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Abstract

Local-Ensemble Graph Collaborative
Filtering with Spectral Co-Clustering

HOIN JUNG
Computational Science & Technology
The Graduate School

Seoul National University

The importance of a personalized recommendation system is emerging as the
world becomes more complex and individualized. Among various recommen-
dation systems, Neural Graph Collaborative Filtering(NGCF) and its vari-
ants treat the user-item set as a bipartite graph and learn the interactions
between user and item without using their unique features. While these ap-
proaches only using collaborative signals have achieved state-of-the-art per-
formance, they still have the disadvantage of abandoning feature similarity
among users and items. To tackle this problem, we adopt unsupervised com-
munity detection from bipartite graph structure to enhance the collaborative
signal for a Graph-based recommendation system. Co-Clustering algorithms
segment the user-item matrix into small groups. Each local CF captures a
strong correlation among these local user-item subsets, while the original
incidence matrix is also used to analyze global interaction between groups.
Finally, our Local-Ensemble Graph Collaborative Filtering(LEGCF) aggre-
gates all local and global collaborative information. As the proposed approach
can utilize various Co-clustering and Collaborative Filtering flexibly, one of
the most straightforward variants, Spectral Co-Clustering and NGCF, can

enhance the overall performance.

Keywords : Recommendation System, Graph Convolutional Network, Col-
laborative Filtering, Spectral Co-Clustering
Student number : 2020-21619
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Chapter 1

Introduction

The importance of personalized recommendation is emerging as social me-
dia and marketing system is getting more complex and embodied. Moreover,
as it becomes easier to crawl more detailed and immense data, various types
of recommendation systems have been developed. One of the most generic
methods is finding a pattern for the feature of users and items such as age,
gender, country, genre, price, etc[1]. Some methods utilize time stamp sequen-
tial information of given features. These content-based methods analyze the
features of items that users interacted positively with and recommend items
with similar features. Undoubtedly, Deep Neural Networks(DNNs) make it
easier to analyze the nonlinear relationship between various types of users and
items. The content-based filtering(CBF) recommends items to users based on
their previous preferences, such as actions and explicit feedback. Therefore,
it requires an item’s features to determine whether an item is similar to the
previous one. This makes it possible to recommend user-specific items which
the user may prefer explicitly. Also, CBF can capture niche items that very
few similar users were interested in. However, there exists a limitation of
CBF because of the item’s features. All the features are hand-engineered
contents, and the features could be hard to distinguish each other if the fea-
ture represents generic information such as genre, year of publication, and

make. Moreover, the trained model may have limited recommending ability



and not be able to extend over the user’s potential interests.

For these reasons, collaborative filtering(CF) utilizes similarities between
users and items simultaneously; assume that user A might be interested in
items that user B prefers. Thus, CF does not depend on the item’s descrip-
tion. Instead, the CF models consider a feedback matrix of users(row) and
items(column), consisting of the user’s explicit preference. The item’s fea-
ture embedding is made by the feedback matrix, while the size of embed-
ding represents the complexity of the item’s feature. Some fundamental CF
methods can learn the embedding automatically. Among lots of collaborative
filtering methods, Matrix Factorization(MF)[2] regards the feedback matrix
A € R™™ as a linear combination of user embedding U € R™*? and item
embedding V' € R™¢, simplify the problem to approximate dot product UV T
where m is the number of users, n is the number of items, and d denotes the
embedding size. Also, Neural Collaborative Filtering(NCF)[3] overcomes the
limitation of linearity of the MF method. Deep Neural Networks(DNNs) for
collaborative filtering allow interpreting high-order nonlinearity between user
and item and significantly improve the recommendation ability.

However, there exist noisy data in given user and item features for various
reason, such as account sharing of hidden users, out-of-date information, and
wrong assigned item. Neural Graph Collaborative Filtering(NGCF)[4] shows
that using the noisy data feature may corrupt recommendation ability. In-
stead, NGCF[4] adopted only collaborative information between the user set
and the item set by constructing a user-item bipartite graph without any fea-
tures. It assumes that users having similar preferred items may prefer similar
items in the future. Therefore, user embedding and item embedding are de-
rived from the only collaborative graph information containing high-order
connectivity, and Graph Convolution Network(GCN) is adopted to analyze
the user-item signal. Light GCN[5] is a simplified version of NGCF while still
improving the recommending ability. There exist a lot of variants of NGCF
such as DGCFI[6], LR-GCCF|7], NIA-GCN[8], and UltraGCNI9].

On the other hand, relying on only such collaborative information may
not represent a tendency of groups of users and types of items. We can eas-
ily imagine that users within a particular group have the same preference

for specific items. In this work, we assume that each large dataset can be



divided into several user-item groups via Bipartite Co-Clustering, and the
collaborative information of a clustered group might be denser than the orig-
inal dataset. Among various co-clustering algorithms, we adopt the first pro-
posed approach, Spectral Co-Clustering[10], which is described in Section 2.
Co-clustering algorithm segments user and item groups simultaneously. The
result of Co-clustering is illustrated as a block diagonal matrix as shown in
Fig 2.1. Each block represents a user-item group, and this subset contains a
strong correlation between data points. Therefore, collaborative filtering in
a particular subset works better than entire data.

In this proposed method, each subset is used as a partial input of local CF
model to deal with only the selected user-item pair. In this way, all subsets
are used as inputs for the local model, and all the embedding results from
the local collaborative filtering model are aggregated. However, there still
exists noisy data outlying from a clustered block. Thus, the local item inputs
are extended as all the items which are preferred by the clustered user. The
index of each subset is rearranged in the co-clustering step, so we recover
the original index in aggregating part. In global CF model, the entire data
is also used to capture global information such as common preferences and
similarities between groups. Finally, weighted summations are conducted for
the local and global embedding results. We could improve the performance
of NGCF for all datasets using the proposed Local-Ensemble Graph Col-
laborative Filtering with Co-Clustering(LEGCF). Also, we expect that this

approach can utilize any variants of co-clustering and collaborative filtering.



Figure 1.1: User-Item interaction bipartite graph(left) and Spectral Co-
Clustering(right)
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Chapter 2

Preliminaries

2.1 Spectral Co-Clustering

2.1.1 Bipartite Graph Partitioning

A graph G = (V| E) is a bipartite graph if there are two disjoint subsets V;
and V; of V such that

(2.1) VinV;=0,(Vix V)NE =0, and (V; x V;)NE =0

where V' and F is vertex set and edge set, respectively. The definition of cut

for the given vertex set V' into k subsets is defined by

(2.2) cut(Vi, Vo, -+ Vi) = > _eut(Vi, Vi) = > > Ay

1<j i<j 1€Vy,jEV,

where A;; is an adjacency matrix of the original graph. The example of edge
cut is shown in Fig.3.2. We need to cluster both users Uy, Us,--- , Uy and
items I, I, - - - , I, which are determined as follows. A given user u; belongs

to the user cluster U, if its association with the item cluster I, is greater



than its association with any other item cluster, and vice versa.

Um:{uz ZHZ]ZZHUaVZ:L ,k’}

JEIm JENL
]m = {Zl : Z Hij Z ZHlW\V/l: ]., ,k}
F€Um Jjeu;

where H;; is an element of m x n incidence matrix H such that equals to the
edge-weight E;;. Finding the best clustering corresponds to a partitioning
of the graph such that the crossing edges between partitions have minimum

weight. This is achieved when

1 Vg

where Vi - - -V} is any k-partitioning of the bipartite graph.

Spectral Graph Bipartitioning

The Laplacian matrix L of graph G is an n xn symmetric matrix and defined
by L = D— A, where A is the adjacency matrix and D is the diagonal degree
matrix with D;; = ), E;,. Given a function on the vertices, x € RV, the
Laplacian quadratic form of a weighted graph in which edge (a, b) has weight

Wap > 0 is

(2.3) x'Lx = Z wp(x(a) —x(b))? > 0.

(a,b)eFE

We can check the first eigenvalue of Laplacian matrix is 0 when we set x
€ {n mutually orthogonal unit vectors ), ---1p,}, then 1] Lap, = A\ > 0,
and L1 = 0.

Given a bipartitioning of V' into V; and Vi (V3 UV, = V), let us define

the partition vector p that captures this division,

+1, 1€V,
-1, 1eVy,

(2.4) bi =



then, the Rayleigh Quotient is

L 1
PP _°. deut(Vy, Vo).

2.
(2.5) o

Therefore, the cut is minimized by the trivial solution when all p; are either
-1 or +1. For the generalized form, let each vertex ¢ be associated with a
positive weight, denoted by weight(i), and let W be the diagonal matrix of
such weights. Let 9 = weight(V7) and 1, = weight(V4), then the generalized

partition vector q with elements

/s 1EV,
(2.6) q; =

\/Z_ia ZGVYQ)

satisfies " We = 0, and q' Wq = weight(V). Then, the generalized Rayleigh

Quotient becomes an objective function

a'Lg  cut(Vi,Va)  cut(Vy,Va)

2.7 = .
(2.7) a"Wq  weight(Vy)  weight(V3)

To find the global minimum of the objective function, we can minimize the

generalized Rayleigh Quotient

(2.8) min

when q is the eigenvector corresponding to the second smallest eigenvalue A,

of the generalized eigenvalue problem,
(2.9) Lz = A\Wz.

Moreover, we can adopt normalized-cut objective function instead of balanced-
cut Eq.(2.7).
cut(Vi, Vo) cut(Vi, Vo)

(2.10)  N(W,V3) = + =2 S(W, V%)
v ZiEVl Zk Eik ZiEVQ Zk Ei, b2

_ within(V1) within(V2)
where S(‘/h ‘/2) o weight(Vi) + weight(VZ)'



Shuffled dataset After biclustering; rearranged to show biclusters
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Figure 2.1: An example of Spectral Co-Clustering

2.1.2 Optimization

The generalized eigenvalue problem Lz = ADz provides a real relaxation to

the discrete optimization problem of finding the minimum normalized cut.
Computing the eigenvector of the second smallest eigenvalue may cost a

lot for a large graph; instead, we can obtain the second-largest singular value

(1 — \) by singular value decomposition(SVD) as follows.

For the bipartite graph,

(2.11) L= | P A D= b, -0
—AT D2 0 D2

where Dy (2,1) = >, A;; and Da(j, j) = >, A;; are diagonal matrices. Then

Lz = ADz can be rewritten
Dix — Ay = AD;x

—ATx + D,y = \D,y

Because the user-item dataset does not include empty columns and rows,

both Dy and D4 are nonsingular. Then, the above equation
D11/2X - D1_1/2Ay = )\D11/2X

—D, /?ATx + D,'/?y = AD,"’y

ITUl
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Figure 2.2: The result of Co-Clustering can be shown as block-diagonal inci-
dence matrix for real-world data

.Let u=D;"?x and v = D,'%y, we get
D, ?AD;?v = (1 — Mu, and D, V?ATD; V2u = (1 — \)v.

Therefore, we can compute the left and right singular vectors ug and va
corresponding to the second largest singular value of normalized matrix A, =

2.12 AnV2 = O2U29 AnTU.2 = 09V2
( : :

where 0o = 1 — Ay. Obviously, working on A, rather than L is beneficial
in terms of computational cost since A € R™ " while L € R{m+m)x(m+n)
The singuluar vector us and vy give us clustering information, for users and
items, respectively; a real approximation to the discrete optimization problem
of minimizing the normalized cut. Let m; and ms denote the bi-modal values
of the assignment of z,(i) that we are looking for; the second eigenvector of

L is given by

D1—1/2u2
2.13 Zoy = )
( ) 2 [])2—1/2\/.2

We can approximate the optimal bipartitioning by minimizing the sum-

A-ed) st



Clustered Original Dataset
Dataset #User | #ltems | #Interactions | Sparsity
Amazon-Book 52,643 | 91,559 2,984,108 0.00062
Yelp2018 31,668 | 38,048 1,561,406 0.00130
Gowalla 29,858 | 40,981 1,027,370 0.00084
Movielens-1M 6,022 3,043 995,154 0.04888
Amazon-CDs 43,169 | 35,648 777,426 0.00051
Amazon-Electronics | 1,435 1,522 35,931 0.01645

Table 2.1: Statistics of the original datasets.

of-squares criterion as an objective function,

2
> D (@) —my)?
J=1 za(i)em;
Note that the above equation is exactly the same as the k-means clustering
algorithm. Furthermore, we can extend to a multi-partitioning problem to
get k multiple clusters by using the bi-partitioning algorithm in a recursive
manner. To obtain k-modal information about the dataset, we can form a

[-dimensional dataset

D, '/*U
(2.14) Z - [D2_1/2V
where U = [ug,us, - - ,uyq1] and V = [va,v3, -+, vii1], 1 = [log, k], and get

the best [-dimensional point my, - - - my of assignment Z(7) by minimizing

(2.15) S0 1Z6) - myl.

J=1 z3(i)em;

10



2.2 Bayesian Personalized Ranking(BPR) Loss

2.2.1 Implicit Data

In the feedback matrix(or incidence matrix) of the recommendation system,
the users’ interests are explicitly indicated as binary scores except in the case
a user expresses explicit and negative feedback, e.g., 1 of 5 stars for a movie.
The incidence matrix is a sparse matrix, and obviously, the non-positive
scores do not indicate apparent negative action since the scores for most
of the items are not yet defined. The implicit data contains missing value,
and the purpose of the recommendation system is to determine whether the

implicit data is real negative feedback or potentially positive interest.

2.2.2 Personalized Total Ranking

Let U be the set of all users, I the set of all items, and (u,i) = s € S the
user-item pair where S C U x [ is the set of implicit feedback. Our goal is to
provide the user with a personalized total ranking, >,C I?, where >, meets

the properties of a total order as follows.

(2.16) Vijjel:i#4j = (i>uj)V([J>u1)
(2.17) Vi,jel:(i>yHAG>ui) = i=j
(2.18) Vi,jyk€l:(i>, )N >uk) = i>,k.

In implicit feedback systems, only positive data is observed, and the remain-
ing data is a mixture of missing and actually negative values. Instead of
replacing missing values with negative ones for single items, the item pairs
are used as training data. To reconstruct user-item pairs, we follow a basic
rule for the given data: the user prefers a positively observed item to all other
non-observed ones, and there’s no priority among observed items. Therefore,

we define the training dataset Dg : U x I x I as

(2.19) Dg = {(u,i,j)li € I} Aj € NI

11



Statistics Dataset
# Clusters AI];IE;(Z)EII Yelp2018 | Gowalla Mo_vl1§/llens A_nga;;)n A_IE?G ZC(?H
. Users 52,643 31,668 29,558 6,022 43,169 1,435
Sparsity | 0.00062 | 0.00130 | 0.00084 | 0.04888 | 0.00051 | 0.01645
Min. 1,379 5,632 8,810 2,305 1,491 262
2 Max. 51,264 26,036 21,048 3,717 41,678 1,173
Sparsity | 0.00085 | 0.00202 | 0.00143 | 0.04894 | 0.00061 | 0.01740
Min. 258 1,681 338 1,629 1,488 138
3 Max. 51,093 24,389 21,529 2,437 36,557 1,080
Sparsity | 0.00098 | 0.00259 | 0.00179 | 0.04915 | 0.00074 | 0.01836
Min. 215 1,665 333 869 1,445 36
4 Max. 50,736 20,743 21,108 1,754 23,444 899
Sparsity | 0.00107 | 0.00304 | 0.00195 | 0.04970 | 0.00084 | 0.01920
Min. 216 609 115 827 31 41
5 Max. 29,557 21,084 19,747 1,498 26,492 614
Sparsity | 0.00123 | 0.00353 | 0.00244 | 0.05023 | 0.00106 | 0.01979

Table 2.2: Statistics of the partitioned dataset about the minimum and max-
imum number of users and sparsity.

where user u of (u,i,j) € Dg is assumed to prefer ¢ over j, and

(2.20) [F={iel:(ui)es)
(2.21) Ut ={ueU: (ui)eS}

Dg allows us the training dataset consists of both positive and negative
pairs and missing values. The missing values of pairs of non-observed items
are exactly our objective item pairs that would be ranked in the training
procedure. The observed subset Dg of >, is used as training data, while Dg

and the test data is disjoint.

2.2.3 Bayesian Personalized Ranking

As a general optimization criterion for personalized ranking, Bayesian Per-
sonalized Ranking(BPR) optimization [11] will be derived by a Bayesian anal-
ysis of the problem using the likelihood function for p(i >,, j|©) and the prior
probability for the model parameter p(©). Finding the correct personalized

12



ranking for all items ¢ € I in terms of Bayesian formulation is equivalent to

maximizing the following posterior probability
(2.22) p(O] >u) < p(>4 [©)p(O)

where © represents the parameter vector of a model.
As the user-specific likelihood function p(>, |©) follows Bernoulli distribu-
tion, it can be expressed as a product of single densities, and combined for

all users.
(2.23) p(>4 |©) = p(i >, §)°WEDEPs) (1 — (5 >, 5))°(wiDEDs)

where ¢ is the indicator function

1 if b is true
(2.24) o(b) =

0 else.

To fulfill the properties of a total order(totality, antisymmetry, and transi-
tivity), the individual probability that a user really prefers item i to item j

is defined as :
(2.25) p(i >4 j|O) == 0(2.:5(0))

where o is the logistic sigmoid o(z) := H% and Z,,;(0) is obtained model
parameter vector to capture the relationship between user u, item ¢, and item

j. For all users, the overall likelihood function is

(2.26)

[[eul®)= ] »G>.il®)

uel (uvivj)eDS

(2.27) = H p(i >, j,@)é((u,iﬁj)eDs)(l —p(i >, jl@))a((u,m)gps)‘

(u,i,)EUXIXT

To assign above likelihood function to Bayesian personalized ranking task,
let p(©) ~ N(0,> ) where > o = Aol while A\g are model specific regular-

13



ization parameter. Then, the maximum posterior estimator to derive opti-

mization criterion for personalized ranking BPR — OPT is

BPR — OPT : = Inp(©| >,)
= lnp(>, [©)p(O)
=In 0 (Zuijp(0))

EDS

(2.28)

MA

Ino () +Inp(O)

Z Ino(Zuij) — Ao||O|.
i,j)eD

The Bayesian Personalized Ranking(BPR) optimization is adopted as
a loss function to minimize. BPR loss is a pairwise loss that encourages

following the total order properties:

M
(229) LBPR - — Z Z Z lna(ﬁm - guy) + )‘HE(O)H2

u=1 iENu j%./\/u

14



Chapter 3

Proposed Method

3.1 Dataset

We use six public datasets, including Amazon-Book[12], Amazon-CDs, Amazon-
Electronics, Yelp2018, Gowalla[13], and MovieLens-1M, to verify our ap-
proach. Many recent graph-based CF methods are evaluated on these six
datasets. The original datasets provide various information for users and
items such as gender, age, genre, and date. However, these features are not
necessary for the Graph-based recommendation, and only the interaction
data is used. We follow those recent studies and use the same data split ra-
tio for the training subset and test subset without any detailed information.
Table 2.1 shows the statistics of the datasets.

3.2 Spectral Co-Clustering

We assume that a large dataset of user-item interactions consists of several
clusters which have a strong user-item relationship in each cluster. We can
visualize this by comparing incidence matrices of original data and clustered
data.

As shown in Fig2.1, the strong connectivity is shown as a block-diagonal

15



matrix by rearranging indices of rows and columns. Clustered user set u; and

item set i is defined by

U = [ugfug| - [ug]
I = [iy]ig] - - - |i]

where U and I mean total users and items, respectively. However, the
incidence matrix is not partitioned perfectly since commonly preferred items
or noisy data exist. The preferred item set 7,, for given user group wu;, does not
correspond to k-th item set ;. Therefore, we utilize 4, for training each local
CF instead of the clustered item set [i1|is] - - - |ix] to avoid absence of preferred
item. Nevertheless, the co-clustered user subset is still meaningful because
the partitions refer to the collaborative information of user-item interaction.

Table 2 shows that the clustered dataset contains denser information than
the original data. Although the scales of clustered subsets vary, the more we
divide the dataset, we obtain less sparse collaborative data. Currently, we
select k empirically by grid search. Finding the particular best £ might be
impossible because it significantly depends on the co-clustering method and
dataset. We assume that we can select proper k by evaluating the number of
small eigenvalues of the adjacency matrix but will keep this study as future
work. Among various co-clustering methods, we adopt one of the fundamental
co-clustering methods, spectral co-clustering, to show the improvement of our

approach. Our approach can be combined with other Co-Clustering variants
such as CCMOD|[14], SCMK][15], ONMTF|[16], and SOBG[17].

16



3.3 Local-Ensemble model

We conducted collaborative filtering utilizing clustered data. We abandon
the clustered item subset i, and instead obtain item subset %,, from user
subset ug. We execute the CF method on original data and clustered data
simultaneously, regarding original data as global information and clusters as
local information, as shown in Fig. 4. Each local embedding e;, e, have
different index information and embedding size according to k, so they are
aggregated as same size as global embedding with e;;, e,; € R™™*? as shown
in Fig. 5. The final local embedding and global embedding are merged at the

tail part of the framework with an element-wise attention score on local

embedding
(3.1) € = €1 O Wi+ ey
(32) €y = €yl O wy, + €u,g

where ® denotes element-wise multiplication, and w;, w,, are trainable weight.
The overall algorithm is shown in Algorithm.1.

We selected the hyperparameters of the original literature, such as mes-
sage dropout rate, embedding size, batch size, regularizer, and learning rate.
Also, we adopt the Bayesian Personalized Ranking(BPR) loss function fol-
lowing the description of NGCF

(3.3) Loss = Z —Ino(Gui — Guj) + Aol
(u,2,5)€0O

where O = {(u,1,7)|(u,i) € R, (u,j) € R~} denotes the pairwise training
data, R indicates the observed interactions, and R~ is the unobserved inter-
actions, o(-) is the sigmoid function, and © = {E, {ng),ng)}lel} denotes
all trainable model parameters, and A\ controls the L, regularization strength

to prevent overfitting.

17



€l X wi + €ig = €ioutput
€u,l Wy T €u,g Cu,output
e €2 €u,3
€u1 €y,2 €u,3
Local Local Local Global
I X I 7
Lu, lu,
u
Uq U 3
Cluster #1 Cluster #2 Cluster #3
il iz 1:3 itotal
Uy
Spectral
Co-Clustering
Uu
2 Utotal
U3
Clustered Incidence Matrix Original Incidence Matrix

Figure 3.1: Overall Architecture of Separated Collaborative Filtering.
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Figure 3.2: Local Embeddings are aggregated again refer to their initial clus-

ter mapping

Algorithm 1 Overall Architectures of Local-Ensemble Collaborative Filter-

ing

Input: Rating Matrix R, the number of cluster N
Output: User embedding e,, [tem embedding e;

1: Ry = {Rl, e ,Rk} = SCC(R)
2: for k=0to N do

Ry,
A U
4: ey, eir < CFp(Ax) {Global embedding when k =0 }
5. if k> 1 then
6: €y, = IndexMapping(e, k)
7: é;, = IndexMapping(e; )
8: end if
9: end for

10: €y = Z]kvz1 éur {Local user embedding}
11: e, = S0 & {Local item embedding}

12: ey = €y 0+ €y O Wy

13: e; = €0+ €1 O w;

19



Chapter 4

Experimental Result

4.1 Evaluation Metric

To evaluate the ability of the proposed method, Normalized Discounted Cu-
mulative Gain (NDCG)QKT18, 19], Precision@K, and Recall@K are used.
These metrics are widely used to measure the performance of recommenda-
tion system. Above all, NDCG metric considers graded relevance allowing
higher position in the ouput list gets more importance. Discounted Cumula-

tive Gain(DCGQG) for a particular rank position p is obtained by

b rel;
4.1 DCG, = S
(4.1) b ZZI log, (i + 1)

where rel; is the grade relevance of the result at position ¢ such that rel; = 1
if the i-th output item is actually relevant to the query, rel; = 0 otherwise.
The alternative formulation of DCG emphasizes the relevance by replacing

numerator to exponential term.

p orel;
4.2 DCG, = _
(42) b Z,leogz(i+1).
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The two expressions of DCG are same when the relevance values are binary,
rel; € {0,1}. The DCG score means that highly relevant items appearing
lower rank should be penalized as the graded relevance reduces. Maximum
possible DCG depends on how many relevant items are in ground truth.

On the other hand, NDCG is the normalized score which is obtained by
the ratio between DCG,, and IDCG,, for that query.

DCG,
(4.3) NDCG, = peg

where ideal discounted cumulative gain(IDCG) is the maximum score when

the items are listed in the order of relevance, REL,.

|RELp| orel;
4.4 IDCG, = —_—
(44) P ; log, (i + 1).

In addition, Precision@K and RecallQK is calculated by the fraction of K

recommended items, regardless of the order.

True Positive

45 Precision =
(4.5) recision True Positive + False Positive

(4.6) Recall True Positive
. ecall =

True Positive + False Negative

4.2 Result Analysis

The result of the experiments is shown in Table 3-5. The experiments are
conducted on six datasets and three baseline models, MF-BPR, NGCF,
and Light GCN. For Amazon-Book, Yelp2018, Amazon-CDs, and Amazon-
Electronics dataset, our proposed method improve the recommendation abil-
ity for all baseline models. Fig.6 shows the plotted result of the above four
datasets. Although the performances depend on the number of clusters k,
we can get a better result using the local-ensemble method compared to the
single CF model, k£ = 1.

On the other hand, the proposed method could not enhance the recom-
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mendation ability for some datasets, such as the Movielens-1M and Gowalla
datasets. To verify this, we visualized UMAP[20] projection and checked
the connectivity. When the data points are uniformly distributed, such as
Amazon-book, Amazon-CDs, and Amazon-Electronics datasets, Spectral Co-
Clustering can reveal the locality of each dataset, and the performances were
improved by the local-ensemble approach. On the other hand, unlike our ex-
pectation, the proposed method does not enhance the recommendation abil-
ity much for well-clustered data. Although Yelp2018 and Gowalla datasets
are well separated into a few clusters, they still have many connections be-
tween different groups. We suppose that there exist important few relations
between user groups, and ignoring these signals could worsen the recommen-

dation ability.
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Figure 4.1: Evaluation Result for four datasets with MF-BPR and NGCF

model.
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Figure 4.2: Visualization result of each dataset using UMAP.
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Figure 4.3: Connectivity Visualization result of each dataset using UMAP.
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Chapter 5

Conclusion

The experimental results and visualization show that Spectral Co-Clustering

can separate a given dataset as bi-partition well, and the collaborative filter-
ing within a specific co-cluster can utilize strong collaborative information
in spite of the unbalanced clustering result of Spectral Co-Clustering. How-
ever, the Recall@20 and NDCG@20 scores indicate that our approach cannot
cover all datasets and CF models. Also, the evaluation results are not signifi-
cantly improved. On the other hand, we can easily expect that well-clustered
co-clustering such as CoclustMod and ONMTF can improve the result. More-
over, we chose the hyperparameter k£ empirically, but finding proper k with
the number of small eigenvalues of graph or using ensemble-coclustering[21]
may help our model to find a way to better performance.

There are many opportunities to obtain the best performance by adopting
our approach when it combines state-of-the-art collaborative filtering models
and modifying the aggregation part better. We will keep these studies for

future work as below.

e We will modify the entire unsupervised clustering and semi-supervised

training process in an end-to-end manner.

e The clustered groups refer to ‘local information,” while the original data

refer to ‘global information.” We may build a whole new architecture
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that combines local and global information to avoid information loss

between user groups while utilizing strong local information.

e We should implement more CF models such as UltraGCN[9], ENMF[22],
GCMC]J23], and so on.

e Build a mathematical foundation finding proper k by spectral theory

or probabilistic graphical models.
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