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Abstract

Local-Ensemble Graph Collaborative
Filtering with Spectral Co-Clustering

HOIN JUNG

Computational Science & Technology

The Graduate School

Seoul National University

The importance of a personalized recommendation system is emerging as the

world becomes more complex and individualized. Among various recommen-

dation systems, Neural Graph Collaborative Filtering(NGCF) and its vari-

ants treat the user-item set as a bipartite graph and learn the interactions

between user and item without using their unique features. While these ap-

proaches only using collaborative signals have achieved state-of-the-art per-

formance, they still have the disadvantage of abandoning feature similarity

among users and items. To tackle this problem, we adopt unsupervised com-

munity detection from bipartite graph structure to enhance the collaborative

signal for a Graph-based recommendation system. Co-Clustering algorithms

segment the user-item matrix into small groups. Each local CF captures a

strong correlation among these local user-item subsets, while the original

incidence matrix is also used to analyze global interaction between groups.

Finally, our Local-Ensemble Graph Collaborative Filtering(LEGCF) aggre-

gates all local and global collaborative information. As the proposed approach

can utilize various Co-clustering and Collaborative Filtering flexibly, one of

the most straightforward variants, Spectral Co-Clustering and NGCF, can

enhance the overall performance.

Keywords : Recommendation System, Graph Convolutional Network, Col-

laborative Filtering, Spectral Co-Clustering

Student number : 2020–21619
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Chapter 1

Introduction

The importance of personalized recommendation is emerging as social me-

dia and marketing system is getting more complex and embodied. Moreover,

as it becomes easier to crawl more detailed and immense data, various types

of recommendation systems have been developed. One of the most generic

methods is finding a pattern for the feature of users and items such as age,

gender, country, genre, price, etc[1]. Some methods utilize time stamp sequen-

tial information of given features. These content-based methods analyze the

features of items that users interacted positively with and recommend items

with similar features. Undoubtedly, Deep Neural Networks(DNNs) make it

easier to analyze the nonlinear relationship between various types of users and

items. The content-based filtering(CBF) recommends items to users based on

their previous preferences, such as actions and explicit feedback. Therefore,

it requires an item’s features to determine whether an item is similar to the

previous one. This makes it possible to recommend user-specific items which

the user may prefer explicitly. Also, CBF can capture niche items that very

few similar users were interested in. However, there exists a limitation of

CBF because of the item’s features. All the features are hand-engineered

contents, and the features could be hard to distinguish each other if the fea-

ture represents generic information such as genre, year of publication, and

make. Moreover, the trained model may have limited recommending ability
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and not be able to extend over the user’s potential interests.

For these reasons, collaborative filtering(CF) utilizes similarities between

users and items simultaneously; assume that user A might be interested in

items that user B prefers. Thus, CF does not depend on the item’s descrip-

tion. Instead, the CF models consider a feedback matrix of users(row) and

items(column), consisting of the user’s explicit preference. The item’s fea-

ture embedding is made by the feedback matrix, while the size of embed-

ding represents the complexity of the item’s feature. Some fundamental CF

methods can learn the embedding automatically. Among lots of collaborative

filtering methods, Matrix Factorization(MF)[2] regards the feedback matrix

A ∈ Rm×n as a linear combination of user embedding U ∈ Rm×d and item

embedding V ∈ Rn×d, simplify the problem to approximate dot product UV T

where m is the number of users, n is the number of items, and d denotes the

embedding size. Also, Neural Collaborative Filtering(NCF)[3] overcomes the

limitation of linearity of the MF method. Deep Neural Networks(DNNs) for

collaborative filtering allow interpreting high-order nonlinearity between user

and item and significantly improve the recommendation ability.

However, there exist noisy data in given user and item features for various

reason, such as account sharing of hidden users, out-of-date information, and

wrong assigned item. Neural Graph Collaborative Filtering(NGCF)[4] shows

that using the noisy data feature may corrupt recommendation ability. In-

stead, NGCF[4] adopted only collaborative information between the user set

and the item set by constructing a user-item bipartite graph without any fea-

tures. It assumes that users having similar preferred items may prefer similar

items in the future. Therefore, user embedding and item embedding are de-

rived from the only collaborative graph information containing high-order

connectivity, and Graph Convolution Network(GCN) is adopted to analyze

the user-item signal. LightGCN[5] is a simplified version of NGCF while still

improving the recommending ability. There exist a lot of variants of NGCF

such as DGCF[6], LR-GCCF[7], NIA-GCN[8], and UltraGCN[9].

On the other hand, relying on only such collaborative information may

not represent a tendency of groups of users and types of items. We can eas-

ily imagine that users within a particular group have the same preference

for specific items. In this work, we assume that each large dataset can be
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divided into several user-item groups via Bipartite Co-Clustering, and the

collaborative information of a clustered group might be denser than the orig-

inal dataset. Among various co-clustering algorithms, we adopt the first pro-

posed approach, Spectral Co-Clustering[10], which is described in Section 2.

Co-clustering algorithm segments user and item groups simultaneously. The

result of Co-clustering is illustrated as a block diagonal matrix as shown in

Fig 2.1. Each block represents a user-item group, and this subset contains a

strong correlation between data points. Therefore, collaborative filtering in

a particular subset works better than entire data.

In this proposed method, each subset is used as a partial input of local CF

model to deal with only the selected user-item pair. In this way, all subsets

are used as inputs for the local model, and all the embedding results from

the local collaborative filtering model are aggregated. However, there still

exists noisy data outlying from a clustered block. Thus, the local item inputs

are extended as all the items which are preferred by the clustered user. The

index of each subset is rearranged in the co-clustering step, so we recover

the original index in aggregating part. In global CF model, the entire data

is also used to capture global information such as common preferences and

similarities between groups. Finally, weighted summations are conducted for

the local and global embedding results. We could improve the performance

of NGCF for all datasets using the proposed Local-Ensemble Graph Col-

laborative Filtering with Co-Clustering(LEGCF). Also, we expect that this

approach can utilize any variants of co-clustering and collaborative filtering.
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Figure 1.1: User-Item interaction bipartite graph(left) and Spectral Co-
Clustering(right)
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Chapter 2

Preliminaries

2.1 Spectral Co-Clustering

2.1.1 Bipartite Graph Partitioning

A graph G = (V,E) is a bipartite graph if there are two disjoint subsets Vi

and Vj of V such that

(2.1) Vi ∩ Vj = ∅, (Vi × Vi) ∩ E = ∅, and (Vj × Vj) ∩ E = ∅

where V and E is vertex set and edge set, respectively. The definition of cut

for the given vertex set V into k subsets is defined by

(2.2) cut(V1, V2, · · · , Vk) =
∑
i<j

cut(Vi, Vj) =
∑
i<j

∑
i∈V1,j∈V2

Aij

where Aij is an adjacency matrix of the original graph. The example of edge

cut is shown in Fig.3.2. We need to cluster both users U1, U2, · · · , Uk and

items I1, I2, · · · , Ik which are determined as follows. A given user ui belongs

to the user cluster Um if its association with the item cluster Im is greater
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than its association with any other item cluster, and vice versa.

Um = {ui :
∑
j∈Im

Hij ≥
∑
j∈Il

Hij,∀l = 1, · · · , k}

Im = {ii :
∑
j∈Um

Hij ≥
∑
j∈Ul

Hij, ∀l = 1, · · · , k}

where Hij is an element of m×n incidence matrix H such that equals to the

edge-weight Eij. Finding the best clustering corresponds to a partitioning

of the graph such that the crossing edges between partitions have minimum

weight. This is achieved when

cut(U1 ∪ I1, · · · , Uk ∪ Ik) = min
V1···Vk

cut(V1 · · ·Vk)

where V1 · · ·Vk is any k-partitioning of the bipartite graph.

Spectral Graph Bipartitioning

The Laplacian matrix L of graph G is an n×n symmetric matrix and defined

by L = D−A, where A is the adjacency matrix and D is the diagonal degree

matrix with Dii =
∑

k Eik. Given a function on the vertices, x ∈ RV , the

Laplacian quadratic form of a weighted graph in which edge (a, b) has weight

wa,b > 0 is

(2.3) xTLx =
∑

(a,b)∈E

wa,b(x(a)− x(b))2 ≥ 0.

We can check the first eigenvalue of Laplacian matrix is 0 when we set x

∈ {n mutually orthogonal unit vectors ψ1, · · ·ψn}, then ψT
kLψk = λk ≥ 0,

and L1 = 0.

Given a bipartitioning of V into V1 and V2 (V1 ∪ V2 = V ), let us define

the partition vector p that captures this division,

(2.4) pi =

+1, i ∈ V1,

−1, i ∈ V2,
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then, the Rayleigh Quotient is

(2.5)
pTLp

pTp
=

1

n
· 4cut(V1, V2).

Therefore, the cut is minimized by the trivial solution when all pi are either

-1 or +1. For the generalized form, let each vertex i be associated with a

positive weight, denoted by weight(i), and let W be the diagonal matrix of

such weights. Let η1 = weight(V1) and η1 = weight(V2), then the generalized

partition vector q with elements

(2.6) qi =

+
√

η2
η1
, i ∈ V1,

−
√

η2
η1
, i ∈ V2,

satisfies qTWe = 0, and qTWq = weight(V ). Then, the generalized Rayleigh

Quotient becomes an objective function

(2.7)
qTLq

qTWq
=

cut(V1, V2)

weight(V1)
+

cut(V1, V2)

weight(V2)
.

To find the global minimum of the objective function, we can minimize the

generalized Rayleigh Quotient

(2.8) min
q ̸=0

qTLq

qTWq

when q is the eigenvector corresponding to the second smallest eigenvalue λ2

of the generalized eigenvalue problem,

(2.9) Lz = λWz.

Moreover, we can adopt normalized-cut objective function instead of balanced-

cut Eq.(2.7).

(2.10) N(V1, V2) =
cut(V1, V2)∑
i∈V1

∑
k Eik

+
cut(V1, V2)∑
i∈V2

∑
k Eik

= 2− S(V1, V2)

where S(V1, V2) =
within(V1)
weight(V1)

+ within(V2)
weight(V2)

.
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Figure 2.1: An example of Spectral Co-Clustering

2.1.2 Optimization

The generalized eigenvalue problem Lz = λDz provides a real relaxation to

the discrete optimization problem of finding the minimum normalized cut.

Computing the eigenvector of the second smallest eigenvalue may cost a

lot for a large graph; instead, we can obtain the second-largest singular value

(1− λ) by singular value decomposition(SVD) as follows.

For the bipartite graph,

(2.11) L =

[
D1 −A
−AT D2

]
, D =

[
D1 −0
0 D2

]

where D1(i, i) =
∑

j Aij and D2(j, j) =
∑

i Aij are diagonal matrices. Then

Lz = λDz can be rewritten

D1x−Ay = λD1x

−ATx+D2y = λD2y

Because the user-item dataset does not include empty columns and rows,

both D1 and D2 are nonsingular. Then, the above equation

D1
1/2x−D1

−1/2Ay = λD1
1/2x

−D2
−1/2ATx+D2

1/2y = λD2
1/2y

8



(a) Raw incidence matrix of user-item
data

(b) Clustered incidence matrix of user-
item data

Figure 2.2: The result of Co-Clustering can be shown as block-diagonal inci-
dence matrix for real-world data

. Let u = D1
1/2x and v = D2

1/2y, we get

D1
−1/2AD2

−1/2v = (1− λ)u, and D2
−1/2ATD1

−1/2u = (1− λ)v.

Therefore, we can compute the left and right singular vectors u2 and v2

corresponding to the second largest singular value of normalized matrixAn =

D
−1/2
1 AD

−1/2
2

(2.12) Anv2 = σ2u2,An
Tu2 = σ2v2,

where σ2 = 1 − λ2. Obviously, working on An rather than L is beneficial

in terms of computational cost since A ∈ Rm×n while L ∈ R(m+n)×(m+n).

The singuluar vector u2 and v2 give us clustering information, for users and

items, respectively; a real approximation to the discrete optimization problem

of minimizing the normalized cut. Let m1 and m2 denote the bi-modal values

of the assignment of z2(i) that we are looking for; the second eigenvector of

L is given by

(2.13) z2 =

[
D1

−1/2u2

D2
−1/2v2

]
.

We can approximate the optimal bipartitioning by minimizing the sum-
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Clustered Original Dataset

Dataset #User #Items #Interactions Sparsity
Amazon-Book 52,643 91,559 2,984,108 0.00062

Yelp2018 31,668 38,048 1,561,406 0.00130
Gowalla 29,858 40,981 1,027,370 0.00084

Movielens-1M 6,022 3,043 995,154 0.04888
Amazon-CDs 43,169 35,648 777,426 0.00051

Amazon-Electronics 1,435 1,522 35,931 0.01645

Table 2.1: Statistics of the original datasets.

of-squares criterion as an objective function,

2∑
j=1

∑
z2(i)∈mj

(z2(i)−mj)
2.

Note that the above equation is exactly the same as the k-means clustering

algorithm. Furthermore, we can extend to a multi-partitioning problem to

get k multiple clusters by using the bi-partitioning algorithm in a recursive

manner. To obtain k-modal information about the dataset, we can form a

l-dimensional dataset

(2.14) Z =

[
D1

−1/2U

D2
−1/2V

]

where U = [u2,u3, · · · ,ul+1] and V = [v2,v3, · · · ,vl+1], l = [log2 k], and get

the best l-dimensional point m1, · · ·mk of assignment Z(i) by minimizing

(2.15)
k∑

j=1

∑
z2(i)∈mj

∥Z(i)−mj∥2.
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2.2 Bayesian Personalized Ranking(BPR) Loss

2.2.1 Implicit Data

In the feedback matrix(or incidence matrix) of the recommendation system,

the users’ interests are explicitly indicated as binary scores except in the case

a user expresses explicit and negative feedback, e.g., 1 of 5 stars for a movie.

The incidence matrix is a sparse matrix, and obviously, the non-positive

scores do not indicate apparent negative action since the scores for most

of the items are not yet defined. The implicit data contains missing value,

and the purpose of the recommendation system is to determine whether the

implicit data is real negative feedback or potentially positive interest.

2.2.2 Personalized Total Ranking

Let U be the set of all users, I the set of all items, and (u, i) = s ∈ S the

user-item pair where S ⊆ U × I is the set of implicit feedback. Our goal is to

provide the user with a personalized total ranking, >u⊂ I2, where >u meets

the properties of a total order as follows.

∀i, j ∈ I : i ̸= j =⇒ (i >u j) ∨ (j >u i)(2.16)

∀i, j ∈ I : (i >u j) ∧ (j >u i) =⇒ i = j(2.17)

∀i, j, k ∈ I : (i >u j) ∧ (j >u k) =⇒ i >u k.(2.18)

In implicit feedback systems, only positive data is observed, and the remain-

ing data is a mixture of missing and actually negative values. Instead of

replacing missing values with negative ones for single items, the item pairs

are used as training data. To reconstruct user-item pairs, we follow a basic

rule for the given data: the user prefers a positively observed item to all other

non-observed ones, and there’s no priority among observed items. Therefore,

we define the training dataset DS : U × I × I as

(2.19) DS := {(u, i, j)|i ∈ I+u ∧ j ∈ I\I+u }

11



Statistics Dataset

# Clusters
Amazon-
Book

Yelp2018 Gowalla
Movielens

-1M
Amazon
-CDs

Amazon
-Elec.

1
Users 52,643 31,668 29,558 6,022 43,169 1,435
Sparsity 0.00062 0.00130 0.00084 0.04888 0.00051 0.01645

2
Min. 1,379 5,632 8,810 2,305 1,491 262
Max. 51,264 26,036 21,048 3,717 41,678 1,173
Sparsity 0.00085 0.00202 0.00143 0.04894 0.00061 0.01740

3
Min. 258 1,681 338 1,629 1,488 138
Max. 51,093 24,389 21,529 2,437 36,557 1,080
Sparsity 0.00098 0.00259 0.00179 0.04915 0.00074 0.01836

4
Min. 215 1,665 333 869 1,445 36
Max. 50,736 20,743 21,108 1,754 23,444 899
Sparsity 0.00107 0.00304 0.00195 0.04970 0.00084 0.01920

5
Min. 216 609 115 827 31 41
Max. 29,557 21,084 19,747 1,498 26,492 614
Sparsity 0.00123 0.00353 0.00244 0.05023 0.00106 0.01979

Table 2.2: Statistics of the partitioned dataset about the minimum and max-
imum number of users and sparsity.

where user u of (u, i, j) ∈ DS is assumed to prefer i over j, and

I+u := {i ∈ I : (u, i) ∈ S}(2.20)

U+
i := {u ∈ U : (u, i) ∈ S}(2.21)

DS allows us the training dataset consists of both positive and negative

pairs and missing values. The missing values of pairs of non-observed items

are exactly our objective item pairs that would be ranked in the training

procedure. The observed subset DS of >u is used as training data, while DS

and the test data is disjoint.

2.2.3 Bayesian Personalized Ranking

As a general optimization criterion for personalized ranking, Bayesian Per-

sonalized Ranking(BPR) optimization [11] will be derived by a Bayesian anal-

ysis of the problem using the likelihood function for p(i >u j|Θ) and the prior

probability for the model parameter p(Θ). Finding the correct personalized

12



ranking for all items i ∈ I in terms of Bayesian formulation is equivalent to

maximizing the following posterior probability

(2.22) p(Θ| >u) ∝ p(>u |Θ)p(Θ)

where Θ represents the parameter vector of a model.

As the user-specific likelihood function p(>u |Θ) follows Bernoulli distribu-

tion, it can be expressed as a product of single densities, and combined for

all users.

(2.23) p(>u |Θ) = p(i >u j)δ((u,i,j)∈DS)(1− p(i >u j))δ((u,i,j)/∈DS),

where δ is the indicator function

(2.24) δ(b) :=

1 if b is true

0 else.

To fulfill the properties of a total order(totality, antisymmetry, and transi-

tivity), the individual probability that a user really prefers item i to item j

is defined as :

(2.25) p(i >u j|Θ) := σ(x̂uij(Θ))

where σ is the logistic sigmoid σ(x) := 1
1+e−x and x̂uij(Θ) is obtained model

parameter vector to capture the relationship between user u, item i, and item

j. For all users, the overall likelihood function is

∏
u∈U

p(>u |Θ) =
∏

(u,i,j)∈DS

p(i >u j|Θ)

(2.26)

=
∏

(u,i,j)∈U×I×I

p(i >u j|Θ)δ((u,i,j)∈DS)(1− p(i >u j|Θ))δ((u,i,j)/∈DS).(2.27)

To assign above likelihood function to Bayesian personalized ranking task,

let p(Θ) ∼ N(0,
∑

Θ) where
∑

Θ = λΘI while λΘ are model specific regular-

13



ization parameter. Then, the maximum posterior estimator to derive opti-

mization criterion for personalized ranking BPR− OPT is

(2.28)

BPR− OPT : = ln p(Θ| >u)

= ln p(>u |Θ)p(Θ)

= ln
∏

(u,i,j)∈DS

σ(x̂uijp(Θ))

=
∑

(u,i,j)∈DS

lnσ(x̂uij) + ln p(Θ)

=
∑

(u,i,j)∈DS

lnσ(x̂uij)− λΘ∥Θ∥2.

The Bayesian Personalized Ranking(BPR) optimization is adopted as

a loss function to minimize. BPR loss is a pairwise loss that encourages

following the total order properties:

(2.29) LBPR = −
M∑
u=1

∑
i∈Nu

∑
j /∈Nu

lnσ(ŷui − ŷuj) + λ∥E(0)∥2.
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Chapter 3

Proposed Method

3.1 Dataset

We use six public datasets, including Amazon-Book[12], Amazon-CDs, Amazon-

Electronics, Yelp2018, Gowalla[13], and MovieLens-1M, to verify our ap-

proach. Many recent graph-based CF methods are evaluated on these six

datasets. The original datasets provide various information for users and

items such as gender, age, genre, and date. However, these features are not

necessary for the Graph-based recommendation, and only the interaction

data is used. We follow those recent studies and use the same data split ra-

tio for the training subset and test subset without any detailed information.

Table 2.1 shows the statistics of the datasets.

3.2 Spectral Co-Clustering

We assume that a large dataset of user-item interactions consists of several

clusters which have a strong user-item relationship in each cluster. We can

visualize this by comparing incidence matrices of original data and clustered

data.

As shown in Fig2.1, the strong connectivity is shown as a block-diagonal
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matrix by rearranging indices of rows and columns. Clustered user set uk and

item set ik is defined by

U = [u1|u2| · · · |uk]

I = [i1|i2| · · · |ik]

where U and I mean total users and items, respectively. However, the

incidence matrix is not partitioned perfectly since commonly preferred items

or noisy data exist. The preferred item set iuk
for given user group uk does not

correspond to k-th item set ik. Therefore, we utilize iuk
for training each local

CF instead of the clustered item set [i1|i2| · · · |ik] to avoid absence of preferred

item. Nevertheless, the co-clustered user subset is still meaningful because

the partitions refer to the collaborative information of user-item interaction.

Table 2 shows that the clustered dataset contains denser information than

the original data. Although the scales of clustered subsets vary, the more we

divide the dataset, we obtain less sparse collaborative data. Currently, we

select k empirically by grid search. Finding the particular best k might be

impossible because it significantly depends on the co-clustering method and

dataset. We assume that we can select proper k by evaluating the number of

small eigenvalues of the adjacency matrix but will keep this study as future

work. Among various co-clustering methods, we adopt one of the fundamental

co-clustering methods, spectral co-clustering, to show the improvement of our

approach. Our approach can be combined with other Co-Clustering variants

such as CCMOD[14], SCMK[15], ONMTF[16], and SOBG[17].
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3.3 Local-Ensemble model

We conducted collaborative filtering utilizing clustered data. We abandon

the clustered item subset ik, and instead obtain item subset iuk
from user

subset uk. We execute the CF method on original data and clustered data

simultaneously, regarding original data as global information and clusters as

local information, as shown in Fig. 4. Each local embedding ei,k, eu,k have

different index information and embedding size according to k, so they are

aggregated as same size as global embedding with ei,l, eu,l ∈ Rn×m×d as shown

in Fig. 5. The final local embedding and global embedding are merged at the

tail part of the framework with an element-wise attention score on local

embedding

ei = ei,l ⊙ wi + ei,g(3.1)

eu = eu,l ⊙ wu + eu,g(3.2)

where⊙ denotes element-wise multiplication, and wi, wu are trainable weight.

The overall algorithm is shown in Algorithm.1.

We selected the hyperparameters of the original literature, such as mes-

sage dropout rate, embedding size, batch size, regularizer, and learning rate.

Also, we adopt the Bayesian Personalized Ranking(BPR) loss function fol-

lowing the description of NGCF

(3.3) Loss =
∑

(u,i,j)∈O

− lnσ(ŷui − ŷuj) + λ∥Θ∥22

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} denotes the pairwise training

data,R+ indicates the observed interactions, andR− is the unobserved inter-

actions, σ(·) is the sigmoid function, and Θ = {E, {W(l)
1 ,W

(l)
2 }Ll=1} denotes

all trainable model parameters, and λ controls the L2 regularization strength

to prevent overfitting.
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Figure 3.1: Overall Architecture of Separated Collaborative Filtering.
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Figure 3.2: Local Embeddings are aggregated again refer to their initial clus-
ter mapping

Algorithm 1 Overall Architectures of Local-Ensemble Collaborative Filter-
ing

Input: Rating Matrix R, the number of cluster N

Output: User embedding eu, Item embedding ei

1: Rl = {R1, · · · , Rk} = SCC(R)

2: for k = 0 to N do

3: Ak =

[
0 Rk

RT
k 0

]
4: eu,k, ei,k ←− CFk(Ak) {Global embedding when k = 0 }
5: if k ≥ 1 then

6: êu,k = IndexMapping(eu,k)

7: êi,k = IndexMapping(ei,k)

8: end if

9: end for

10: eu,l =
∑N

k=1 êu,k {Local user embedding}
11: ei,l =

∑N
k=1 êi,k {Local item embedding}

12: eu = eu,0 + eu,l ⊙ wu

13: ei = ei,0 + ei,l ⊙ wi
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Chapter 4

Experimental Result

4.1 Evaluation Metric

To evaluate the ability of the proposed method, Normalized Discounted Cu-

mulative Gain (NDCG)@K[18, 19], Precision@K, and Recall@K are used.

These metrics are widely used to measure the performance of recommenda-

tion system. Above all, NDCG metric considers graded relevance allowing

higher position in the ouput list gets more importance. Discounted Cumula-

tive Gain(DCG) for a particular rank position p is obtained by

(4.1) DCGp =

p∑
i=1

reli
log2(i+ 1)

where reli is the grade relevance of the result at position i such that reli = 1

if the i-th output item is actually relevant to the query, reli = 0 otherwise.

The alternative formulation of DCG emphasizes the relevance by replacing

numerator to exponential term.

(4.2) DCGp =

p∑
i=1

2reli

log2(i+ 1).
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The two expressions of DCG are same when the relevance values are binary,

reli ∈ {0, 1}. The DCG score means that highly relevant items appearing

lower rank should be penalized as the graded relevance reduces. Maximum

possible DCG depends on how many relevant items are in ground truth.

On the other hand, NDCG is the normalized score which is obtained by

the ratio between DCGp and IDCGp for that query.

(4.3) NDCGp =
DCGp

IDCGp

where ideal discounted cumulative gain(IDCG) is the maximum score when

the items are listed in the order of relevance, RELp.

(4.4) IDCGp =

|RELp|∑
i=1

2reli

log2(i+ 1).

In addition, Precision@K and Recall@K is calculated by the fraction of K

recommended items, regardless of the order.

(4.5) Precision =
True Positive

True Positive + False Positive

(4.6) Recall =
True Positive

True Positive + False Negative

4.2 Result Analysis

The result of the experiments is shown in Table 3-5. The experiments are

conducted on six datasets and three baseline models, MF-BPR, NGCF,

and LightGCN. For Amazon-Book, Yelp2018, Amazon-CDs, and Amazon-

Electronics dataset, our proposed method improve the recommendation abil-

ity for all baseline models. Fig.6 shows the plotted result of the above four

datasets. Although the performances depend on the number of clusters k,

we can get a better result using the local-ensemble method compared to the

single CF model, k = 1.

On the other hand, the proposed method could not enhance the recom-
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mendation ability for some datasets, such as the Movielens-1M and Gowalla

datasets. To verify this, we visualized UMAP[20] projection and checked

the connectivity. When the data points are uniformly distributed, such as

Amazon-book, Amazon-CDs, and Amazon-Electronics datasets, Spectral Co-

Clustering can reveal the locality of each dataset, and the performances were

improved by the local-ensemble approach. On the other hand, unlike our ex-

pectation, the proposed method does not enhance the recommendation abil-

ity much for well-clustered data. Although Yelp2018 and Gowalla datasets

are well separated into a few clusters, they still have many connections be-

tween different groups. We suppose that there exist important few relations

between user groups, and ignoring these signals could worsen the recommen-

dation ability.
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(a) Amazon-Book (b) Amazon-CDs

(c) Amazon-Electronics (d) Yelp2018

Figure 4.1: Evaluation Result for four datasets with MF-BPR and NGCF
model.
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(a) Amazon-Book (b) Amazon-CDs

(c) Amazon-Elec. (d) Yelp2018

(e) Gowalla (f) MovieLens-1M

Figure 4.2: Visualization result of each dataset using UMAP.
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(a) Amazon-Book (b) Amazon-CDs]

(c) Amazon-Elec. (d) Yelp2018

(e) Gowalla (f) MovieLens-1M

Figure 4.3: Connectivity Visualization result of each dataset using UMAP.
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Chapter 5

Conclusion

The experimental results and visualization show that Spectral Co-Clustering

can separate a given dataset as bi-partition well, and the collaborative filter-

ing within a specific co-cluster can utilize strong collaborative information

in spite of the unbalanced clustering result of Spectral Co-Clustering. How-

ever, the Recall@20 and NDCG@20 scores indicate that our approach cannot

cover all datasets and CF models. Also, the evaluation results are not signifi-

cantly improved. On the other hand, we can easily expect that well-clustered

co-clustering such as CoclustMod and ONMTF can improve the result. More-

over, we chose the hyperparameter k empirically, but finding proper k with

the number of small eigenvalues of graph or using ensemble-coclustering[21]

may help our model to find a way to better performance.

There are many opportunities to obtain the best performance by adopting

our approach when it combines state-of-the-art collaborative filtering models

and modifying the aggregation part better. We will keep these studies for

future work as below.

• We will modify the entire unsupervised clustering and semi-supervised

training process in an end-to-end manner.

• The clustered groups refer to ‘local information,’ while the original data

refer to ‘global information.’ We may build a whole new architecture
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that combines local and global information to avoid information loss

between user groups while utilizing strong local information.

• We should implement more CF models such as UltraGCN[9], ENMF[22],

GCMC[23], and so on.

• Build a mathematical foundation finding proper k by spectral theory

or probabilistic graphical models.
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[18] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of

ir techniques,” ACM Transactions on Information Systems (TOIS),

vol. 20, no. 4, pp. 422–446, 2002.

[19] X. He, T. Chen, M.-Y. Kan, and X. Chen, “Trirank: Review-aware ex-

plainable recommendation by modeling aspects,” in Proceedings of the

24th ACM International on Conference on Information and Knowledge

Management, pp. 1661–1670, 2015.

[20] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold ap-

proximation and projection for dimension reduction,” arXiv preprint

arXiv:1802.03426, 2018.

[21] S. Affeldt, L. Labiod, and M. Nadif, “Ensemble block co-clustering: a

unified framework for text data,” in Proceedings of the 29th ACM Inter-

national Conference on Information & Knowledge Management, pp. 5–

14, 2020.

[22] C. Chen, M. Zhang, C. Wang, W. Ma, M. Li, Y. Liu, and S. Ma, “An

efficient adaptive transfer neural network for social-aware recommenda-

tion,” in Proceedings of the 42nd International ACM SIGIR Conference

on Research and Development in Information Retrieval, pp. 225–234,

ACM, 2019.

33



[23] R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix

completion,” arXiv preprint arXiv:1706.02263, 2017.

34



국문초록

본 논문에서는 추천시스템을 위한 그래프 기반 협업 필터링 모델을 스펙

트럴 이중 분할하여 생성된 부분 그래프를 앙상블(Ensemble) 하여 추천 성

능을 개선하는 방법에 대해 연구하였다. 그래프 인공 신경망 (Graph Neural

Networks, GNN)을 이용한 협업 필터링 기반의 추천 시스템의 기본 모델은,

사용자나 아이템에 대한 사전 정보를 전혀 사용하지 않고 사용자-아이템 간

상호작용 정보만을 활용하여 신경망 모델의 임베딩을 구성한다. 따라서 사용

자와 아이템의 사전정보만으로 유추할 수 있는 특정 사용자 그룹의 경향성을

추천시스템에 사용할 수 없는 단점이 있다. 한편, 스펙트럴 이중 분할 방법은

특잇값 분해를 반복하여 이분 그래프를 양 도메인의 정보를 모두 포함한 부분

그래프로 분할한다. 추천시스템을 위한 데이터 세트를 스펙트럴 이중 분할 할

경우,특정사용자그룹과아이템그룹을전체데이터로부터분리할수있으며,

분할된 그룹은 높은 데이터 밀도와 강한 상호작용 신호를 갖게 된다. 따라서

분할된 그룹 데이터에 대해 협업 필터링을 적용할 경우, 데이터 세트나 협업

필터링 모델의 종류와 관계없이 해당 데이터그룹에서는 추천 능력이 향상된

다. 나아가서, 분할된 부분 그래프들을 개별적으로 협업 필터링한 뒤 앙상블

하여 그룹별 상호작용 신호를 분석한 지역임베딩(Local Embedding)과 전체

데이터를 아우를 수 있는 전역임베딩(Global Embedding)을 통합하여 최종임

베딩을 구성하였다. 여섯 개의 데이터 세트와 세 가지의 협업 필터링 모델을

스펙트럴 이중 분할하여 앙상블 한 결과, 모델 종류와 관계없이 추천 능력이

향상되었다. 그러나 몇 가지 데이터 세트의 경우 성능향상이 거의 이루어지

지 않았는데, 이는 데이터가 이미 적절히 분할되어있는 경우 스펙트럴 이중

분할이추천성능을향상하지못한것으로분석된다.반면데이터가골고루분

포되어있어 기본 협업 필터링 모델이 상호작용 신호를 분석하기 어려운 경우,

스펙트럴 이준 분할을 통한 앙상블 방법으로 모든 협업 필터링 모델에 대하여

추천 능력이 향상되었다.

주요어 : 추천 시스템, 그래프 인공 신경망, 협업 필터링, 스펙트럴 이중 분할
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