimizing the uncertainty of the position and momentum

operator spontaneously [81]. It also resembles the many properties of the

coherent electric field [82, 83], which make it dubbed as “coherent” state. It

is known that, in a bosonic system, every quantum state can be written by a

quasimixture of coherent states:

ρ =

∫
d2αP(α) |α〉〈α| , (3.1)

where P(α) is referred as the Glauber-Sudarshan P function [82, 83]. Be-

cause the probabilistic mixing is generally regarded as a classical process,

the quantum state whose P function is a genuine probability distribution is

called classical; if not the case, the state is called nonclassical. Nonclassi-

cal states find useful applications in a wide range of tasks, such as quan-

tum metrology[84], quantum teleportation[85], quantum cryptography[86],
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quantum communication[87] and quantum information processing[88].

The resource theoretic framework, however, does not guarantee the op-

erational meaning of the resource measure. The measures without any oper-

ational meaning have limited application on the quantum information pro-

cessing: the essential requirement on the measure only provides the impossi-

bility of a certain class of transformations. Unfortunately, many mathemat-

ically suggested measures do not have the operational meaning separated

from physical effects.

In this chapter, I aim to propose the resource theoretic measure for

the coherence and nonclassicality having operational meaning. I consider

how to construct a coherence measure from observable quantum effects.

Such effects include quantum Fisher information, related to the metrolog-

ical power via Cramér-rao bound, and expectation values of observables,

usually written as Hermitian operators. I also propose a computable non-

classicality measure from the negativity of the P function. This measure has

an operational meaning of the robustness to the mixing with the classical

state.

3.2 Measuring coherence via observable quan-
tum effects

3.2.1 Preliminaries

I first briefly describe the formalism of quantum channels, which I take

here to mean the set of all Completely Positive, Trace Preserving (CPTP)

maps. There are several equivalent characterizations of quantum maps, but
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for our purposes, I will be concerned with the Kraus [89] and the Choi-

Jamiolkowski representations [90, 91]. In the Kraus representation, a quan-

tum operation is represented by a map of the form Φ(ρ) =
∑

i KiρK†
i which

is completely specified by a set of operators {Ki} called Kraus Operators.

The Kraus operators must satisfy the completeness relation
∑

i K†
i Ki = 1 in

order to qualify as a valid quantum operation. In the Choi-Jamiolkowski

representation, a quantum map Φ is represented by an operator J(Φ) =∑
i, j Φ(|i〉A 〈 j|)⊗ |i〉B 〈 j| which satisfies TrA[J(Φ)] = 1B. The action of Φ

on some state ρ is then recovered via the map TrB[J(Φ)1A ⊗ρT
B ] = Φ(ρA).

A simple relationship connects both equivalent representations. For a map Φ

represented by Kraus operators {Ki =
∑

j,k ki, j,k | j〉〈k|}, the corresponding

Choi-Jamiolkowski representation is J(Φ) =
∑

i viv
†
i where vi :=

∑
j,k ki, j,k

| j〉 |k〉.
The notion of coherence that I will employ in this paper will be the

one identified in [92, 18], where a set of axioms are identified to specify a

reasonable measure of quantum coherence. The axioms are as follows:

For a given fixed basis {|i〉}, the set of incoherent states I is the set

of quantum states with diagonal density matrices with respect to this ba-

sis. Incoherent completely-positive and trace-preserving maps (ICPTP) are

quantum maps that map every incoherent state to another incoherent state.

Consider some set of ICPTP maps O. Given this, I say that C is a measure

of quantum coherence if it satisfies the following properties: (C1) (Faith-

fulness) C (ρ) ≥ 0 for any quantum state ρ and equality holds if and only

if ρ ∈ I . (C2a) (Weak monotonicity) C is non-increasing under any ICPTP

map Φ ∈ O , i.e., C(ρ)≥C(Φ(ρ)). (C2b) (Strong monotonicity) C is mono-
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tonic on average under selective outcomes, i.e. for any ICPTP map Φ ∈ O

such that Φ(ρ) =
∑

n KnρKn, C(ρ) ≥∑
n pnC(ρn), where ρn = KnρK†

n/pn

and pn = Tr
[
KnρK†

n
]

for all Kn with
∑

n KnK†
n = 1 and KnI K†

n ⊆ I . (C3)

(Convexity) C is convex, i.e. λC(ρ)+(1−λ)C(σ)≥C(λρ+(1−λ)σ), for

any density matrix ρ and σ with 0 ≤ λ ≤ 1.

One may check that a particular operation is incoherent if its Kraus

operators always map a diagonal density matrix to another diagonal density

matrix. One important example of such an operation is the CNOT gate. I

can also additionally distinguish between the maximal set of ICPTP maps,

which I refer to as maximally incoherent operations (MIO) [92] from the

set of ICPTP maps whose Kraus operators additionally satisfy KnI K†
n ⊆

I , which I refer to as simply incoherent operations (IO) [18]. From this

definition, it is clear that IO ⊂ MIO. I highlight that both MIO and IO are

commonly used abbreviations and that other possible sets of ICPTP maps

are also actively being considered (See [93] for examples). In this chapter, I

will typically consider either MIO and IO for the set O.

3.2.2 Coherence and Quantum Fisher Information

I now consider a standard metrological scenario. One first begins with

the signal Hamiltonian, which is denoted θHS. The signal Hamiltonian en-

codes a signal on a probe state, which is a specially prepared quantum state ρ

of N particles, or more if one were to include any possible ancillary quantum

particles. The Hamiltonian generates the dynamics ρ(t) = e−iHSθtρeiHsθt and

after some time t = τ, a measurement is then performed on the state ρ(τ),

the outcome of which is specifically designed in order to obtain the most
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precise estimate of the value of θ. The optimal sensitivity is known to be

given by the quantum Cramer-Rao bound [4] δθ ≥ 1√
νF (ρ(τ),HS)

where ν is

the number of measurements performed and F (ρ(τ),HS) is the QFI of a

state with respect to HS, given by

F (ρ(τ),HS) = 2
∑
i, j

(λi −λ j)
2

λi +λ j
|〈i|HS| j〉|2,

where λi and |i〉 are eigenvalues and eigenstates of ρ(τ), respectively. I are

primarily interested in the sensitivity of the state ρ locally at the point t = 0,

so F (ρ,HS) will be the figure of merit I will consider.

A class of Hamiltonians of particular interest is the class of local Hamil-

tonians. These Hamiltonians are a sum of N independent Hamiltonians act-

ing on individual particles, i.e. a Hamiltonians of the form HS =
∑N

i=1 h(i)

where h(i) represents a nontrivial interaction acting only on the ith particle

that is not proportional to the identity. I will also assume that h(i) does not

depend on the number N. An example of a Hamiltonian of this type is a

uniform magnetic field in the z direction acting on a collection of N spins,

wherein this case h(i) ∝ σ(i)
z , and σ(i)

z are the Pauli z operators acting on ith

particle. As coherence is a basis dependent concept, I will adopt the basis

which is naturally defined by the eigenvectors of h(i). This defines a set of

local bases {∣∣a(i)〉} for the ith particle where a = 1, . . . ,d, and d is the di-

mension of the particle. Consequently, I will consider the coherence with

respect to this set of local bases. Local bases were also previously studied

in [69], which noted their connection with quantum correlations.

For any signal Hamiltonian of the form HS =
∑N

i=1 h(i), and a pure
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state probe |ψ〉, let us consider the maximal QFI reachable via all possible

incoherent operations Φ ∈ ICPTP on |ψ〉, i.e. max
Φ∈ICPTP

F (Φ(|ψ〉〈ψ|),HS).

The incoherent operation here is completely general, with no constraints

otherwise. Here, I note that there is an important differentiation between N,

which captures the number of particles HS is interacting with, and the actual

physical number of particles, which can be any arbitrary number so long as

it is reachable via an incoherent operation.

In fact, for any coherent pure state, I can always achieve Heisenberg

scaling via a suitable incoherent operation, as demonstrated by the following

Lemma:

Lemma 1. For every coherent pure state |ψ〉 and locally interacting Hamil-

tonian HS, there always exists an incoherent operation Φ that achieves

F (Φ(|ψ〉〈ψ|),HS)> 0 that scales with O(N2). The measurement that achieves

this Heisenberg limited scaling can also be performed incoherently.

Proof Let us first consider HS =
∑N

j=1 h( j). For each h( j), let
∣∣∣i( j)

max

〉
and∣∣∣i( j)

min

〉
be eigenvectors that corresponds to eigenvectors for the maximum

and minimum eigenvalues λmax(h( j)) and λmin(h( j)), respectively. In this 2

dimensional subspace, let us define the Pauli operator σ( j)
x :=

∣∣∣i( j)
max

〉〈
i( j)
min

∣∣∣+∣∣∣i( j)
min

〉〈
i( j)
max

∣∣∣.
Let |ψ〉 =∑

i

√
λi |i〉, where |i〉 are eigenstates of HS which construct

the incoherent basis. Without any loss in generality, I assume that the coef-

ficients are positive real and λ1 ≥ λ2 ≥ . . .. I will also assume that |i = 1〉=∣∣∣i(1)max

〉
and |i = 2〉=

∣∣∣i(1)min

〉
since this is just a relabelling of the basis which

can be done using an incoherent unitary. The ‘extra’ particles may be con-
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sidered ancillary particles that assist during the metrological process.

I now apply an incoherent CNOT type operation that performs the

map U : |ψ〉 →∑
i

√
λi |i . . . i〉 and then let the state evolve according to the

Hamiltonian HS. Let us now consider only the the first 2 terms of U |ψ〉,
which under HS evolves as

√
λ1 |1 . . .1〉+

√
λ2 |2 . . .2〉 →

√
λ1 |1 . . .1〉+

√
λ2eiφτ |2 . . .2〉

up to an overall phase factor. I have φ =
∑N

j=1 φ j where φ j := λmax(h( j))−
λmin(h( j)).

I will choose some basis on the Hilbert space space of N particles {|ai〉}
for i = 1,2, . . . such that |a1〉= 1√

2
(|1 . . .1〉+ |2 . . .2〉). Define the following

POVM:

M(�c,i) := |π(�c), i〉
N∏

j=1

〈(−)c j |ai〉〈ai| ,

where �c := (c1, . . . ,cN), c j = 0,1, and π(�c) =
∏N

j=1(−1)c j . The quantum

operation M is then defined as M (ρ) =
∑

(�c,i) M(�c,i)ρM†
(�c,i). This operation

is incoherent and is effectively an incoherent implementation of 2 measure-

ments: a projection onto the basis {|ai〉} followed by a parity measurement

on the x axis. Suppose I perform the naive protocol where if the measure-

ment outcome is i = 1, I keep the parity measurement outcome, and assign

a value of zero otherwise. Let us call this measurement M ′.
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I can then verify using the error propagating formula that

ΔM ′2∣∣∂τ〈M ′〉∣∣2 =
(
√

λ1 +
√

λ2)
2

2

1

φ2
.

Finally, I observe that φi ≥ φmin :=min j φ j and φ≥Nφmin. φmin depends

only on {h(i)}, all of which do not contain any dependence on N, and neither

does the coefficient
(
√

λ1+
√

λ2)
2

2
, which depends only on the initial state. As

such, I have

ΔM ′2∣∣∂τ〈M ′〉∣∣2 ≤ (
√

λ1 +
√

λ2)
2

2

1

N2φmin
∼ O(

1

N2
).

This proves that for every pure coherent state, Heisenberg limited scal-

ing is reachable using only incoherent operations.

�

So far, I have only considered pure states and a single metrological

experiment. However, I can also consider the case of general mixed states

where M independent measurements are performed:

Definition 1 (Distributed coherence of QFI). The distributed QFI for a pure

state |ψ〉 is defined to be

C M
F (|ψ〉) := max

Φ∈ICPTP

M∑
i=1

F {TrP(i)c [Φ(|ψ〉〈ψ|)],H(i)
S }

where H(i)
S is the ith local Hamiltonian of the form H(i)

S :=
∑N

j=1 h(i, j) and

h(i, j) are nontrivial. P(i) refers to the ith partition of particles in the state

Φ(|ψ〉〈ψ|) which is partitioned into M collections of particles that sepa-
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rately interact with the Hamiltonians H(i)
S . The partial trace TrP(i)c is to be

interpreted as tracing out every particle except the ones in P(i).

The generalization to mixed states is obtained via the convex roof con-

struction

C M
F (ρ) := min

{pi,|ψi〉}

∑
i

piC M
F (|ψ〉)

where the minimization is over all pure state decompositions of the form

ρ =
∑

i pi |ψi〉〈ψi|. (See [94] for another example of such constructions)

This definition corresponds to a scenario where a quantum state

Φ(|ψ〉〈ψ|) is prepared via an incoherent operation, partitioned into M sepa-

rate subsystems, and then distributed to M different parties each performing

an independent metrological experiment. Equivalently, it can also be inter-

preted as a single party scenario where M independent metrological experi-

ments are performed.

It turns out that C M
F is a valid coherence measure for every M and H(i)

S .

Theorem 1. C M
F is a coherence measure.

Proof I observe that if ρ is incoherent, then it is diagonal w.r.t.
∑

i H(i)
S ,

and F (ρ,H(i)
S ) = 0. Resorting to any incoherent operation Φ will not im-

prove the situation as it always maps a diagonal state to another diagonal

state so I must have have C M
F (ρ) = 0. Lemma 1 then demonstrates that if ρ

is coherent, then C M
F (ρ)> 0 since ρ has to have at least one pure state in its

pure state decomposition that is coherent. This proves that ρ is incoherent

iff C M
F (ρ) = 0, so the measure is faithful.

Convexity is implied by the convex roof construction. Therefore, I only

need to prove strong monotonicity.
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To prove monotonicity, I only need to establish that the measure is

strongly monotonic over pure states (a short proof of this fact is presented in

the Appendix). I see that this is true from the following chain of inequalities:

∑
i

piC M
F (|ψi〉) =

∑
i

piC M
F (Ki |ψ〉/√pi)

=
∑

i

pi max
Φi∈ICPTP

M∑
k=1

F {TrP(k)c [Φi(Ki |ψ〉〈ψ|K†
i /pi)],H

(k)
S }

= max
Φi∈ICPTP

∑
i

pi

M∑
k=1

F {TrP(k)c [Φi(Ki |ψ〉〈ψ|K†
i /pi)⊗|i〉〈i|],H(k)

S ⊗|i〉〈i|}

= max
Φi∈ICPTP

M∑
k=1

F {TrP(k)c [
∑

i

Φi(Ki |ψ〉〈ψ|K†
i )⊗|i〉〈i|],

∑
i

H(k)
S ⊗|i〉〈i|}

≤ max
Φ∈ICPTP

M∑
k=1

F {TrP(k)c [Φ(|ψ〉〈ψ|)],H(k)
S }

= C M
F (ρ)

where the inequality comes from the observation that the optimization in the

third line is a special case of the optimization over Φ in the fifth line.

�

Note that it is possible to generalize the result to arbitrary signal Hamil-

tonians rather than the local Hamiltonians which is the focus of this article.

To see this, simply set N = 1 so HS = h(1) where h(1) is in principle any ar-

bitrary nontrivial Hamiltonian. Nonetheless, the case of local Hamiltonians

is interesting due to its connections with multipartite quantum correlations.

I also note that Thm. 1 applies for every HS and M. In particular, for
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the case M = 1, C 1
F(ρ) is just the standard Fisher information, optimized

overall incoherent operations performed on the state ρ. However, a closer

inspection will reveal that for small M, the measure will saturate for rela-

tively slow levels of coherence. I already see this from the fact that for M = 1

a maximally coherent qubit can already be converted to a GHZ state via a

series of CNOT operations, which is sufficient to saturate the QFI and C 1
F

for HS =
∑

i σ(i)
z . As such, depending on the system being considered, larger

values of M may lead to better coherence measures.

3.2.3 Coherence measures from quantum observables

In this subsection, I will discuss how a quantum observable M may be

used to construct a coherence measure that satisfies axioms (C1)-(C3) (see

Section 3.2.1). The following Theorem introduces a quantity that satisfies

the strongly monotonic condition (C2b), which will prove useful when I

eventually construct the coherence measure.

Theorem 2. For any quantum observable M and quantum state ρ, the quan-

tity

max
Φ∈O

Tr(MΦ(ρ))

is strongly monotonic under incoherent operations, where O may be sub-

stituted with either the set of operations, maximally incoherent operation

(MIO) or incoherent operation (IO).

Proof I first observe that any incoherent operation represented by some

set of incoherent Kraus operators {KIO
i } is, by definition, also a maximally

incoherent operation. Note that for any set of maximally incoherent opera-
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tions {ΩMIO
i | ΩMIO

i ∈ MIO}, the map Ω(ρ) :=
∑

i ΩMIO
i (KIO

i ρKIO†
i ) is also

maximally incoherent since it is just a concatenation of the incoherent oper-

ation represented by {KIO
i }, followed by performing a maximally incoherent

operation ΩMIO
i conditioned on the measurement outcome i. Let us assume

that ΩMIO
i (ρi) is the optimal maximally incoherent operation maximizing

Tr(MΩMIO
i (ρi)) for the state ρi := KIO

i ρKIO†
i /Tr

(
KIO

i ρKIO†
i

)
, I then have

the following series of inequalities:

max
Φ∈MIO

Tr(MΦ(ρ))≥ Tr(MΩ(ρ))

= Tr[M
∑

i

ΩMIO
i (KIO

i ρKIO†
i )]

= Tr[M
∑

i

piΩMIO
i (ρi)]

=
∑

i

pi max
Φi∈MIO

Tr(MΦi(ρi)),

where ρi := KIO
i ρKIO†

i /Tr
(

KIO
i ρKIO†

i

)
and pi := Tr

(
KIO

i ρKIO†)
i

)
. I note

that the last line is simply the expression for strong monotonicity, which

proves the result for the case when O is MIO. Identical arguments apply

when considering IO, which completes the proof. �

In the above proof, I see that the optimization over MIO yields a valid

coherence monotone within the regime of IO, so drawing a sharp distinction

between the two sets of operations is not always necessary.

I note that satisfying strong monotonicity qualifies the quantity as a co-

herence monotone, but is insufficient to fully qualify it as a coherence mea-
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sure. In order for that to happen, I need to demonstrate that maxΦ∈O Tr(MΦ(ρ))=

0 iff ρ is an incoherent state, and maxΦ∈O Tr(MΦ(ρ))

> 0 whenever ρ is a coherent state. It is clear that this is only true for some

special cases of M. However, the following theorem shows that even if M

does not by itself satisfy the above conditions, it is still possible to construct

a valid coherence measure using M.

Theorem 3. Let M be some Hermitian quantum observable in a d-dimensional

Hilbert space. Then there exists a basis {|i〉} such that 〈i|(M− Tr{M}
d 1) |i〉=

0 for every |i〉.
Furthermore, for every nontrivial quantum observable M, the quantity

C O
M(ρ) := max

Φ∈O
Tr[(MΦ(ρ)]−Tr(M)/d

is always a valid coherence measure w.r.t. any basis {|i〉} that satisfies

〈i|(M − Tr{M}
d 1) |i〉 = 0 for every |i〉. Since such a basis always exists, the

coherence measure C O
M also always exists. The set of quantum maps O may

be subtituted with either MIO or IO.

Proof I begin by observing that the matrix M′ = M − Tr{M}
d 1 is trace

zero. Since M′ is nontrivial (not proportional to the identity operator), it im-

plies that the sum of its positive eigenvalues and negative eigenvalues must

be exactly equal. Let�λ = (λ1, . . . ,λd) be the vector of eigenvalues of M′

arranged in decreasing order. I recall the Schur-Horn theorem, which states

that for every vector �v = (v1, . . . ,vd), there exists a Hermitian matrix with

the same vector of eigenvalues�λ, but with diagonal entries�v = (v1, . . . ,vd)

so long as the vectors satisfy the majorization condition�v ≺�λ. It is clear that
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the zero vector�v= (0, . . . ,0) always satisfies this condition. Therefore, there

always exist a basis {|i〉} for M′ where the main diagonals are all zero, such

that 〈i|M′ |i〉= 0 for every |i〉, which proves the first part of the theorem. See

Proposition 1 for an example of such a basis using mutually unbiased bases.

Proposition 1 presents an alternative proof for the existence of such bases

but it is important to note that not every basis that satisfies the condition

〈i|M′ |i〉= 0 for every |i〉 is necessarily mutually unbiased.

Now, I proceed to prove that C O
M(ρ) is a coherence measure of with

respect to the basis {|i〉}. The strong monotonicity condition is already sat-

isfied due to Thm 2. The convexity of the measure is immediate from the

linearity of the trace operation and the definition of C O
M as a maximization

over MIO or IO. Therefore, I only need to establish the faithfulness property

of the measure.

In order to prove this, recall that in the basis {|i〉}, the diagonal ele-

ments of M′ is all zero. Therefore, there always exists some projection onto

a 2 dimensional space M′ such that the corresponding submatrix has the

form

⎛
⎜⎝ 0 r

r∗ 0

⎞
⎟⎠. I can assume without loss of generality that the projection

is onto the subspace {|0〉 , |1〉}, since at this point, the numerical labelling of

the basis is arbitary.

For some coherent quantum state ρ, there is at least one nonzero off-

diagonal element. Since basis permutation is an incoherent operation, I can

assume the nonzero off-diagonal element is ρ01. In fact, I can assume that it

is the only nonzero off-diagonal element as I can freely project onto the sub-

space spanned by {|0〉 , |1〉} and completely dephase the rest of the Hilbert
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space via an incoherent operation, which allows us to prove the general re-

sult by only considering the 2-dimensional case. Suppose this leads to a

2-dimensional submatrix of the form

⎛
⎜⎝p1 a

a∗ p2

⎞
⎟⎠ where a is nonzero since

ρ is coherent.

Directly computing Tr

⎛
⎜⎝ 0 r

r∗ 0

⎞
⎟⎠
⎛
⎜⎝p1 a

a∗ p2

⎞
⎟⎠, I get the expression r∗a+

a∗r = |ra|(eiφ + e−iφ). This final quantity can always be made positive by

performing the incoherent unitary that performs |0〉→ |0〉 and |1〉→ e−iφ |1〉
which is equivalent to making both a and r positive quantities. Since r is

strictly positive as M′ is a nontrivial matrix, this implies ar > 0 if ρ is a

coherent state, so there always exists at least one incoherent operation Φ

such that Tr[M′Φ(ρ)]> 0 for every coherent state ρ.

Finally, I just observe that M′ has zero diagonal elements w.r.t. the basis

{|i〉}, so Tr[M′Φ(ρ)] = 0 whenever ρ is incoherent and Φ is MIO or IO. This

completes the proof. �

Theorem 3 above establishes several facts. First, observe that since

C O
M(ρ) is a coherence measure and nonnegative, Tr[(Mρ)]−Tr(M)/d can

only be positive when ρ is coherent (the basis is specified by the theorem).

This establishes that every nontrivial observable M is, in fact, a witness of

some form of coherence. One just needs to subtract the constant Tr(M)/d

from the mean value 〈M〉 to verify the presence of coherence.

Second, it establishes that if M is a coherence witness, then it can be

interpreted as the lower bound of the bona fide coherence measure C O
M . Re-

call that the measure C O
M quantifies the operational usefulness of a quantum

58



state when one considers MIO or IO type quantum operations and the task

is to maximize the mean value of a given observable M. Other examples of

coherence measures with operational interpretations in terms of MIO or IO

include the relative entropy of coherence, which quantifies the number of

maximally coherent qubits you can distill using IO [95], as well as quan-

tities considering how much entanglement and Fisher information can be

extracted via MIO or IO [70, 96].

Third, Theorem 3 defines the preferred incoherent bases where the co-

herence is useful for optimizing 〈M〉 and shows that such bases always exist.

The following proposition states that the coherence with respect to any basis

that is mutually unbiased with respect to the eigenbasis of the observable M

will always satisfy the necessary condition in Theorem 3.

Proposition 1. Let {|αi〉} be the complete set of eigenbases of some non-

trivial quantum observable M, and let {|βi〉} be any complete basis that

is mutually unbiased w.r.t. {|αi〉}. Then the basis {|βi〉} always satisfies

〈βi|(M− Tr{M}
d 1) |βi〉= 0 for every |βi〉.

In other words, w.r.t. any mutually unbiased basis |βi〉, the diagonal

elements of M− Tr{M}
d 1 is always zero.

Proof Let the dimension of the Hilbert space be d. I then have
∣∣〈βi|α j〉

∣∣2 =
1
d . Since {|αi〉} is the complete eigenbasis of M, M =

∑
i λi |αi〉〈αi| and

〈βi|M |βi〉=
∑

j
λ j
d = Tr{M}

d . This implies that 〈βi|(M− Tr{M}
d 1) |βi〉= 0 for

every i = 1, . . . ,d, which is the required condition. Note that this can be

considered an alternative proof of the first statement in Theorem 3. �

In Theorem 3, I established the existence of a coherence measure C O
M
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but the proof is not constructive in the sense that given the observable M, it

does not immediately inform us of a procedure to obtain the basis {|i〉} and

corresponding measure C O
M . Proposition 1 closes this gap. Given any observ-

able M, one may obtain the eigenbasis, find another basis that is mutually

unbiased with respect to this eigenbasis, and construct C O
M . An overview of

how to construct mutually unbiased bases can be found in [97]. Note that

mutually unbiases bases are not the only kinds of bases satisfying Theo-

rem 3.

I now consider the reverse construction. Suppose instead of starting

from a given observable M and inferring the basis for the coherence mea-

sure, I wish to begin with some basis {|i〉} and construct an observable M

with corresponding measure C O
M that quantifies the coherence in the basis

{|i〉}. The method to do this also follows from Theorem 3, as I can choose

any Hermitian matrix to be M so long as the leading diagonals are zero.

This is guaranteed to lead to a reasonable measure according to Theorem 3.

Such a matrix is easy to construct, as any arbitrary Hermitian matrix written

in the basis {|i〉} with its leading diagonal elements replaced with zero will

suffice. This is summarized in the form of the following corollary.

Corollary 3.1. Consider any complete basis {|i〉} and any arbitrary Her-

mitian matrix H which has at least one nonzero off-diagonal element. Then

using the matrix M = H −∑
i 〈i|H |i〉 |i〉〈i|, the corresponding measure C O

M

(See Theorem 3) will always be a measure of the coherence w.r.t. the basis

{|i〉}.

Finally, I show that for MIOs, the corresponding coherence measure
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C MIO
M can be written in the form of the semidefinite programming, a sort of

linear optimization problem. The form assures the efficiency of computing

our measure in terms of the dimension d. Many other quantities related to

coherence may be phrased as a semidefinite program. For examples, see

[98, 99, 100, 101, 102, 103].

Let us first define the matrix A := MA ⊗ρT
B ⊗ |1〉C 〈1| acting on HA ⊗

HB ⊗ HC. Furthermore, I will assume that dim(HA) = dim(HB) = d and

dim(HC) = 2.

I now prove the following:

Theorem 4. For any quantum observable M, the optimization problem

max
Φ∈MIO

Tr(MΦ(ρ))

is equivalent to the semidefinite program

max
X≥0

Tr(AX)

subject to TrAC(X |1〉C 〈1|) = 1B

TrBC(X1A ⊗|i〉B 〈i|⊗ |1〉C 〈1|)

=

d∑
j=1

TrABC(X | j〉A 〈 j|⊗ |i〉B 〈i|⊗ |2〉C 〈2|) | j〉A 〈 j|

∀ i = 1, . . . ,d,

where A := MA ⊗ρT
B ⊗|1〉C 〈1|.

Note that all the matrices here are assumed to be written in a basis of
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the type specified in Theorem 3.

Proof I begin by first noting that the matrix X can be written as the

matrix ⎛
⎜⎝X1 ∗

∗ X2

⎞
⎟⎠ .

The ∗ indicates possible nonzero elements, but they do not appear in the

objective function I are trying to optimize, nor do they appear within the

linear constraints, so they can be arbitrary so long as X ≥ 0. The matrix A

written in matrix form looks like

⎛
⎜⎝MA ⊗ρT

B 0

0 0

⎞
⎟⎠ .

Computing Tr(AX), I get

Tr(AX) = TrA[TrB(X11A ⊗ρT
B)MA].

Now, the constraint TrAC(X |1〉C 〈1|) = 1B implies TrA(X1) = 1B, so

X1 actually represents a valid quantum operation in the Choi-Jamiolkowski

representation. This implies Tr(AX) has the form TrA[Φ(ρ)MA] for some

valid quantum operation Φ.

All that remains is for us to prove that under the set of constraints

TrBC(X1A ⊗|i〉B 〈i|⊗|1〉C 〈1|)

=
∑

j

TrABC(X | j〉A 〈 j|⊗ |i〉B 〈i|⊗ |2〉C 〈2|) | j〉A 〈 j|
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for all i = 1, . . . ,d and j = 1, . . . ,d, Φ must be a maximally incoherent oper-

ation. I first note that the number TrABC(X | j〉A 〈 j|⊗ |i〉B 〈i|⊗ |2〉C 〈2|) is just

the main diagonal elements of the matrix X2, so it must be nonnegative since

X is positive and X2 is a principle submatrix of X . I can therefore rewrite

the constraint as TrBC(X1A ⊗|i〉B 〈i|⊗ |1〉C 〈1|) =
∑

j λi, j | j〉A 〈 j| where λi, j

is nonnegative. This necessarily means that every incoherent state |i〉〈i| is

mapped to a diagonal state
∑

j λi, j | j〉〈 j| under the quantum map repre-

sented by X1, which defines maximally incoherent operations, and com-

pletes the proof. �

3.2.4 Examples

I first provide numerical examples comparing our coherence measures

C M
F with, a well-known coherence measure, the relative entropy of coher-

ence CD [18]. CD is defined by CD(ρ)= S(ρdiag)−S(ρ) where S(ρ)=−Trρ logρ

is the von Neumann entropy of a density matrix ρ and ρdiag is the diagonal

part of the density matrix ρ. While C M
F requires optimization over all inco-

herent operations, and the optimal solution for a general quantum state is in

general unknown, any incoherent procedure will provide a lower bound for

the measure.

I consider the set of m-qubit Dicke state with k excitations. The state is

given by

|m,k〉=
(

m
k

)− 1
2 ∑

P

|P(0 . . .0︸ ︷︷ ︸
m-k

1 . . .1︸ ︷︷ ︸
k

)〉

where P refers to a particular permutation of the state and the summation

is over all possible permutations. By verifying the majorization condition
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Figure 8: Comparisons between the lower bounds of the superradiant based

measure CS(red, ◦), the QFI based measure C M
F (green, �), and the relative

entropy of coherence CR(blue, ×) for the M-qubit Dicke state with k ex-

citations |M,k〉. The plots are normalized so they coincide at k = 10, and

demonstrate qualititatively similar behaviour across different measures.

[104] for two uniformly distributed pure states, I can show that there exist

incoherent operations Φ which performs the map |m,n〉 Φ−→ (|0〉+ |1〉)⊗mk

where mk is the largest integer satisfying 2mk ≤ (N
k

)
. I will use this fact to

compute a lower bound for C M
F where M = m. For the superradiance based

measure, I will simply apply the identity operation. Fig. 8 illustrates the

similarity of the obtained lower bounds to the relative entropy of coherence.

Note that the computed values are normalized such that they coincide at the

point k = 10.

Next, I provide numerical example for C O
M . Let us consider for spin

systems the total magnetic moment operator. For a system of N spins I can

choose as our classical basis
⊗N

i=1{|↑〉i , |↓〉i} where {|↑〉i , |↓〉i} is the eigen-

basis of the local spin-z operator. In order to witness the coherence between
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these basis states, a simple measurement of the magnetization in the x direc-

tion will suffice (See Theorem 3 as well as Proposition 1). The total spin-x

operator is defined as

Sx =

N∑
i=1

Si
x

with local spin operators Si
x. Choosing Sx as our observable, any measure-

ment of 〈Sx〉 is automatically a lower bound to the corresponding coherence

measure C O
Sx

. Note that because one can equivalently choose to measure the

total magnetization along any direction on the equatorial plane, any non

zero measurement of 〈Sx〉 directly implies the presence of coherence in the

z direction. Figure 9 compares Cl1 =
∑

i�= j

∣∣ρi j
∣∣, CD and C MIO

Sx
for the state

ρ= (1+ p/7)1/8− p/7 |w〉〈w| where |w〉 := 1√
3
(|001〉+ |010〉+ |100〉) and

p ∈ [0,1].

3.3 Measuring Nonclassicality via negativity

3.3.1 Nonclassicality filtering

I first introduce the characteristic function of the Glauber-Sudarshan

P-function. A common convention is to define it as the integral
∫

d2αP(α)

exp[2i(βiαr −βrαi)], where αr,βr and αi,βi are the real and imaginary com-

ponents of α and β respectively. One observes that this is a multivariate

Fourier transformation. For our purposes, I will adopt the following conven-

tion:

χ(β) :=

∫
d2αP(α)exp[2πi(βiαr +βrαi)].

It should be clear that this definition essentially corresponds to a change
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Figure 9: Comparisons among the l1 norm of coherence Cl1 (green, solid),

the relative entropy of coherence CD(red, dash-dotted), and the coherence

measure corresponding to magnetization measurement CSx(blue, dotted). I

consider the single parameter, 3 qubit state ρ = (1+ p/7)1/8− p/7 |w〉〈w|,
where |w〉 := 1√

3
(|001〉+ |010〉+ |100〉) and p ∈ [0,1]

in variables of the type βi → πβ′
i and βr → −πβ′

r, and so does not alter

the information content of the characteristic function. It also adheres more

closely to the conventional definition of the Fourier transform in the ordi-

nary frequency domain: F f (y) :=
∫

dx f (x)exp(−2πixy). The correspond-

ing inverse Fourier transform is then F −1 f (y) :=
∫

dx f (x)exp(2πixy). This

allows us to write P(α) = F χ(α). All physical characteristic functions sat-

isfies |χ(β)| ≤ exp
(

π2|β|2/2
)

.

One major issue with the P-function is that it is frequently highly singu-

lar. This complicates our ability to analyze and quantify the nonclassicality

of quantum states via the P-function alone and necessitates the use of other

nonclassicality criteria.

I consider the filtered P-functions proposed in Ref. [105]. Filtered P-
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functions are based on the observation that P(α) is the (multivariate) Fourier

transform of the characteristic function χ(β), such that P(α) = F χ(α). This

opens up the possibility of applying a filtering function Ωw(β) prior to the

Fourier transform. The nonnegative parameter ω is to be interpreted as the

width of the filter. The filtered function is then

PΩ,w(α) := F χΩ,w(α)

where χΩ,w(β) := χ(β)Ωw(β). In general, the characteristic, P and filtered

P-functions depend on the state ρ. When the state ρ is unambiguous, the

characteristic function is denoted χ and χ(α) is the function at the point α.

When ρ needs to be specified, the characteristic function is denoted χ(ρ),

while χ(α | ρ) is the function at α. Similar notations will also be used for

the unfiltered and filtered P-functions. The goal is to be able to consistently

define the negativity of the P-function, even when it is highly singular. For

this purpose, I consider a carefully chosen nonclassicality filter Ωw satisfy-

ing the following properties:

(a) Ωw(β) is factorizable such that Ωw(β) = Ω1
w(β)Ω2

w(β) s.t. Ωi
w(β) is

square integrable for i = 1,2.

(b) Ω1
w(β)eπ2|β|2/2 is square integrable.

(c) Ωw(0) = 1 and limw→∞ Ωw(β) = 1.

(d) There exists t > 0 such that Ωw(β) = Ωw/|r|(β)Ωt(β) for any |r| < 1,

and some t > 0.
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(e) Ωw(β) = Ωkw(kβ) for any k > 0.

Note that these conditions are stronger than those proposed in Ref. [105].

There, the key requirement is for Ωw(β)eπ2|β|2/2 to be square-integrable, in

order to ensure that its Fourier transform will also be square-integrable due

to Plancherel’s theorem. Square integrability is however not sufficient to en-

sure that PΩ,w(α) is pointwise finite for every α. Our modified approach

closes this gap by ensuring that PΩ,w(α) is always finite, which allows us to

numerically determine whether there is negativity at a given point α.

Theorem 5. If Ωw satisfies properties (a) and (b), then PΩ,w(α) contains no

singularities and is finite for every α.

Proof Since χΩ,w(β) ≡ χ(β)Ωw(β) = χ(β)Ω1
w(β)Ω2

w(β), I can group

the terms such that χΩ,w(β) = [χ(β)Ω1
w(β)]×Ω2

w(β). The convolution theo-

rem then implies that PΩ,w(α)≡F χΩ,w(α)= {F [χ(β)Ω1
w(β)]∗F Ω2

w(β)}(α).
From property (a), I already know that Ω2

w(β) and hence F Ω2
w(β) are

square integrable from Plancherel’s theorem. Furthermore, from property

(b), I are guaranteed that Ω1
w(β)eπ2|β|2 is square integrable. This means that

Ω1
w(β)χ(β) is also square integrable since χ(β)≤ eπ2|β|2 . Applying Plancherel’s

theorem again, I know that F [χ(β)Ω1
w(β)] is also square integrable.

I recall that if f (β) and g(β) are both square integrable, then by Cauchy’s

inequality, it must satisfy ‖ f (β)g(β)‖1 ≤ ‖ f (β)‖2‖g(β)‖2 where ‖·‖1 and

‖·‖2 are the L1 and L2 norms respectively. Furthermore, since the L1 norm

is just the absolute integral, I have

∣∣∣∣
∫

d2β f (β)g(β)
∣∣∣∣≤ ‖ f (β)‖2‖g(β)‖2 < ∞.
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This implies that the integral
∫

d2β f (β)g(β) is finite.

{F [χ(β)Ω1
w(β)] ∗ F Ω2

w(β)}(α) is a convolution of two square inte-

grable functions. By the definition of a convolution, for every given α, it is

an integral of a product of 2 square integrable functions. From the property

described in the previous paragraph, I must have PΩ,w(α) ≡ F χΩ,w(α) =

{F [χ(β)Ω1
w(β)] ∗ F Ω2

w(β)}(α) < ∞, so it has a finite value for every α.

This means that the filtered function PΩ,w(α) is finite everywhere and con-

tains no singularities. �

Theorem 5 thus allows us to to assign definite positive or negative val-

ues at every point α of PΩ,w(α). This implies that I can determine unam-

biguously the positive and negative regions of PΩ,w(α) as follows:

Definition 2 (Negativity of a P function). Let f (α) be a function that is well

defined for every α, so that I can write f (α) = f+(α)− f−(α), where f±(α)

are pointwise nonnegative functions. Then the negativity of f is defined as

N ( f ) :=

∫
d2α f−(α).

Consider the P function of a state ρ. Let Ωw be some filter that satis-

fies properties (a)-(c). I can then write the filtered P-function as PΩ,w(α) =

P+
Ω,w(α)−P−

Ω,w(α) where P±
Ω,w(α) are the nonnegative functions.

The negativity, of ρ is defined to be

N (ρ) := lim
w→∞

∫
d2αP−

Ω,w(α).

Property (c) then guarantees that the filtered function is a proper quasiprob-
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ability function such that
∫

d2αPΩ,w(α) = 1, and that for sufficiently large

w, F Ωw(α)≈ δ(α), so the original P-function is retrieved.

Given the above definitions, one still needs to find an appropriate filter

Ωw. The astute reader may have noticed that properties (d) and (e) are not

yet discussed. They will play an important role which will be described in

greater detail in a subsequent section. I first establish several properties of

the negativity.

3.3.2 Negativity as a linear optical monotone

In Ref. [74], a resource theoretical approach was proposed to quantify

nonclassicality in radiation fields. There, it was argued that nonclassicality

measures should be linear optical monotones, i.e. nonclassicality should be

measured using quantities that do not increase under linear optical maps.

Under this approach, nonclassicality may be considered as a resource that

overcomes the limitations of linear optics.

Linear optical maps are formally defined to be any quantum map that

can be written in the form

ΦL(ρA) := TrE [UL(ρA ⊗σE)U
†
L ],

where σE is a classical state and UL is a linear optical unitary composed of

any combination of beam splitters, phase shifters and displacement opera-

tions. Such unitary transforms will always map a N mode bosonic creation

operator a†
�μ :=

∑N
i=1 μia

†
i into a†

�μ′
+⊕N

i−1αi1i where�μ,�μ′ are N dimensional

complex vectors of unit length, and 1i is the identity operator on the ith
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mode.

One may also incorporate postselection into the definition by defin-

ing selective linear optical operations via a set of Kraus operators Ki for

which there exists linear optical unitary UL, classical ancilla σEE ′ , and a set

of orthogonal vectors {|i〉E ′} such that TrE [UL(ρA ⊗σEE ′)U†
L ] =

∑
i piρi

A ⊗
|i〉E ′ 〈i|, where piρi

A := KiρAK†
i and pi := Tr(KiρAK†

i ).

Based on this definition, the following theorem shows that the nega-

tivity N forms a linear optical monotone that belongs to the operational

resource theory outlined in Ref. [74].

Theorem 6. The negativity N (ρ) is a nonclassicality measure satisfying

the following properties:

1. N (ρ) = 0 if and only if ρ has a classical P-function.

2. (a) (Weak monotonicity) N (ρ)≥ N (ΦL(ρ)).

(b) (Strong monotonicity) N (ρ)≥∑
i piN (ρi) where pi :=Tr(K†

i Kiρ)

, ρi := (KiρK†
i )/pi and ΦL(ρ) =

∑
i KiρK†

i is a selective linear

optical operation.

3. (Convexity), i.e. N (
∑

i piρi)≤
∑

i piN (ρi) .

Proof It is apparent that if the P-function of ρ is classical, then N (ρ)

= 0 since PΩ,w(α) → P(α) as w → ∞ so the negative volume must vanish.

The converse must also be true as if N (ρ) = 0, then
∫

d2αP−
Ω,w(α)→ 0 as

w → ∞, which implies P+
Ω,w(α)→ P(α). This means that P(α) is the limit of

a sequence of positive distributions. As the set of classical states is a closed
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convex set, and P+
Ω,w(α) → P(α), this means that P(α) must be classical.

This proves Property 1.

In order to prove the weak and strong monotonicity properties, I make

use of an observation from Ref [74]. It was noted that for the special case

when the P is any regular function that does not contain any singularities,

the negative volume N (ρ) where ρ =
∫

d2αP(α)|α〉〈α| satisfies both weak

and strong monotonicity conditions.

I now extend the above result to all P functions. Let

ρw =

∫
d2αPΩ,w(α)|α〉〈α|.

For weak monotonicity, I see that N (ρw) ≥ N (ΦL(ρw)). Taking the limit

w → ∞, ρw → ρ, the inequality converges to N (ρ) ≥ N (ΦL(ρ)). Identical

arguments hold for strong monotonicity. This is sufficient to generalize the

monotonicity property to all P functions, and establishes Property 2.

Similarly for convexity, I have N (
∑

i piρw,i) ≤
∑

i piN (ρw,i) for ev-

ery w. Taking the limit w → ∞, ρw,i → ρi so the inequality converges to

N (
∑

i piρi)≤
∑

i piN (ρi) which is the required inequality.

�

3.3.3 Operational interpretations of the negativity

An operational measure that has been extensively studied in various

quantum resource theories is the robustness[106, 98]. It quantifies the min-

imum amount of mixing with noise that is necessary to make a given quan-

tum state classical. It turns out that the negativity exactly quantifies the ro-
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bustness of a given quantum state.

I can consider the following definition for the robustness of nonclassi-

cality.

Definition 3 (Robustness of nonclassicality). Let P be the set of all quantum

states with classical P distributions.

The robustness of nonclassicality is defined as

R (ρ) := min
σ∈P

{r | r ≥ 0,
ρ+ rσ
1+ r

∈ P}.

Based on the above definition, one may show that the negativity and

the robustness are in fact equivalent.

Theorem 7. The negativity and the robustness are equivalent measures of

nonclassicality, i.e. N (ρ) = R (ρ) for every quantum state ρ.

Proof

First, note that I can always write PΩ,w(α) = P+
Ω,w(α)−P−

Ω,w(α) where

P±
Ω,w(α) are pointwise nonnegative functions. Let

∫
d2αP−

Ω,w(α) := rw and

limw→∞ rw = r. Note that by this definition, r = N (ρ)

I now consider some sufficiently large w and observe that r is always an

upper bound to the robustness. This is because, 1
1+rw

(PΩ,w(α)+P−
Ω,w(α)) =

1
1+rw

P+
Ω,w(α) which corresponds to a positive, and hence classical, P-function.

Therefore, if ρw and σw are the quantum states corresponding to the distri-

butions PΩ,w(α) and P−
Ω,w(α)/rw respectively, the mixture

ρw+rwσw
1+rw

always

has a classical P-function. Taking the limit w → ∞, I get
ρ+rσ
1+r is classical,

where σ := limw→∞ σw. Since r is just the negativity N (ρ), I see that the
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negativity is at least an upper bound to the robustness.

I now need to show that r is also a lower bound. This follows imme-

diately from the observation that P−
Ω,w(α) is the minimal function necessary

for PΩ,w(α) to be positive. It is clear that if P′(α)< P−
Ω,w(α) for any α, then

PΩ,w(α)+P′(α)< 0 and so is not positive at α. This shows that r must also

be a lower bound and proves the theorem.

�

Theorem 7 therefore provides a direct operational interpretation for

the negativity of the P-function. The negativities of other s-parametrized

quasiprobabilities can then be interpreted as lower bounds to the robustness.

I also point out that Ps(α) may be interpreted as the P-function after inter-

action with a thermal environment[107, 108, 109]. This means that at s < 1,

the negativity corresponds to the robustness of the state under less than ideal

environmental conditions, while at s = 1, it is the robustness under ideal

conditions.

Another possible interpretation of the negativity is the cost of simulat-

ing a nonclassical state in phase space using P function. In particular, it is

possible to show that the number of samples s(ε,δ) required to classically

simulate the measurement outcomes with a sampling error less than ε and

success probability greater than 1−δ scales with[110]

s(ε,δ) ∝ [1+2N (ρ)]2.

As N (ρ) = 0 when the state is classical, the factor [1+ 2N (ρ)]2 de-

scribes the additional overhead required to simulate a nonclassical state.
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This suggests that states with greater negativities tend to be harder to simu-

late.

3.3.4 Approximate nonclassicality monotones

The negativity is well defined in Definition 2, but does not always lead

to finite quantities. For instance, highly singular states such as squeezed

states can possess infinite negativities. This can be verified numerically by

applying an appropriate filter and computing the filtered negativities as w →
∞. From Theorem 7, I know that this is because some states require an infi-

nite amount of statistical mixing with classical states before their nonclassi-

cality is erased. Nevertheless, N remains a linear optical monotone, which

is able to unambiguously identify every nonclassical state.

It is natural to ask whether it is possible to avoid infinite values while

simultaneously maximizing the number of identifiable nonclassical states. I

show that this is possible via an appropriate choice of filters that satisfies the

full suite of properties (a)-(e) (see Preliminaries).

Theorem 8. If the filter Ωw satisfies properties (a)-(e), with δ :=N (F Ωw=1),

the filtered negativity N (PΩ,w) is an approximate nonclassicality measure

satisfying the following properties:

1. N (PΩ,w)≤ δ if ρ is classical.

2. (Approximate monotonicity) For any linear optical map ΦL, (1+2δ)N [PΩ,w(ρ)]+

δ ≥ N {PΩ,w[ΦL(ρ)]}.

3. (Convexity) N [PΩ,w(
∑

i piρi)]≤
∑

i piN [PΩ,w(ρi)]
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Lemma 2. Suppose f and g are non-singular real-valued functions on the

complex plane C such that
∫

d2α f (α) =
∫

d2αg(α) = 1. Then,

N ( f ∗g)≤ N ( f )(1+2N (g))+N (g)

Proof

Let f (α) = f+(α)− f−(α), and g(α) = g+(α)−g−(α), where f±(α)

and g±(α) are pointwise nonnegative functions. I note that f ∗ g = ( f+−
f−) ∗ (g+− g−) = f+ ∗ g+ + f− ∗ g− − ( f+ ∗ g−+ f− ∗ g+). As a result, I

have the following series of inequalities

∫
d2α( f ∗g)−(α)

≤
∫

d2α( f+ ∗g−(α)+ f− ∗g+(α))

=

∫
d2α f+(α)

∫
d2αg−(α)+

∫
d2α f−(α)

∫
d2αg+(α)

= (1+

∫
d2α f−(α))

∫
d2αg−(α)

+

∫
d2α f−(α)(1+

∫
d2αg−(α))

=

∫
d2αg−(α)(1+2

∫
d2α f−(α))+

∫
d2α f−(α),

where I used the identity
∫

d2α f+(α) = 1+
∫

d2α f−(α) which comes from

the fact that
∫

d2α f (α) = 1.

�

Lemma 3. Suppose the filter Ωw satisfies property (a)-(c) and (e). Then for

any given linear optical map ΦL, N [PΩ,w(ρ)]≥ N {PΩ,w/|r|[ΦL(ρ)]} where
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the factor r depends only on ΦL.

Proof

Similar to an observation from Ref. [109] and the proof of Theorem 6,

I define the map

ΦΩ,w(ρ) =
∫

d2γF Ωw(γ)D(γ)ρD†(γ).

From this, I see that P(ΦΩ,w(ρ)) = PΩ,w(ρ), so the P-function after

this map is equivalent to applying a filter Ωw. This property does not require

F Ωw(α) to be pointwise positive for every α.

Using the notation Dα(·) = D(α)(·)D†(α), I follow a similar argument

with the proof of Theorem 6, resulting in the following series of inequalities:

N [ΦΩ,w(ρ)]≥ N [ΦLΦΩ,w(ρ)] (3.2)

= N [ΦL

∫
d2αF Ωw(α)Dα(ρ)] (3.3)

= N [

∫
d2αF Ωw(α)D|r|αΦL(ρ)] (3.4)

= N [

∫
d2α
|r|2 F Ωw(

α
|r|)DαΦL(ρ)] (3.5)

= N (

∫
d2αF Ωw/|r|(α)DαΦL(ρ)) (3.6)

= N (ΦΩ,w/|r|ΦL(ρ)), (3.7)

where |r| ≤ 1 and depends only on ΦL. Which is the required expression.

Eqn. 3.6 comes from the observation that whenever the filter satisfies Ωw(β)=

Ωkw(kβ) for any k > 0 (property (e)), then together with the scaling property
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F [ f (|r|β)](α) = F f (α/|r|)/|r|2 I have

F Ωw(α/|r|) = |r|2F Ωw/|r|(α).

�

Theorem 8 suggests that given a filter that satisfies properties (a)-(e),

the filtered negativity NΩ,w(ρ) is an approximate linear optical monotone

when the negativity of F Ωw is small. Ideally, I would like the Fourier trans-

form of the filter to be pointwise positive and still satisfy properties (a)-

(e), which would imply that the filtered negativity is an exact linear optical

monotone that can be computed for every w > 0. It remains unclear whether

this is possible, but I demonstrate that the negativity of the filter can at least

be made arbitrarily small, such that the filtered negativity is essentially a

linear optical monotone to any required level of precision.

Proposition 2. Define Ωw,ε(β) := exp
(
−|β/w|2+ε

)
, where w > 0 is the

width parameter, and ε > 0 is the error parameter. Then, Ωw,ε is a filter

that satisfies properties (a)-(e). Furthermore, N (F Ωw=1,ε)→ 0 as ε → 0.

Proof

Consider any given linear optical map ΦL. By Lemma 2, for a state

ΦL(ρ), I obtain

N {PΩ,w[ΦL(ρ)]}

≤ N {PΩ,w/|r|[ΦL(ρ)]}[1+2N (F Ωt)]+N (F Ωt)
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Combining the above and Lemma 3, I get the following inequalities:

N [PΩ,w(ρ)]≥ N {PΩ,w/|r|[ΦL(ρ)]}

≥ N {PΩ,w[ΦL(ρ)]}−N (F Ωt)

1+2N(F Ωt)

Define δ = N(F Ωt).

Finally, I observe that because Ωw(α) = Ωkw(kα) for any k > 0, if I

set w = 1 and k = t, I get Ωw=1(α) = Ωt(tα) . From the scaling property

of the Fourier transform F [Ωt(tβ)](α) = F Ωt(α/t)/t2, I also have that∫
d2αF Ω−

t (α/t)/t2 =
∫

d2αF Ω−
t (α)t2/t2 = N (F Ωt). This implies that

N (F Ωw=1) = N (F Ωt) for any t > 0, which completes the proof. �

3.3.5 Examples

Here, I provide some numerical examples that illustrates our results

for the negativity of the P-function N and the filtered negativity NΩ,w :=

N (PΩ,w) using several prominent nonclassical states. I will use the filter

Ωw,ε from Proposition 2. The error parameter ε is chosen to be ε = 0.21

such that 2δ = 2N (Ωw=1,ε) ≈ 0.05. From Theorem 8, this means that the

resulting filtered negativity NΩ,w is a linear optical monotone up to approx-

imately a 5 percent error. Note that this choice is arbitrary, as δ can be made

as small as desired by decreasing ε.

For highly nonclassical states such as Fock and squeezed-vacuum states

N is infinitely large, which can be verified numerically via Definition 2. One

example of a nonclassical state with finite N is the single-photon-added

thermal(SPAT) state, defined by ρSPAT = a†e−βh̄ωa†aa/Tr
(

e−βh̄ωa†aaa†
)

. Its
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(a) (b)

Figure 10: (a) Convergence of the filtered negativity(solid line) NΩ,w to the

negativity(dotted line) N for the single photon added thermal state ρSPAT

with n̄ = 2. (b) The (logged) filtered negativity log(1+NΩ,w) for squeezed

vacuum |r〉 .

characteristic function is χSPAT(β) = [1− π2(1+ n̄)|β|2]e−π2|β|2/n̄, and the

corresponding P-function is PSPAT(α)= 1+n̄
πn̄3

(
|α|2 − n̄

1+n̄

)
e−|α|2/n̄ [111]. Fig-

ure 10 (a), illustrates how the the filtered negativity NΩ,w(ρSPAT) approaches

N (ρSPAT) as w → ∞, which comes directly from Definition 2. From The-

orem 6, I know that the negativity N (ρSPAT) cannot be increased via linear

optical processes.

The negativity can be infinite in general. One example is the squeezed

vacuum state |r〉 = er(a†2−a2)/2 |0〉. Its characteristic function is χ|r〉(β =

x+ iy) = exp
{

π2

2

[
(s− e2r)x2 +(s− e−2r)y2

]}
for r > 0. The Wigner func-

tion (s = 0) is Gaussian, so it does not show any negative value. However,

its P function (s = 1) shows extremely singular behavior, and one can nu-

merically verify that N is infinite. This can be circumvented by considering

the filtered negativity NΩ,w.

Figure 10 illustrates the filtered negativities NΩ,w of the squeezed vac-

uum states |r〉 with squeezing parameter r. I see that the filtered negativ-
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ity captures the increase in nonclassicality due to the increase in squeezing

r. As the filter Ωw,ε has non-zero negativity, NΩ,w is only an approximate

monotone (see Theorem 8), but this error can be made arbitrarily small by

decreasing the parameter ε. This may, however, require increased numerical

precision and hence incur additional computational costs.

3.4 Remarks

In the preceding sections, I have demonstrated how to construct, via

quantum Fisher information, valid measures of quantum coherence. It was

in fact already known that some form of coherence plays a crucial role in

quantum metrology. In [112], it was pointed out that unspeakable coherence

is especially relevant for metrology, and that the resource theory of asym-

metry is able to quantify the metrological usefulness of a given probe state.

Our results, in the form of Thms. 1 goes one step further, by demonstrating

that more general forms of coherence may in fact be made useful via an

appropriate incoherent operation. In contrast, an operation such as the type

considered in Lemma 1 is explicitly forbidden in theories of asymmetry.

Furthermore, I demonstrated that every nontrivial Hermitian observ-

able M corresponds to a coherence witness and a coherence measure C O
M

for some specific incoherent bases, where the set of operations O may be

either MIO or IO. In the case of MIO, I show that the measure is always

computable via a semidefinite program, leading to an infinitely large set of

computable coherence measures. The measures also show that the task of

optimizing 〈M〉 is the same as the task of maximizing the coherence of the
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input state, up to the application of some incoherent operation (Theorem 3).

They, therefore, have the operational interpretation of the usefulness of a

given quantum state ρ for the purpose of optimizing the mean value of the

observable 〈M〉.
A key conclusion of our results, in particular Theorem 3, is that ev-

ery nontrivial quantum observable corresponds to a computable coherence

measure, which also implies that every such quantum observable is also a

coherence witness. This may in some cases allow coherence to be verified

in the laboratory using simpler measurements, which was discussed in Sec-

tion 3.2.4. In spin systems, for example, a magnetization measurement is

sufficient and relatively simpler to implement over a mathematically op-

timal measurement [113]. Moreover, the measurement outcomes of such

observables are always, up to a constant displacement, a lower bound to a

corresponding coherence measure C O
M .

For the nonclassicality, I introduced a method to define the negativity

of the s-parametrized quasiprobabilities. Our method is based on a modified

version of the filtered P-function in Ref.[105]. Based on this definition, it is

possible to show that the negativity of the set of s-parametrized quasiprob-

abilities are all linear optical monotones, and form a continuous hierarchy

of increasingly weaker nonclassicality measures that all belong to the oper-

ational resource theory of nonclassicality considered in Refs. [74, 21].

In general, the negativity may have infinite values. In order to circum-

vent this, I introduce an approximate linear optical monotone that is finite

computable and able to identify nearly every nonclassical state. A key ad-

vantage of this approach is that the set of unidentifiable nonclassical states
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can be made to converge by increasing the parameter w. The error can also

be controlled via a single parameter ε.

I also demonstrate in Theorem 7 that the negativity of the P-function

has a direct operational interpretation as the robustness. Since N (ρ) is not

always finite, this means that there are some states whose nonclassicality

cannot be erased by simple statistical mixing with classical noise. This is a

characteristic it shares with quantum coherence, where simple mixing with

an incoherent state cannot make the state classical in general [98].

The following is the publication list related to this chapter:

1. K. C. Tan, S. Choi, H. Kwon, and H. Jeong, “Coherence, quantum

Fisher information, superradiance, and entanglement as interconvert-

ible resources,” Phys. Rev. A 97, 052304 (2018).

2. K. C. Tan, S. Choi, and H. Jeong, ”Optimizing nontrivial quantum

observables using coherence,” New J. Phys. 21, 023013 (2019).

3. K. C. Tan, S. Choi, and H. Jeong, ”Negativity of Quasiprobability

Distributions as a Measure of Nonclassicality,” Phys. Rev. Lett. 124,

110404 (2020).] [114].
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Chapter 4

Conclusion

In optical quantum information processing, the entanglement and other

quantum resources are distinctive features of quantum optics that overcome

the classical limitation. One of the prominent protocol using the entangle-

ment is teleportation [5]. Especially, one can use teleportation to send quan-

tum information in an optical qubit robustly under the photon loss [115].

The efficiency of the teleportation, however, depends on the qubit encod-

ing. One objective of this dissertation is to analyze the hybrid entanglement

between two different encodings to combine their respective merits. Further-

more, other quantum resources that optical systems may have investigated

by the resource theoretic framework. The resource theories of coherence and

nonclassicality are such kind. In this context, I have focused on providing

operational measures about these quantum characteristics that manifest the

relations with other physical phenomena or operational tasks.

Regarding the teleportation with the hybrid entanglement, I have con-

sidered the hybrid entangled states of a many-photon qubit and a small-

photon qubit. The many-photon qubit encodings have merit on the success

probability of the Bell-state measurement, and the small-photon qubit en-

codings have on loss tolerance. First, I have analyzed the teleportation using

the hybrid entangled state between a coherent-state qubit and VSP qubit.

Here, the coherent-state qubit with large amplitude serves as a many-photon
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qubit. The success probability depends only on the coherent-state qubit and

increases as the amplitude of the coherent-state qubit is larger. Whereas,

the fidelity depends on both loss rates. It has been shown that the loss on

the coherent-state qubit more severely reduces the fidelity than on the VSP

qubit. In this case, the hybrid entanglement helps the fidelity from decreas-

ing by balancing these two loss rates.

Second, I have considered the entanglement between a multiphoton-

qubit and a small-photon qubit. The candidates for the small-photon qubit

are the coherent-state qubit with a small amplitude, the PSP qubit, and the

VSP qubit. In contrast with the previous case, the fidelity of the output state

depends only on the loss of the sent small-photon qubit of the hybrid en-

tangled state. Among the candidates, the VSP qubit shows the generally

best fidelity. However, since the VSP qubit has weakness on single-qubit

operations one should manifest the context of usage. From the fact that the

success probability is independent of the loss on the small-photon qubit, I

conclude that the multiphoton qubit compensates for the weakness of each

qubit by the hybrid approach. The generation methods of the required hybrid

entangled states have been discussed.

For the resource theoretic quantification of the quantumness of the op-

tical system, I have considered the resource theory of coherence and that of

nonclassicality. First, I have proved the coherence measures driven from the

quantum Fisher information and quantum observables are genuine measures

satisfying the conditions such as faithfulness, strong and weak monotonic-

ity, and convexity. The former measure for a pure state is defined as the

maximization of the sum of the quantum Fisher information under incoher-
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ent operations where a state is distributed over N parties and each one has

a local signal Hamiltonian whose eigenstates forms the incoherent basis.

The general mixed is constructed by the convex roof. The latter observable

coherent measure also has the optimization over the maximally incoherent

operation, but I have shown that the maximization can be computed by the

semidefinite programming.

Our nonclassicality measure is defined as the negativity of the P func-

tion. The negativity of the P function has been known as the linear optical

monotone only for states having the regular P function. In our study, how-

ever, I have used the filtering so that the negativity is well-defined (includ-

ing the positive infinity) even for the singular P function. Furthermore, have

shown that our measure captures the robustness on the mixing with classical

states, which gives its operational meaning. The definition of the measure

contains the limit on the filtering parameter, but I have proved that even

for the finite filtering, the measure still has the monotonicity on the linear

optical map.

Our work may be useful for the optical realization of long-distance

quantum information processing by exploring hybrid architectures of optical

networks. I also hope that our study may help the further understanding of

the quantumness of the optical system.
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국문초록

광학시스템은양자정보처리에서유망한후보중하나이며양자자

원을 활용하여 양자적 이점을 얻을 수 있는 많은 응용이 존재한다. 양자

텔레포테이션은 잘 알려진 프로토콜 중 하나로서 양자 얽힘을 이용한다.

그러나광자손실은양자얽힘에불가피하게손상을주고,이는많은광자

로구성된큐빗의경우더심각한영향을끼친다.

이 논문은 서로 다른 두 종류의 큐빗 인코딩 사이의 얽힘을 이용하

는 이종 양자 얽힘을 사용하고 높은 텔레포테이션 성공 확률과 순결성을

동시에달성하는방법에대해논의한다.높은성공확률을위해이논문에

서는 거의 확정적인 벨 측정을 수행할 수 있는 큰 진폭의 결맞음 큐빗과

편광된 광자로 구성된 다광자 큐핏을 고려한다. 한편, 적은 광자를 가진

큐빗들은 광자 손실에 의한 영향이 상대적으로 적다. 이러한 큐빗의 후

보로 진공-단일 광자 큐빗, 편광된 단일 광자 큐빗, 작은 진폭의 결맞음

큐빗이 고려된다. 큰 진폭의 결맞음 큐빗은 진공-단일 광자 큐빗과 이종

얽힘을,그리고다광자큐빗은세가지의작은광자큐비트에대한얽힘을

고려한다.

먼저,큰진폭의결맞음큐빗을이용한이종양자얽힘에대한분석은

큐빗의 진폭이 클수록 성공 확률이 더 많은 광자 손실에 대해서도 높게

유지된다는것이나타난다.순결성은결맞음큐빗과진공-단일광자큐빗

모두의손실에영향을받지만,진폭이클수록결맞음큐빗의손실에대한

영향을더크게받는것을볼수있다.둘째로,다광자큐빗의이종양자얽

힘에서는 순결성이 작은 광자 큐빗에서 일어나는 손실에만 영향을 받는

반면성공확률은다광자큐빗의손실에만영향받음을보인다.특히높은
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순결성 영역에서 (F ≥ 90%) 진공-단일 광자 큐빗은 다광자 큐빗을 직접

전송하는방법보다 10배많은광자손실률을견딘다는것을보인다.성공

확률에대해,이논문은주어진손실률에대해다광자큐빗의최적의광자

수 또한 제시한다. 추가적으로 이종 양자 얽힘을 생성할 수 있는 실험적

방법이논의된다.

여기에 더 나아가 양자 얽힘 외에 빛이 가질 수 있는 양자 자원인 양

자결맞음과비고전성을자원이론관점하에서다룬다.먼저결맞음이론

에 대해 양자 측도 세기와 양자 관측량의 평균값이라는 물리적인 현상에

기초한 측도를 제시한다. 후자의 경우 양행렬 프로그래밍을 통해 필요한

최적화계산을수행할수있음을보인다.이논문에서제시된비고전성의

측도는 글라우버-수다르샨 P-함수의 음수성에 기초하며, P-함수의 특이

점을필터링을통해푸리에공간에서다룬다.이러한음수성은고전상태

와혼합을견디는정도와같다는것을증명하여,조작적인관점에서의미

또한제시한다.

주요어 : 양자공간이동,이종양자얽힘,양자결맞음,비고전성

학번 : 2015-20354
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