20 research outputs found

    RNA-seq 데이터λ₯Ό ν™œμš©ν•œ νŒ¨μŠ€μ›¨μ΄ ν™œμ„±λ„μ˜ μ •λŸ‰ν™”μ— κ΄€ν•œ 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μžμ—°κ³Όν•™λŒ€ν•™ ν˜‘λ™κ³Όμ • 생물정보학전곡,2019. 8. κΉ€μ„ .RNA-seq 데이터λ₯Ό μ‚¬μš©ν•˜μ—¬ RNA μ „μ‚¬μ²΄μ˜ λ³€ν™”λŸ‰μ„ μΈ‘μ •ν•˜λŠ” 것은 생물정보학 λΆ„μ•Όμ—μ„œ ν•„μˆ˜μ μœΌλ‘œ μˆ˜ν–‰ν•˜κ³  μžˆλŠ” 뢄석 방법 쀑 ν•˜λ‚˜μ΄λ‹€. κ·ΈλŸ¬λ‚˜ RNA-seq은 μΈκ°„μ˜ 2만개 μ΄μƒμ˜ μœ μ „μžλ₯Ό ν¬ν•¨ν•˜λŠ” κ³ μ°¨μ›μ˜ 전사체 데이터λ₯Ό μƒμ„±ν•˜κΈ° λ•Œλ¬Έμ—, μƒλŒ€μ μœΌλ‘œ 적은 μ–‘μ˜ μƒ˜ν”Œλ“€μ„ λΆ„μ„ν•˜κ³ μž ν• λ•ŒλŠ” 데이터 해석에 μžˆμ–΄μ„œ 어렀움이 μžˆλ‹€. λ”°λΌμ„œ, 더 λ‚˜μ€ 생물학적 이해λ₯Ό μœ„ν•΄μ„œλŠ” 생물학적 νŒ¨μŠ€μ›¨μ΄μ™€ 같이 잘 μš”μ•½λ˜κ³  널리 μ‚¬μš©λ˜λŠ” 정보λ₯Ό μ‚¬μš©ν•˜λŠ” 것이 μœ μš©ν•˜λ‹€. κ·ΈλŸ¬λ‚˜ 전사체 데이터λ₯Ό 생물학적 νŒ¨μŠ€μ›¨μ΄λ‘œ μš”μ•½ν•˜λŠ” 것은 λͺ‡ 가지 이유둜 맀우 μ–΄λ €μš΄ μž‘μ—…μ΄λ‹€. 첫째, 전사체 데이터λ₯Ό νŒ¨μŠ€μ›¨μ΄ μ°¨μ›μœΌλ‘œ λ³€ν™˜ν•  λ•Œ μ—„μ²­λ‚œ 정보 손싀이 λ°œμƒν•œλ‹€. 예λ₯Ό λ“€μ–΄, 인간에 μ‘΄μž¬ν•˜λŠ” 전체 μœ μ „μžμ˜ 1/3만이 KEGG νŒ¨μŠ€μ›¨μ΄ λ°μ΄ν„°λ² μ΄μŠ€μ—μ„œ 보고되고 μžˆλ‹€. λ‘˜μ§Έ, 각 νŒ¨μŠ€μ›¨μ΄λŠ” λ§Žμ€ μœ μ „μžλ‘œ κ΅¬μ„±λ˜μ–΄ μžˆμœΌλ―€λ‘œ νŒ¨μŠ€μ›¨μ΄μ˜ ν™œμ„±λ„λ₯Ό μΈ‘μ •ν•˜λ €λ©΄ κ΅¬μ„±ν•˜κ³  μžˆλŠ” μœ μ „μž κ°„μ˜ 관계λ₯Ό κ³ λ €ν•˜λ©΄μ„œ μœ μ „μž λ°œν˜„ 값을 단일 κ°’μœΌλ‘œ μš”μ•½ν•΄μ•Ό ν•œλ‹€. λ³Έ 박사 ν•™μœ„ 논문은 νŒ¨μŠ€μ›¨μ΄ ν™œμ„±λ„ 츑정을 μœ„ν•œ μƒˆλ‘œμš΄ 방법을 κ°œλ°œν•˜κ³  μ—¬λŸ¬ 비ꡐ 기쀀에 따라 기쑴에 보고된 νŒ¨μŠ€μ›¨μ΄ ν™œμ„±λ„ 도ꡬ듀에 λŒ€ν•œ κ΄‘λ²”μœ„ν•œ 평가 μ‹€ν—˜μ„ μˆ˜ν–‰ν•˜κ³ μž ν•œλ‹€. λ˜ν•œ 일반 μ‚¬μš©μžκ°€ μžμ‹ μ˜ 데이터λ₯Ό μ‰½κ²Œ 뢄석할 수 μžˆλ„λ‘ μ•žμ„œ μ–ΈκΈ‰ν•œ 도ꡬ듀을 μ›Ή 기반 μ‹œμŠ€ν…œ ꡬ좕을 톡해 μ‰½κ²Œ μ‚¬μš©ν•  수 μžˆλ„λ‘ ν•˜μ˜€λ‹€. 첫 번째 μ—°κ΅¬μ—μ„œλŠ” 전사체 μœ μ „μž λ°œν˜„μ–‘ 정보λ₯Ό κ·ΈλŒ€λ‘œ μ‚¬μš©ν•˜κ³ , μƒν˜Έμž‘μš© λ„€νŠΈμ›Œν¬ μΈ‘λ©΄μ—μ„œ μœ μ „μž κ°„μ˜ 관계λ₯Ό κ³ λ €ν•˜μ—¬ νŒ¨μŠ€μ›¨μ΄μ˜ κ΄€μ μœΌλ‘œ 전사체 데이터λ₯Ό μš”μ•½ν•˜λŠ” μƒˆλ‘œμš΄ 방법을 κ°œλ°œν•˜μ˜€λ‹€. 이 μ—°κ΅¬μ—μ„œλŠ” λ‹¨λ°±μ§ˆ μƒν˜Έ μž‘μš© λ„€νŠΈμ›Œν¬, νŒ¨μŠ€μ›¨μ΄ λ°μ΄ν„°λ² μ΄μŠ€ 및 RNA-seq 전사체 데이터λ₯Ό ν™œμš©ν•˜μ—¬ 생물학적 νŒ¨μŠ€μ›¨μ΄λ₯Ό μ—¬λŸ¬ 개의 μ‹œμŠ€ν…œμœΌλ‘œ κ΅¬λΆ„ν•˜λŠ” μƒˆλ‘œμš΄ κ°œλ…μ„ μ œμ•ˆν•˜κ³ μž ν•œλ‹€. 각 μ‹œμŠ€ν…œ 및 각 μƒ˜ν”Œλ§ˆλ‹€μ˜ ν™œμ„±ν™” 정도λ₯Ό μΈ‘μ •ν•˜κΈ° μœ„ν•΄ SAS (Subsystem Activation Score)λ₯Ό κ°œλ°œν•˜μ˜€λ‹€. 이 방법은 μƒ˜ν”Œ λ“€κ°„ 및 μœ λ°©μ•” μ•„ν˜•λ“€ μ‚¬μ΄μ—μ„œ μ°¨λ³„μ μœΌλ‘œ ν™œμ„±ν™”λ˜λŠ” 특유의 μœ μ „μ²΄ μƒμ—μ„œμ˜ ν™œμ„±ν™” νŒ¨ν„΄ λ˜λŠ” μ„œλΈŒ μ‹œμŠ€ν…œμ„ ν‘œν˜„ν•  수 μžˆμ—ˆλ‹€. 그런 λ‹€μŒ, λΆ„λ₯˜ 및 νšŒκ·€ 트리 (CART) 뢄석을 μˆ˜ν–‰ν•˜μ—¬ μ˜ˆν›„ λͺ¨λΈλ§μ„ μœ„ν•΄ SAS 정보λ₯Ό μ‚¬μš©ν–ˆμŠ΅λ‹ˆλ‹€. κ·Έ κ²°κ³Ό, 10 개의 κ°€μž₯ μ€‘μš”ν•œ ν•˜μœ„ μ‹œμŠ€ν…œμœΌλ‘œ μ •μ˜ 된 11 개의 ν™˜μž ν•˜μœ„ 그룹은 생쑴 결과에 μžˆμ–΄ μ΅œλŒ€ 뢈일치둜 ν™•μΈλ˜μ—ˆλ‹€. 이 λͺ¨λΈμ€ μœ μ‚¬ν•œ 생쑴 κ²°κ³Όλ₯Ό 가진 ν™˜μž ν•˜μœ„ 그룹을 μ •μ˜ν–ˆμ„λΏλ§Œ μ•„λ‹ˆλΌ κΈ°λŠ₯적으둜 μœ μ΅ν•œ μœ λ°©μ•” μœ μ „μž μ„ΈνŠΈλ₯Ό μ œμ•ˆν•˜λŠ” ν•˜μœ„ μ‹œμŠ€ν…œμ˜ ν™œμ„±ν™” μƒνƒœμ— 따라 κ²°μ •λ˜λŠ” μƒ˜ν”Œ 특이적인 μƒνƒœμ˜ νŒλ‹¨ 경둜λ₯Ό μ œκ³΅ν•œλ‹€. 두 번째 μ—°κ΅¬λŠ” μ „ μ•” (pan-cancer) 데이터 μ„ΈνŠΈλ₯Ό μ‚¬μš©ν•˜μ—¬ λ‹€μ„― 가지 비ꡐ 기쀀에 따라 13 κ°€μ§€μ˜ νŒ¨μŠ€μ›¨μ΄ ν™œμ„±λ„ μΈ‘μ • 도ꡬλ₯Ό μ²΄κ³„μ μœΌλ‘œ 비ꡐ 및 ν‰κ°€ν•˜λŠ” 연ꡬ이닀.ν˜„μ‘΄ν•˜λŠ” νŒ¨μŠ€μ›¨μ΄ ν™œμ„±λ„ μΈ‘μ • 도ꡬ가 많이 μžˆμ§€λ§Œ, μ΄λŸ¬ν•œ 도ꡬ가 μ½”ν˜ΈνŠΈ μˆ˜μ€€μ—μ„œ μœ μš©ν•œ 정보λ₯Ό μ œκ³΅ν•˜λŠ”μ§€μ— λŒ€ν•œ 비ꡐ μ—°κ΅¬λŠ” μ—†λ‹€. 이 μ—°κ΅¬λŠ” 크게 두 가지 뢀뢄에 λŒ€ν•΄μ„œ μ˜λ―Έκ°€ μžˆλ‹€. 첫째, 이 μ—°κ΅¬λŠ” 기쑴의 νŒ¨μŠ€μ›¨μ΄ ν™œμ„±λ„ μΈ‘μ • λ„κ΅¬μ—μ„œ μ‚¬μš©λ˜λŠ” 계산 기법에 λŒ€ν•œ 포괄적인 정보λ₯Ό μ œκ³΅ν•œλ‹€. νŒ¨μŠ€μ›¨μ΄ ν™œμ„±λ„ 츑정은 λ‹€μ–‘ν•œ 접근법을 μ‚¬μš©ν•˜κ³ , μž…λ ₯ λ°μ΄ν„°μ˜ λ³€ν™˜, μƒ˜ν”Œ μ •λ³΄μ˜ μ‚¬μš©, μ½”ν˜ΈνŠΈ μˆ˜μ€€μ˜ 인풋 λ°μ΄ν„°μ˜ ν•„μš”μ„±, μœ μ „μž 관계 및 μ μˆ˜μ²΄κ³„μ˜ μ‚¬μš© λ“±μ—μ„œ λ‹€μ–‘ν•œ μš”κ΅¬ 사항을 κ°€μ •ν•΄μ•Ό ν•œλ‹€. λ‘˜μ§Έ, μ΄λŸ¬ν•œ λ„κ΅¬μ˜ μ„±λŠ₯에 λŒ€ν•œ λ‹€μ„― 가지 비ꡐ 기쀀을 μ‚¬μš©ν•˜μ—¬ κ΄‘λ²”μœ„ν•œ 평가가 μˆ˜ν–‰λ˜μ—ˆλ‹€. 도ꡬ가 μ›λž˜μ˜ μœ μ „μž λ°œν˜„ ν”„λ‘œνŒŒμΌμ˜ νŠΉμ„±μ„ μ–Όλ§ˆλ‚˜ 잘 μœ μ§€ν•˜λŠ”μ§€λ₯Ό μΈ‘μ •ν•˜λŠ” 것뢀터, μœ μ „μž λ°œν˜„ 데이터에 λ…Έμ΄μ¦ˆλ₯Ό μž„μ˜λ‘œ λ„μž…ν•˜μ˜€μ„ λ•Œ μ–Όλ§ˆλ‚˜ λ‘”κ°ν•œμ§€ 등을 μ‘°μ‚¬ν–ˆλ‹€. μž„μƒ μ μš©μ„ μœ„ν•œ λ„κ΅¬μ˜ μœ μš©μ„±μ„ ν‰κ°€ν•˜κΈ° μœ„ν•΄ 세가지 λ³€μˆ˜ (μ’…μ–‘ λŒ€ 정상, 생쑴 및 μ•”μ˜ μ•„ν˜•)에 λŒ€ν•œ λΆ„λ₯˜ μž‘μ—…μ„ μˆ˜ν–‰ν–ˆλ‹€. μ„Έ 번째 μ—°κ΅¬λŠ” μ‚¬μš©μžκ°€ 전사체 데이터λ₯Ό μ œκ³΅ν•˜κ³ , μ•žμ„  μ—°κ΅¬μ—μ„œ λΉ„κ΅ν•œ ν™œμ„±λ„ μΈ‘μ • 도ꡬλ₯Ό μ‚¬μš©ν•˜μ—¬ νŒ¨μŠ€μ›¨μ΄ ν™œμ„±λ„λ₯Ό μΈ‘μ •ν•˜λŠ” ν΄λΌμš°λ“œ 기반 μ‹œμŠ€ν…œ (PathwayCloud)을 κ΅¬μΆ•ν•˜λŠ” 것이닀. μ‚¬μš©μžκ°€ 데이터λ₯Ό μ‹œμŠ€ν…œμ— μ—…λ‘œλ“œν•˜κ³  μ‹€ν–‰ν•  뢄석 도ꡬλ₯Ό μ„ νƒν•˜λ©΄, 이 μ‹œμŠ€ν…œμ€ 각 도ꡬ에 λŒ€ν•œ νŒ¨μŠ€μ›¨μ΄ ν™œμ„±λ„ κ°’κ³Ό μ„ νƒν•œ 도ꡬ에 λŒ€ν•œ μ„±λŠ₯ 비ꡐ μš”μ•½μ„ μžλ™μœΌλ‘œ μˆ˜ν–‰ν•œλ‹€. μ‚¬μš©μžλŠ” λ˜ν•œ 주어진 μƒ˜ν”Œ μ •λ³΄μ˜ μΈ‘λ©΄μ—μ„œ μ–΄λ–€ νŒ¨μŠ€μ›¨μ΄κ°€ μ€‘μš”ν•œμ§€ 쑰사 ν•  수 있으며, KEGG rest APIλ₯Ό ν†΅ν•΄μ„œ 직접 νŒ¨μŠ€μ›¨μ΄μ˜ μ–΄λ–€ μœ μ „μžμ˜ λ³€ν™”κ°€ μœ μ˜λ―Έν•œμ§€λ₯Ό μ‹œκ°μ μœΌλ‘œ 뢄석할 수 μžˆλ‹€. 결둠적으둜, λ³Έ ν•™μœ„ 논문은 κ³ μš©λŸ‰μ˜ μœ μ „μž λ°œν˜„ 데이터λ₯Ό μ‚¬μš©ν•˜μ—¬ 생물학적 νŒ¨μŠ€μ›¨μ΄μ— λŒ€ν•œ 뢄석 방법을 κ°œλ°œν•˜κ³ , λ‹€λ₯Έ μœ ν˜•μ˜ 도ꡬλ₯Ό 포괄적인 κΈ°μ€€μœΌλ‘œ λΉ„κ΅ν•˜κ³ , μ‚¬μš©μžκ°€ 이 도ꡬ듀에 μ‰½κ²Œ μ ‘κ·Όν•  수 μžˆλŠ” μ›Ή 기반 μ‹œμŠ€ν…œμ„ μ œκ³΅ν•˜λŠ” 것을 λͺ©ν‘œλ‘œ ν•œλ‹€. 이 μ „λ°˜μ μΈ μ ‘κ·Ό 방식은 생물학적 νŒ¨μŠ€μ›¨μ΄ μΈ‘λ©΄μ—μ„œ μœ μ „μž λ°œν˜„ 데이터λ₯Ό μ΄ν•΄ν•˜λŠ” 데 μ€‘μš”ν–ˆλ‹€.Measuring the dynamics of RNA transcripts using RNA-seq data has become routine in bioinformatics analyses. However, RNA-seq produces high-dimensional transcriptome data on more than 20,000 genes in humans. This makes the interpretation of the data extremely difficult given a relatively small set of samples. Therefore, it is desirable to use well-summarized and widely-used information such as biological pathways for better biological comprehension. However, summarizing transcriptome data in terms of biological pathways is a very challenging task for several reasons. First, there is a huge information loss when transforming transcriptome data to pathway space. For example, in humans, only one third of the entire set of genes being analyzed are present in KEGG pathways. Second, each pathway consists of many genes; thus, measuring pathway activity requires a strategy to summarize expression profiles of component genes into a single value, while considering relationship among the constituent genes. My doctoral study aimed to develop a new method for pathway activity measurement, and to perform extensive evaluation experiments on existing pathway measurement tools in terms of multiple evaluation criteria. In addition, a cloud-based system was constructed to deploy such tools, which facilitates users analyzing their own data easily. The first study is to develop a new method to summarize transcriptome data in terms of pathways by using explicit transcript quantity information and considering relationship among genes in terms of their interactions. In this study, I propose a novel concept of decomposing biological pathways into subsystems by utilizing protein interaction network, pathway information, and RNA-seq data. A subsystem activation score (SAS) was designed to measure the degree of activation for each subsystem and each patient. This method revealed distinctive genome-wide activation patterns or landscapes of subsystems that are differentially activated among samples as well as among breast cancer subtypes. Next, we used SAS information for prognostic modeling by classification and regression tree (CART) analysis. Eleven subgroups of patients, defined by the 10 most significant subsystems, were identified with maximal discrepancy in survival outcome. Our model not only defined patient subgroups with similar survival outcomes, but also provided patient-specific decision paths determined by SAS status, suggesting functionally informative gene sets in breast cancer. The second study aimed to systematically compare and evaluate thirteen different pathway activity inference tools based on five comparison criteria using a pan-cancer data set. Although many pathway activity tools are available, there is no comparative study on how effective these tools are in producing useful information at the cohort level, enabling comparison of many samples. This study has two major contributions. First, this study provides a comprehensive survey on computational techniques used by existing pathway activity inference tools. Existing tools use different strategies and assume different requirements on data: input transformation, use of labels, necessity of cohort-level input data, use of gene relations and scoring metrics. Second, extensive evaluations were conducted using five comparison criteria concerning the performance of these tools. Starting from measuring how well a tool maintains the characteristics of an original gene expression profile, robustness was also investigated by introducing noise into gene expression data. Classification tasks on three clinical variables were performed to evaluate the utility of tools. The third study is to build a cloud-based system where a user provides transcriptome data and measures pathway activities using the tools that were used for the comparative study. When a user uploads input data to the system and selects which preferred analysis tools are to be run, the system automatically generates pathway activity values for each tool as well as a summary of performance comparison for the selected tools. Users can also investigate which pathways are significant in terms of the given sample information and visually inspect genes within a pathway-linked KEGG rest API. In conclusion, in my thesis, I sought to develop an analysis method regarding biological pathways using high throughput gene expression data to compare different types of tools with comprehensive criteria, and to arrange the tools in a cloud-based system that is easily accessible. As pathways aggregate various molecular events among genes in to a single entity, the set of suggested approaches will aid interpretation of high-throughput data as well as facilitate integration of diverse data layers such as miRNA or DNA methylation profiles being taken into consideration.Chapter 1 Introduction 1 1.1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Biological pathways . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Gene expression . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Pathway-based analysis . . . . . . . . . . . . . . . . . . . 7 1.1.4 Pathway activity measurement . . . . . . . . . . . . . . . 8 1.2 Challenges in pathway activity measurement . . . . . . . . . . . 9 1.2.1 Calculating effective pathway activity values from RNAseq data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Lack of comparative criteria to evaluate pathway activity tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.3 Absence of a user-friendly environment of pathway activity inference tools . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 12 Chapter 2 Measuring pathway activity from RNA-seq data to identify breast cancer subsystems using protein-protein interaction network 14 2.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Breast cancer subsystems . . . . . . . . . . . . . . . . . . 20 2.3.2 Subsystem Activation Score . . . . . . . . . . . . . . . . . 22 2.3.3 Prognostic modeling . . . . . . . . . . . . . . . . . . . . . 23 2.3.4 Hierarchical clustering of patients and subsystems . . . . 24 2.3.5 Tools used in this study . . . . . . . . . . . . . . . . . . . 25 2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Pathways were decomposed into coherent functional units - subsystems . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.2 Landscape of subsystems reflect the breast cancer biology 26 2.4.3 SAS revealed patient clusters associated with PAM50 subtypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.4 Prognostic modeling by subsystems showed 11 patient subgroups with distinct survival outcome . . . . . . . . . 31 2.4.5 Relapse rate and CNVs were enriched to worse prognostic subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Chapter 3 Comprehensive evaluation of pathway activity measurement tools on pan-cancer data 40 3.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.1 Pathway activity inference Tools . . . . . . . . . . . . . . 45 3.3.2 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.3 Pathway database . . . . . . . . . . . . . . . . . . . . . . 47 3.3.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 Comparative approach . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.1 Radar chart criteria . . . . . . . . . . . . . . . . . . . . . 49 3.4.2 Similarity among the tools . . . . . . . . . . . . . . . . . . 53 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.1 Distance preservation . . . . . . . . . . . . . . . . . . . . 53 3.5.2 Robustness against noise . . . . . . . . . . . . . . . . . . . 57 3.5.3 Classification: Tumor vs Normal . . . . . . . . . . . . . . 60 3.5.4 Classification: survival information . . . . . . . . . . . . . 62 3.5.5 Classification: cancer subtypes . . . . . . . . . . . . . . . 63 3.5.6 Similarity among the tools . . . . . . . . . . . . . . . . . . 63 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Chapter 4 A cloud-based system of pathway activity inference tools using high-throughput gene expression data 68 4.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4.1 Calculating pathway activity values . . . . . . . . . . . . 71 4.4.2 Identification of significant pathways . . . . . . . . . . . . 72 4.4.3 Visualization in KEGG pathways . . . . . . . . . . . . . . 72 4.4.4 Comparison of the tools . . . . . . . . . . . . . . . . . . . 75 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Chapter 5 Conclusion 77 초둝 101Docto

    (A)Study on the demand-supply structures in the Korean rice market

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :λ†κ²½μ œμ‚¬νšŒν•™λΆ€,2005.Docto

    Information ethics in digital information society : a study with emphasis on `evolutionary system ethics` and `chaos theory`

    No full text
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :ꡭ민윀리ꡐ윑과,2001.Docto

    Three Ethical Factors for the Building of Cyber-Citizenship: Freedom, Equality, and Responsibility

    No full text

    λ†μž‘λ¬Όμž¬ν•΄λ³΄ν—˜μ˜ ꡬ쑰적 문제점 및 ν•΄κ²°λ°©μ•ˆ : λ†μž‘λ¬Όμž¬ν•΄μ±„κΆŒμ„ μ€‘μ‹¬μœΌλ‘œ

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :λ†κ²½μ œμ‚¬νšŒν•™λΆ€,2002.Maste
    corecore