1 research outputs found

    μŠ€νŽ™νŠΈλŸ΄ 이쀑 ꡰ집화λ₯Ό μ΄μš©ν•œ κ·Έλž˜ν”„κΈ°λ°˜ ν˜‘μ—…ν•„ν„°λ§μ˜ ꡭ지 앙상블 방법

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(석사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : μžμ—°κ³Όν•™λŒ€ν•™ ν˜‘λ™κ³Όμ • 계산과학전곡, 2022. 8. κ°•λͺ…μ£Ό.The importance of a personalized recommendation system is emerging as the world becomes more complex and individualized. Among various recommendation systems, Neural Graph Collaborative Filtering(NGCF) and its variants treat the user-item set as a bipartite graph and learn the interactions between user and item without using their unique features. While these approaches only using collaborative signals have achieved state-of-the-art performance, they still have the disadvantage of abandoning feature similarity among users and items. To tackle this problem, we adopt unsupervised community detection from bipartite graph structure to enhance the collaborative signal for a Graph-based recommendation system. Co-Clustering algorithms segment the user-item matrix into small groups. Each local CF captures a strong correlation among these local user-item subsets, while the original incidence matrix is also used to analyze global interaction between groups. Finally, our Local-Ensemble Graph Collaborative Filtering(LEGCF) aggregates all local and global collaborative information. As the proposed approach can utilize various Co-clustering and Collaborative Filtering flexibly, one of the most straightforward variants, Spectral Co-Clustering and NGCF, can enhance the overall performance.λ³Έ λ…Όλ¬Έμ—μ„œλŠ” μΆ”μ²œμ‹œμŠ€ν…œμ„ μœ„ν•œ κ·Έλž˜ν”„ 기반 ν˜‘μ—… 필터링 λͺ¨λΈμ„ μŠ€νŽ™νŠΈλŸ΄ 이쀑 λΆ„ν• ν•˜μ—¬ μƒμ„±λœ λΆ€λΆ„ κ·Έλž˜ν”„λ₯Ό 앙상블(Ensemble) ν•˜μ—¬ μΆ”μ²œ μ„±λŠ₯을 κ°œμ„ ν•˜λŠ” 방법에 λŒ€ν•΄ μ—°κ΅¬ν•˜μ˜€λ‹€. κ·Έλž˜ν”„ 인곡 신경망 (Graph Neural Networks, GNN)을 μ΄μš©ν•œ ν˜‘μ—… 필터링 기반의 μΆ”μ²œ μ‹œμŠ€ν…œμ˜ κΈ°λ³Έ λͺ¨λΈμ€, μ‚¬μš©μžλ‚˜ μ•„μ΄ν…œμ— λŒ€ν•œ 사전 정보λ₯Ό μ „ν˜€ μ‚¬μš©ν•˜μ§€ μ•Šκ³  μ‚¬μš©μž-μ•„μ΄ν…œ κ°„ μƒν˜Έμž‘μš© μ •λ³΄λ§Œμ„ ν™œμš©ν•˜μ—¬ 신경망 λͺ¨λΈμ˜ μž„λ² λ”©μ„ κ΅¬μ„±ν•œλ‹€. λ”°λΌμ„œ μ‚¬μš©μžμ™€ μ•„μ΄ν…œμ˜ μ‚¬μ „μ •λ³΄λ§ŒμœΌλ‘œ μœ μΆ”ν•  수 μžˆλŠ” νŠΉμ • μ‚¬μš©μž 그룹의 κ²½ν–₯성을 μΆ”μ²œμ‹œμŠ€ν…œμ— μ‚¬μš©ν•  수 μ—†λŠ” 단점이 μžˆλ‹€. ν•œνŽΈ, μŠ€νŽ™νŠΈλŸ΄ 이쀑 λΆ„ν•  방법은 νŠΉμž‡κ°’ λΆ„ν•΄λ₯Ό λ°˜λ³΅ν•˜μ—¬ 이뢄 κ·Έλž˜ν”„λ₯Ό μ–‘ λ„λ©”μΈμ˜ 정보λ₯Ό λͺ¨λ‘ ν¬ν•¨ν•œ λΆ€λΆ„κ·Έλž˜ν”„λ‘œ λΆ„ν• ν•œλ‹€. μΆ”μ²œμ‹œμŠ€ν…œμ„ μœ„ν•œ 데이터 μ„ΈνŠΈλ₯Ό μŠ€νŽ™νŠΈλŸ΄ 이쀑 λΆ„ν•  ν•  경우, νŠΉμ • μ‚¬μš©μžκ·Έλ£Ήκ³Ό μ•„μ΄ν…œ 그룹을 전체 λ°μ΄ν„°λ‘œλΆ€ν„° 뢄리할 수 있으며, λΆ„ν• λœ 그룹은 높은 데이터 밀도와 κ°•ν•œ μƒν˜Έμž‘μš© μ‹ ν˜Έλ₯Ό κ°–κ²Œ λœλ‹€. λ”°λΌμ„œ λΆ„ν• λœ κ·Έλ£Ή 데이터에 λŒ€ν•΄ ν˜‘μ—… 필터링을 μ μš©ν•  경우, 데이터 μ„ΈνŠΈλ‚˜ ν˜‘μ—… 필터링 λͺ¨λΈμ˜ μ’…λ₯˜μ™€ 관계없이 ν•΄λ‹Ή λ°μ΄ν„°κ·Έλ£Ήμ—μ„œλŠ” μΆ”μ²œ λŠ₯λ ₯이 ν–₯μƒλœλ‹€. λ‚˜μ•„κ°€μ„œ, λΆ„ν• λœ λΆ€λΆ„ κ·Έλž˜ν”„λ“€μ„ κ°œλ³„μ μœΌλ‘œ ν˜‘μ—… ν•„ν„°λ§ν•œ λ’€ 앙상블 ν•˜μ—¬ 그룹별 μƒν˜Έμž‘μš© μ‹ ν˜Έλ₯Ό λΆ„μ„ν•œ μ§€μ—­μž„λ² λ”©(Local Embedding)κ³Ό 전체 데이터λ₯Ό μ•„μš°λ₯Ό 수 μžˆλŠ” μ „μ—­μž„λ² λ”©(Global Embedding)을 ν†΅ν•©ν•˜μ—¬ μ΅œμ’…μž„ 베딩을 κ΅¬μ„±ν•˜μ˜€λ‹€. μ—¬μ„― 개의 데이터 μ„ΈνŠΈμ™€ μ„Έ κ°€μ§€μ˜ ν˜‘μ—… 필터링 λͺ¨λΈμ„ μŠ€νŽ™νŠΈλŸ΄ 이쀑 λΆ„ν• ν•˜μ—¬ 앙상블 ν•œ κ²°κ³Ό, λͺ¨λΈ μ’…λ₯˜μ™€ 관계없이 μΆ”μ²œ λŠ₯λ ₯이 ν–₯μƒλ˜μ—ˆλ‹€. κ·ΈλŸ¬λ‚˜ λͺ‡ 가지 데이터 μ„ΈνŠΈμ˜ 경우 μ„±λŠ₯ν–₯상이 거의 이루어지지 μ•Šμ•˜λŠ”λ°, μ΄λŠ” 데이터가 이미 적절히 λΆ„ν• λ˜μ–΄μžˆλŠ” 경우 μŠ€νŽ™νŠΈλŸ΄ 이쀑 뢄할이 μΆ”μ²œ μ„±λŠ₯을 ν–₯μƒν•˜μ§€ λͺ»ν•œ κ²ƒμœΌλ‘œ λΆ„μ„λœλ‹€. 반면 데이터가 골고루 λΆ„ν¬λ˜μ–΄μžˆμ–΄ κΈ°λ³Έ ν˜‘μ—… 필터링 λͺ¨λΈμ΄ μƒν˜Έμž‘μš© μ‹ ν˜Έλ₯Ό λΆ„μ„ν•˜κΈ° μ–΄λ €μš΄ 경우, μŠ€νŽ™νŠΈλŸ΄ 이쀀 뢄할을 ν†΅ν•œ 앙상블 λ°©λ²•μœΌλ‘œ λͺ¨λ“  ν˜‘μ—… 필터링 λͺ¨λΈμ— λŒ€ν•˜μ—¬ μΆ”μ²œ λŠ₯λ ₯이 ν–₯μƒλ˜μ—ˆλ‹€1 Introduction 1 2 Preliminaries 5 2.1 Spectral Co-Clustering 5 2.1.1 Bipartite Graph Partitioning 5 2.1.2 Optimization 8 2.2 Bayesian Personalized Ranking(BPR) Loss 11 2.2.1 Implicit Data 11 2.2.2 Personalized Total Ranking 11 2.2.3 Bayesian Personalized Ranking 12 3 Proposed Method 15 3.1 Dataset 15 3.2 Spectral Co-Clustering 15 3.3 Local-Ensemble model 17 4 Experimental Result 20 4.1 Evaluation Metric 20 4.2 Result Analysis 21 5 Conclusion 29 References 31 Abstract (in Korean) 35석
    corecore