27 research outputs found

    ๋ฌผ๊ณ ๊ธฐ์—์„œ ํ”ผ๋‚ญ์œ ์ถฉ ๋ถ„๋ฆฌ๋ฅผ ์œ„ํ•œ ์ธ๊ณต ํŽฉ์‹  ์šฉ์•ก์˜ ์‚ฐ์„ฑํ™”์— ๋Œ€ํ•œ ๊ตฌ์—ฐ์‚ฐ์˜ ํšจ๋Šฅ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜ํ•™๊ณผ, 2014. 8. ์‹ ์€ํฌ.Artificial digestive solution based on pepsin is essential for collecting metacercariae from fish. To promote the enzymatic reactivity of pepsin, the pH of the solution has to be adjusted to pH 1.0โ€“2.0. Hydrochloride (HCl) is usually used for this purpose, but the use of HCl raises safety concerns. The aim of this work was to address the usefulness of citric acid as an alternative for HCl for the acidification of pepsin solution, and to examine its potential to damage metacercariae during in vitro digestion as compared with HCl. Changes in pH after adding 1โ€“9% of citric acid (m/v) to pepsin solution were compared to a 1% HCl (v/v) addition. Digestion of fish muscle was evaluated by measuring released protein concentrations by spectrophotometry. In addition, survival rates of metacercariae in pepsin solution were determined at different citric acid concentrations and were compared that of with 1% HCl. The present study shows that addition of citric acid reduced the pH of pepsin solutions to the required level. Addition of more than 5% of citric acid resulted in the effective digestion of fish muscle over 3 h in vitro, and 5% citric acid was less lethal to metacercariae than 1% HCl in pepsin solution. Pepsin solution containing 5% citric acid had digestive capacity superior to pepsin solution containing 1% HCl after 3 h incubation with released protein concentrations of 12.0 ng/ml for 5% citric acid and 9.6 ng/ml for 1% HCl. The present study suggests that the addition of 5% citric acid to pepsin solution is a good alternative to 1% HCl in infection studies because citric acid is a stable at room temperature and has a good safety profile.Abstract i Contents iii List of tables and figures iv Introduction 1 Material and Methods 3 Results 5 Discussion 11 References 14 Abstract in Korean 16Maste

    A Zoning Method for Energy Balancing System Considering Thermal Characteristics of Building Zone and Economic Feasibility

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฑด์ถ•ํ•™๊ณผ, 2016. 2. ์—ฌ๋ช…์„.๊ฑด๋ฌผ์ด ๊ณ ์ธตํ™” ๋ฐ ๋Œ€ํ˜•ํ™”๋˜๋ฉด์„œ ๋‹จ์ผ ๊ฑด๋ฌผ ๋‚ด์—์„œ ๋ƒ‰๋ฐฉ์ˆ˜์š”์™€ ๋‚œ๋ฐฉ์ˆ˜์š”๊ฐ€ ๋™์‹œ์— ๋‚˜ํƒ€๋‚˜๋Š” ํ˜„์ƒ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณตํ•ฉ๋ถ€ํ•˜๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ฑด์ถ•๋ฌผ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•ด ์—๋„ˆ์ง€๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ๋ƒ‰๋ฐฉ ๋ฐ ๋‚œ๋ฐฉ์— ์‚ฌ์šฉํ•˜๋Š” ์—๋„ˆ์ง€๋ฅผ ์ €๊ฐํ•˜๋Š” ์‹œ์Šคํ…œ์ด ์ง€์†์ ์œผ๋กœ ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ๋‹ค. Energy Balancing ์‹œ์Šคํ…œ์€ ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ ์ค‘ ํ•˜๋‚˜์ด๋ฉฐ, ๋ƒ‰๋ฐฉ ์ˆ˜์š”์™€ ๋‚œ๋ฐฉ ์ˆ˜์š”์— ๋™์‹œ์— ๋Œ€์‘ ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์ด๋‹ค. Energy Balancing ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ ๋™์‹œ ๋ƒ‰ยท๋‚œ๋ฐฉ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ƒ‰๋ฐฉ์ˆ˜์š”๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ณต๊ฐ„์˜ ์˜จ์—ด์„ ํก์ˆ˜ํ•˜์—ฌ ๋ƒ‰๋ฐฉ์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ๋‚œ๋ฐฉ์ˆ˜์š”๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ๊ณต๊ฐ„์— ํก์ˆ˜ํ•œ ์—ด์„ ๊ณต๊ธ‰ํ•˜์—ฌ ๋‚œ๋ฐฉ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ด ๊ณผ์ •์„ ์‹คํ˜„์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ƒ‰๋งค์ˆœํ™˜ ์‚ฌ์ดํด์„ ์ด์šฉํ•œ๋‹ค. ์‚ฌ์ดํด์˜ ์‘์ถ• ๊ณผ์ •์„ ํ†ตํ•ด ๋‚œ๋ฐฉ์—๋„ˆ์ง€๋ฅผ ๊ณต๊ธ‰ํ•˜๊ณ , ์ฆ๋ฐœ ๊ณผ์ •์„ ํ†ตํ•ด ๋ƒ‰๋ฐฉ์—๋„ˆ์ง€๋ฅผ ๊ณต๊ธ‰ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Energy Balancing ์‹œ์Šคํ…œ์€ ๋ƒ‰ยท๋‚œ๋ฐฉ์ˆ˜์š”๊ฐ€ ๋ชจ๋‘ ์กด์žฌํ•˜์—ฌ์•ผ ๊ฐ€๋™๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์—ด ์ƒ์‚ฐ ํŠน์„ฑ์ƒ ๋Œ€์ƒ ๊ณต๊ฐ„์— Energy Balancing ์‹œ์Šคํ…œ์œผ๋กœ ์ƒ์‚ฐํ•˜๋Š” ์—ด์˜ ๋น„์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ƒ‰๋ฐฉ์ˆ˜์š”์™€ ๋‚œ๋ฐฉ์ˆ˜์š”๊ฐ€ ๋น„์Šทํ•œ ํฌ๊ธฐ๋กœ ๋น„์Šทํ•œ ์‹œ๊ฐ„์— ๋ฐœ์ƒํ•˜์—ฌ์•ผํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์กฐ๋‹ ๊ณผ์ •์„ ํ†ตํ•ด Energy Balancing ์‹œ์Šคํ…œ์ด ํšจ๊ณผ์ ์œผ๋กœ ๊ฐ€๋™๋˜๋Š” ์กด์˜ ์กฐ๊ฑด์„ ๋„์ถœํ•˜๊ณ , ์กด ๊ฐ„์˜ ์กฐํ•ฉ์„ ํ†ตํ•ด ์‹œ์Šคํ…œ์ด ๊ฐ€๋™๋˜๋Š” ๋ฒ”์œ„๋ฅผ ์„ค์ •ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ด๋‹ค. ์กด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ถ€ํ•˜์˜ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ , ๋ถ€ํ•˜์˜ ๋ฐœ์ƒ๋Ÿ‰ ๋ฐ ๋ฐœ์ƒ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์œ ํ˜•์„ ๊ตฌ๋ถ„ํ•˜์—ฌ ๊ฐ ์œ ํ˜•๋ณ„๋กœ ๋Œ€ํ‘œ๋ถ€ํ•˜๋ฅผ ๋„์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•  ๊ฒƒ์ด๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ตœ์ ํ™” ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•ด ๋„์ถœํ•œ ๋Œ€ํ‘œ ๋ถ€ํ•˜๋ฅผ ์กฐํ•ฉํ•˜์—ฌ Energy Balancing ์‹œ์Šคํ…œ์ด ํšจ๊ณผ์ ์œผ๋กœ ๊ฐ€๋™๋˜๋Š” ์กฐ๊ฑด์„ ์ฐพ๊ณ ์ž ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ชจ๋ธ ๊ฑด๋ฌผ์„ ์ด์šฉํ•˜์—ฌ ์ œ์‹œํ•œ ๋ฐฉ๋ฒ•์˜ ํšจ์šฉ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๊ฒฝ์ œ์„ฑ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์—์„œ ์ œ์‹œ๋œ Energy Balancing ์‹œ์Šคํ…œ์˜ ์—ด์  ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ ์กด์˜ ์œ ํ˜•๋ณ„ ๋ถ„๋ฅ˜ ๋ฐฉ๋ฒ•, ๋ถ„๋ฅ˜๋œ ๋Œ€ํ‘œ ๋ถ€ํ•˜์˜ ์กฐํ•ฉ ๋ฐฉ๋ฒ•, ์กฐํ•ฉ์„ ์ด์šฉํ•œ ์กฐ๋‹ ๋ฐฉ๋ฒ•์€ Energy Balancing ์‹œ์Šคํ…œ์ด ๊ฒฝ์ œ์ ์œผ๋กœ ์šด์šฉ๋˜๋Š”๋ฐ ๊ธฐ์ดˆ ์ž๋ฃŒ๊ฐ€ ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ์š”์•ฝํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. (1) Energy Balancing ์‹œ์Šคํ…œ์€ ๊ฑด๋ฌผ ๋‚ด๋ถ€์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์—ด์˜ ๊ตํ™˜์„ ํ†ตํ•ด ๋ƒ‰๋ฐฉ ์ˆ˜์š”์™€ ๋‚œ๋ฐฉ ์ˆ˜์š”๋ฅผ ๋™์‹œ์— ์ถฉ์กฑํ•˜๋Š” ์‹œ์Šคํ…œ์ด๋‹ค. ์‹œ์Šคํ…œ์˜ ๊ฐ€๋™์„ ์œ„ํ•ด์„œ๋Š” ๋ƒ‰ยท๋‚œ๋ฐฉ๋ถ€ํ•˜๊ฐ€ ๋ชจ๋‘ ํ•„์š”๋กœ ํ•˜๋ฏ€๋กœ ์‹œ์Šคํ…œ์˜ ์‹ค์ œ ์ ์šฉ์„ ์œ„ํ•ด์„œ๋Š” ๋ƒ‰ยท๋‚œ๋ฐฉ๋ถ€ํ•˜์— ๋Œ€ํ•œ ๊ณ ๋ ค๊ฐ€ ํ•„์š”ํ•˜๋‹ค. (2) ๊ฑด๋ฌผ ๋‚ด ๊ฐ ์กด์˜ ์—ด์  ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ, Energy Balancing ์‹œ์Šคํ…œ์„ ๊ฐ€๋™ํ•˜๋Š” ์กด๊ณผ ๋ณด์กฐ์—ด์›๋งŒ์„ ๊ฐ€๋™ํ•˜๋Š” ์กด์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์กด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ถ€ํ•˜๋Š” ์™ธํ”ผ๋ถ€ํ•˜์™€ ๋‚ด๋ถ€๋ถ€ํ•˜๋กœ ๊ตฌ๋ถ„๋˜๋Š”๋ฐ, ๊ฐ ๋ถ€ํ•˜์˜ ๋ฐœ์ƒ๋Ÿ‰๊ณผ ๋ฐœ์ƒ์‹œ๊ฐ„์— ๋”ฐ๋ผ์„œ ์กด์˜ ์œ ํ˜•์„ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์กด์˜ ๋ถ€ํ•˜ ๋ฐœ์ƒ๋Ÿ‰์˜ ํฌ๊ธฐ์™€ ๋ถ€ํ•˜์˜ ๋ฐœ์ƒ ์ฃผ๊ธฐ์— ๋”ฐ๋ผ ๋„ค ๊ฐ€์ง€์˜ ๋ถ„๋ฅ˜ ๊ธฐ์ค€์„ ์„ค์ •ํ•˜์˜€๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์—ด์  ํŠน์„ฑ์— ๋”ฐ๋ผ ๋‹ค์„ฏ ์ข…๋ฅ˜์˜ ์—ฐ๊ฐ„๋ถ€ํ•˜๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ๋Œ€ํ‘œ ์—ฐ๊ฐ„๋ถ€ํ•˜๋Š” ๋Œ€๋Ÿ‰์˜ ๋‚œ๋ฐฉ๋ถ€ํ•˜๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ์กด, ๋Œ€๋Ÿ‰์˜ ๋ƒ‰๋ฐฉ๋ถ€ํ•˜๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ์กด, ๋‚ด๋ถ€๋ถ€ํ•˜ ์ค‘์‹ฌ์˜ ์™ธ๊ธฐ ์˜ํ–ฅ์„ ์ผ๋ถ€ ๋ฐ›๋Š” ์กด, ์™ธํ”ผ๋ถ€ํ•˜ ์ค‘์‹ฌ์˜ ์‹ค๋‚ด ๋ถ€ํ•˜ ์˜ํ–ฅ์„ ์ผ๋ถ€ ๋ฐ›๋Š” ์กด, ์™ธํ”ผ ๋ถ€ํ•˜์™€ ์‹ค๋‚ด๋ถ€ํ•˜ ๋ชจ๋‘ ์ ๊ฒŒ ๋ฐœ์ƒํ•˜๋Š” ์กด์˜ ๋‹ค์„ฏ ์ข…๋ฅ˜๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค. (3) Energy Balancing ์‹œ์Šคํ…œ์œผ๋กœ ์ƒ์‚ฐํ•˜๋Š” ์—ด๋Ÿ‰ ๊ณ„์‚ฐ์˜ ๋‹จ์ˆœํ™”๋ฅผ ์œ„ํ•ด, ์—ฐ๊ฐ„ ๋Œ€ํ‘œ๋ถ€ํ•˜๋ฅผ ๋ณด์ •ํ•˜์˜€๋‹ค. ๋ถ€ํ•˜์˜ ๋ณ€๋™์„ ๊ธฐ์ค€์œผ๋กœ 1๋…„์„ ์ผ๊ณฑ ๊ธฐ๊ฐ„์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜์˜€๋‹ค. ๊ฐ ๊ธฐ๊ฐ„์— ๋ฐœ์ƒํ•˜๋Š” ๋ƒ‰๋ฐฉ๋ถ€ํ•˜ ํ•ฉ๊ณ„์™€ ๋‚œ๋ฐฉ๋ถ€ํ•˜์˜ ํ•ฉ๊ณ„๋ฅผ ์ด์šฉํ•˜๋ฉด Energy Balancing ์‹œ์Šคํ…œ์œผ๋กœ ์ƒ์‚ฐํ•˜๋Š” ์—ด๋Ÿ‰์„ ๊ณ„์‚ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๊ฒฝ์šฐ, ๋ƒ‰๋ฐฉ๋ถ€ํ•˜์˜ ํ•ฉ๊ณ„์™€ ๋‚œ๋ฐฉ๋ถ€ํ•˜์˜ ํ•ฉ๊ณ„ ์ค‘ ๋” ์ž‘์€ ๊ฐ’์ด Energy Balancing ์‹œ์Šคํ…œ์œผ๋กœ ์ƒ์‚ฐํ•˜๋Š” ์—ด๋Ÿ‰์˜ ํฌ๊ธฐ๊ฐ€ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ƒ‰๋ฐฉ๋ถ€ํ•˜์˜ ํ•ฉ๊ณ„์™€ ๋‚œ๋ฐฉ๋ถ€ํ•˜์˜ ํ•ฉ๊ณ„์˜ ์ฐจ์ด๊ฐ€ ์ ์„์ˆ˜๋ก Energy Balancing ์‹œ์Šคํ…œ์œผ๋กœ ์ƒ์‚ฐํ•˜๋Š” ์—ด๋Ÿ‰์˜ ๋น„์œจ์ด ๋†’์•„์ง„๋‹ค. ์ด ์›๋ฆฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐ ๊ธฐ๊ฐ„์˜ ๋Œ€ํ‘œ๋ถ€ํ•˜๋ฅผ ์กฐํ•ฉํ•˜์—ฌ ๋ƒ‰๋ฐฉ๋ถ€ํ•˜์™€ ๋‚œ๋ฐฉ๋ถ€ํ•˜์˜ ์ฐจ๊ฐ€ 0์— ๊ทผ์ ‘ํ•˜๋Š” ๊ฒฝ์šฐ๋ฅผ ๊ตฌํ•œ๋‹ค. ์ตœ์ ํ™”๋ฅผ ์ด์šฉํ•ด ๊ฐ ๊ธฐ๊ฐ„๋ณ„๋กœ ๋„์ถœํ•œ ์กด์˜ ์กฐํ•ฉ ์ค‘ ์—ฌ๋Ÿฌ ๊ธฐ๊ฐ„์„ ํฌ๊ด„ํ•  ์ˆ˜ ์žˆ๋Š” ์กฐํ•ฉ์„ ๊ตฌํ•˜์˜€๋‹ค. ์ด ์กฐํ•ฉ์„ ์‹ค์ œ ๊ฑด๋ฌผ์— ์ ์šฉํ•˜์—ฌ ์กฐ๋‹์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. (4) ์กฐํ•ฉ์ด ๊ฒฝ์ œ์ ์ธ ํšจ๊ณผ๊ฐ€ ์žˆ๋Š”์ง€ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๊ฒฝ์ œ์„ฑ ๋ถ„์„์„ ํ•˜์˜€๋‹ค. TRNSYS๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์šฉ๋„์˜ ์กด์ด ๋ถ„ํฌ๋œ ์ฃผ์ƒ๋ณตํ•ฉ ๊ฑด๋ฌผ์„ ๋ชจ๋ธ๋งํ•˜์˜€๋‹ค. ์กฐ๋‹์„ ์ ์šฉํ•˜์—ฌ ์กฐํ•ฉ์— ํ•ด๋‹นํ•˜๋Š” ์กด๋งŒ Energy Balancing ์‹œ์Šคํ…œ์„ ๊ฐ€๋™ํ•˜๋Š” ๊ฒฝ์šฐ์™€, ์กฐ๋‹์„ ์ ์šฉํ•˜์ง€ ์•Š์•„ ๊ฑด๋ฌผ ์ „์ฒด์— Energy Balancing ์‹œ์Šคํ…œ์„ ๊ฐ€๋™ํ•˜๋Š” ๊ฒฝ์šฐ๋กœ ๋‚˜๋ˆ„์–ด์„œ ๊ฒฝ์ œ์„ฑ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ดˆ๊ธฐ๋น„์šฉ๊ณผ ์šด์˜๋น„ ์ธก๋ฉด ๋ชจ๋‘ Energy Balancing ์‹œ์Šคํ…œ์˜ ์กฐ๋‹์„ ์ ์šฉํ•œ ๊ฒฝ์šฐ๊ฐ€ ๊ฒฝ์ œ์ ์ธ ์ด์ต์ด ์žˆ์Œ์„ ํ™•์ธ ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด Energy Balancing ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์กฐ๋‹์˜ ํšจ๊ณผ๋ฅผ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.์ œ 1 ์žฅ ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1.2 ์—ฐ๊ตฌ ๋ฒ”์œ„ ๋ฐ ๋ฐฉ๋ฒ• 5 ์ œ 2 ์žฅ Energy Balancing ์‹œ์Šคํ…œ๊ณผ ์กฐ๋‹์— ๊ด€ํ•œ ์˜ˆ๋น„์  ๊ณ ์ฐฐ 8 2.1 ๊ฐœ์š” 8 2.2 Energy Balancing ์‹œ์Šคํ…œ์˜ ์›๋ฆฌ ๋ฐ ์—ด์  ํŠน์„ฑ 9 2.2.1 Energy Balancing ์‹œ์Šคํ…œ์˜ ์›๋ฆฌ 9 2.2.2 Energy Balancing ์‹œ์Šคํ…œ์˜ ์—ด์  ํŠน์„ฑ 14 2.3 ๊ฑด๋ฌผ ๋ถ€ํ•˜ํŒจํ„ด ๋„์ถœ 16 2.4 Energy Balancing ์‹œ์Šคํ…œ์œผ๋กœ ์ƒ์‚ฐํ•œ ์—ด๋Ÿ‰ ๊ณ„์‚ฐ ๋ฐฉ๋ฒ• 21 2.5 ์†Œ๊ฒฐ 26 ์ œ 3 ์žฅ Energy Balancing ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์กฐ๋‹ ๋ฐฉ๋ฒ• 28 3.1 ๊ฐœ์š” 28 3.2 Energy Balancing ์‹œ์Šคํ…œ์˜ ์—ด ์ˆœํ™˜ ํ”„๋กœ์„ธ์Šค 30 3.3 ์กด์˜ ์—ด์  ํŠน์„ฑ์— ๋”ฐ๋ฅธ ์œ ํ˜• ๊ตฌ๋ถ„ 32 3.3.1 ๋ƒ‰ ๋‚œ๋ฐฉ๋ถ€ํ•˜ ์š”์†Œ์— ๋”ฐ๋ฅธ ์กด ๊ตฌ๋ถ„ ๊ธฐ์ค€ ์ œ์‹œ 32 3.3.2 ์กด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ถ€ํ•˜ ๊ตฌ์„ฑ์š”์†Œ 34 3.3.3 ์กด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ถ€ํ•˜์— ๋”ฐ๋ฅธ ์œ ํ˜• ๋ถ„๋ฅ˜ 39 3.4 ๋ถ€ํ•˜ ์œ ํ˜• ๋ณ„ ๋Œ€ํ‘œ๋ถ€ํ•˜ ์„ ์ • 43 3.4.1 ์กด ์œ ํ˜• ๋ณ„ ๋Œ€ํ‘œ๋ถ€ํ•˜ ์„ค์ • 43 3.4.2 ๋Œ€ํ‘œ๋ถ€ํ•˜์˜ ๋ถ€ํ•˜ํŠน์„ฑ์— ๋”ฐ๋ฅธ ๊ธฐ๊ฐ„๊ตฌ๋ถ„ ๋ฐ Energy Balancing ์‹œ์Šคํ…œ์œผ๋กœ ์ƒ์‚ฐํ•œ ์—ด๋Ÿ‰ ๋„์ถœ๋ฐฉ๋ฒ• 46 3.5 ๋Œ€ํ‘œ๋ถ€ํ•˜์˜ ์กฐํ•ฉ์„ ํ†ตํ•œ Energy Balancing ์‹œ์Šคํ…œ์œผ๋กœ ์ƒ์‚ฐํ•œ ์—ด๋Ÿ‰ ๋„์ถœ 49 3.5.1 ๋ถ€ํ•˜ ์กฐํ•ฉ์˜ ์ˆ˜์‹ํ™” 49 3.5.2 ์ตœ์ ํ™”๋ฅผ ์ด์šฉํ•œ ๋ณ€์ˆ˜ ๋„์ถœ 50 3.6 ํด๋Ÿฌ์Šคํ„ฐ๋ง ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ์กด ๋ถ€ํ•˜์˜ ์œ ํ˜•๋ณ„ ๋ถ„๋ฅ˜ 52 3.7 ์†Œ๊ฒฐ 53 ์ œ 4 ์žฅ Energy Balancing ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ตœ์  ์กฐ๋‹ ๋ฐฉ๋ฒ•์˜ ์ ์šฉ ๋ฐ ๊ฒ€์ฆ 56 4.1 ๊ฐœ์š” 56 4.2 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฑด๋ฌผ์˜ ์ œ์› ๋ฐ ๊ณต๊ฐ„๊ตฌํš 57 4.3 Energy Balancing ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์กฐ๋‹ ๋ฐฉ๋ฒ•์˜ ์ ์šฉ 68 4.3.1 ๋Œ€ํ‘œ๋ถ€ํ•˜ ๋„์ถœ 68 4.3.2 Energy Balancing ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์กฐ๋‹ ์ตœ์ ํ™” 72 4.4 Life cycle cost (LCC) ๋ถ„์„์„ ์ด์šฉํ•œ ์กฐ๋‹ ๋ฐฉ๋ฒ•์˜ ๊ฒ€์ฆ 77 4.5 ์†Œ๊ฒฐ 83 ์ œ 5 ์žฅ ๊ฒฐ ๋ก  85Maste

    ์ค‘๋“ฑํ•™์ƒ์˜ ๋ฌผ๋ฆฌ ํ•™์Šต์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ํƒœ๋„, ํฅ๋ฏธ, ๊ฐœ๋…์ดํ•ด, ์„ฑ์ทจ๋„ ๊ฐ„์˜ ์ธ๊ณผ๊ด€๊ณ„

    No full text
    Thesis(doctors) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณผํ•™๊ต์œก๊ณผ(๋ฌผ๋ฆฌ์ „๊ณต),2008. 8.Docto

    ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ• ์ •์ฑ… ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ตญ์ œํ•™๊ณผ(๊ตญ์ œ์ง€์—ญํ•™์ „๊ณต), 2012. 2. ์กฐ์˜๋‚จ.์ค‘๊ตญ์€ 1998๋…„ ์ค‘๊ตญ ๊ตญ๋ฐฉ๋ฐฑ์„œ ๋ฐœ๊ฐ„์ดํ›„ ์ค„๊ณง ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ•์„ ๊ฐ•์กฐํ•˜์—ฌ ์™”๋‹ค. ํ•˜์ง€๋งŒ ๊ตญ์ œ์‚ฌํšŒ์˜ ์ค‘๊ตญ ๊ตฐ์‚ฌ๋ ฅ์— ๋Œ€ํ•œ ํ‰๊ฐ€๋Š” ์ด์— ๋Œ€ํ•œ ์„ฑ๊ณผ๋ณด๋‹ค๋Š” ์šฐ๋ ค๋ฅผ ํ‘œ์‹œํ•˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด ๋…ผ๋ฌธ์€ ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ• ์ •์ฑ…์„ ๊ณ ์ฐฐํ•˜์—ฌ ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ•์ด ์ ์šฉ๋˜๋Š” ์˜์—ญ์—์„œ์˜ ์ „๊ฐœ๊ณผ์ •๊ณผ ๊ทธ ํŠน์ง• ๋ฐ ์„ฑ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ๊ตญ์ œ์•ˆ๋ณดํ™˜๊ฒฝ์— ๋Œ€ํ•œ ๊ธฐ์—ฌ๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ด ๋ถ„์•ผ์— ๋Œ€ํ•œ ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ ์ค‘๊ตญ๊ณผ ํŠน์ •๊ตญ๊ฐ€ ๋˜๋Š” ์ง€์—ญ์—์„œ์˜ ์‹ ๋ขฐ๊ตฌ์ถ•์กฐ์น˜๊ฐ€ ์–ด๋–ป๊ฒŒ ์ž‘์šฉํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ๋…ผ์˜ ๋˜๋Š” 90๋…„๋Œ€์˜ ์ค‘๊ตญ์˜ ์ ‘๊ทผ๋ณ€ํ™”์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ• ์ •์ฑ… ์ „๋ฐ˜ ๋ฐ 2000๋…„๋Œ€ ์ดํ›„์˜ ๋ฐœ์ „๊ณผ์ •์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ฏธํกํ•œ ์‹ค์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์€ ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ•์ด ์ ์šฉ๋˜๋Š” ์˜์—ญ์ธ ๊ตญ๊ฒฝ์ง€์—ญ, ํ•ด์ƒ์•ˆ๋ณด, ์ง€์—ญ์•ˆ๋ณด, ๊ตฐ์‚ฌ๊ต๋ฅ˜ ๋ฐ ํ˜‘๋ ฅ, ๋ฒ”์„ธ๊ณ„์  ์‹ ๋ขฐ๊ตฌ์ถ• ๊ทธ๋ฆฌ๊ณ  ๊ตฐ์‚ฌํˆฌ๋ช…์„ฑ์˜ ๊ฐ ๋ถ„์•ผ์—์„œ ์—์„œ์˜ ์ „๋ฐ˜์  ์ „๊ฐœ๊ณผ์ •๊ณผ ๋ฐœ์ „์—ฌ๋ถ€๋ฅผ ๊ณ ์ฐฐํ•˜๊ณ  ํŠนํžˆ 2000๋…„๋Œ€ ์ดํ›„์˜ ์ถ”์„ธ์— ๋”์šฑ ์ฃผ๋ชฉํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋‘ ๊ฐ€์ง€๋ฅผ ์ฃผ์žฅํ•œ๋‹ค. ์ฒซ์งธ, ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ•์€ ๋ชจ๋“  ์˜์—ญ์—์„œ ๊ณผ๊ฑฐ์— ๋น„ํ•ด ๋ฐœ์ „ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐœ์ „์–‘์ƒ์€ ๋‹ค๋งŒ ์˜ํ† ๋ณด์ „๊ณผ ์ฃผ๊ถŒ ๊ทธ๋ฆฌ๊ณ  ๊ฒฝ์ œ์  ์ด์ต๊ณผ ์ƒ์ถฉ์—ฌ๋ถ€์— ๋”ฐ๋ผ ์˜์—ญ๋ณ„๋กœ ์ฐจ์ด๊ฐ€ ๋‚˜๋Š” ๋ถˆ๊ท ํ˜•ํ•œ ๋ฐœ์ „์„ ๋ณด์ธ๋‹ค. ๋‘˜์งธ, ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ•์€ ์ ์ง„์ ์ด์ง€๋งŒ ๊ตญ์ œ์•ˆ๋ณดํ™˜๊ฒฝ์— ๊ธ์ •์  ๋ฐฉํ–ฅ์œผ๋กœ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋ƒ‰์ „์‹œ๊ธฐ ๋™์„œ ํ™”ํ•ด์˜ ์ˆ˜๋‹จ์œผ๋กœ ์‹œ์ž‘ํ•œ ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ•์€ ๋ƒ‰์ „์ดํ›„ ์ฃผ์š” ๋ถ„์Ÿํ•ด๊ฒฐ์„ ์œ„ํ•œ ์ˆ˜๋‹จ์œผ๋กœ ํ™œ์šฉ๋˜์–ด ์™”์œผ๋ฉฐ ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ• ์ •์ฑ…์€ 90๋…„๋Œ€ ๋ƒ‰์ „ ์ดํ›„ ๊ฒฝ์ œ์„ฑ์žฅ์„ ์œ„ํ•œ ์•ˆ์ •์  ๋Œ€์™ธ ํ™˜๊ฒฝ์กฐ์„ฑ์ด๋ผ๋Š” ์™ธ๊ต ์ „๋žต์˜ ๋ชฉํ‘œ์•„๋ž˜ ํ‰ํ™”๊ณต์กด 5์›์น™๊ณผ ์‹ ์•ˆ๋ณด๊ด€์ด๋ผ๋Š” ์™ธ๊ต๋ฐฉ์นจ์„ ๋”ฐ๋ฅด๋Š” ์ฃผ์š”ํ•œ ๊ตฐ์‚ฌ์™ธ๊ต ์ „๋žต์˜ ์ผ๋ถ€๋กœ ์ ์šฉ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ•์€ ์ „ ์˜์—ญ์—์„œ ์ „๋ฐ˜์ ์ธ ๋ฐœ์ „์ด ์žˆ์—ˆ๋‹ค. ๊ทธ ์ค‘ ์ค‘๊ตญ์˜ ๊ตญ๊ฐ€์ด์ต๊ณผ ์ƒ์ถฉ ์—†์ด ๋น ๋ฅธ ๋ฐœ์ „์„ ์ด๋ฃฌ ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ•์˜ ๋Œ€ํ‘œ์ ์ธ ๋ถ„์•ผ๊ฐ€ ๋ฐ”๋กœ ๊ตญ๊ฒฝ์ง€์—ญ ์‹ ๋ขฐ๊ตฌ์ถ•์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๊ตญ๊ฒฝ์„ ํ™•์ •ํ•˜๊ณ  ๋Œ€๋Œ€์ ์ธ ๋ณ‘๋ ฅ๊ฐ์ถ•์„ ๊ฐํ–‰ํ•˜์˜€๊ณ  ๊ตญ๊ฒฝ๋ฌธ์ œ์˜ ์ด๋Ÿฌํ•œ ์‹ ๋ขฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ •์น˜โ€ค๊ฒฝ์ œโ€ค์•ˆ๋ณด์˜์—ญ์˜ ์‹ ๋ขฐ๊ตฌ์ถ•์ด ํ™•๋Œ€๋˜๋Š” ํ˜„์ƒ์ด ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ํ˜„์žฌ ์ƒ๋‹นํžˆ ํ‰ํ™”์ ์ธ ๋ถ„์œ„๊ธฐ๊ฐ€ ํ˜•์„ฑ๋˜์—ˆ๋‹ค. ๊ตญ๊ฒฝ๋ฌธ์ œ์™€ ์ด์™ธ์—๋„ ์ƒ๋‹นํ•œ ๋ฐœ์ „์„ ๋ณด์ธ ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ•์˜์—ญ์€ ์ง€์—ญ์•ˆ๋ณด์™€ ๊ตฐ์‚ฌ๊ต๋ฅ˜ ๋ฐ ํ˜‘๋ ฅ ๊ทธ๋ฆฌ๊ณ  ๊ตญ์ œ์•ˆ๋ณด์˜ ์˜์—ญ์—์„œ์˜ ์‹ ๋ขฐ๊ตฌ์ถ•์ด๋‹ค. ์ด๋Ÿฌํ•œ ์˜์—ญ์—์„œ๋Š” ์ฃผ๊ถŒ ๋ฐ ์˜ํ† ๋ณด์ „ ๋ฌธ์ œ๋ณด๋‹ค๋Š” ์ฃผ๋กœ ๋น„์ „ํ†ต ์•ˆ๋ณด์˜์—ญ์— ๋Œ€ํ•œ ํ˜‘๋ ฅ ๊ฐ•ํ™”์˜ ๋ฐฉํ–ฅ์œผ๋กœ ์ถ”์ง„๋˜์—ˆ์œผ๋ฏ€๋กœ ๋น„๊ต์  ์‰ฝ๊ฒŒ ์ถ”์ง„๋  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ARF, SCO์™€ ๊ฐ™์€ ์ง€์—ญ ๋‹ค์ž์•ˆ๋ณดํ˜‘๋ ฅ ๊ธฐ์ œ๋ฅผ ํ™œ์šฉํ•œ ์‹ ๋ขฐ๊ตฌ์ถ•๋…ธ๋ ฅ๊ณผ ๊ตฐ์‚ฌ๊ต๋ฅ˜ ๋ฐ ํ˜‘๋ ฅ, UN ํ‰ํ™”์œ ์ง€ํ™œ๋™๊ณผ ์•„๋ด๋งŒ ๊ตฐํ•จํŒŒ๊ฒฌ, ์ธ๋„์ฃผ์˜ ์›์กฐ ๋ฐ ์žฌ๋‚œ๊ตฌํ˜ธ์™€ ๊ฐ™์€ ๋ฒ”์„ธ๊ณ„์  ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ• ์—ญ์‹œ ์ด์ต์˜ ์ƒ์ถฉ ์—†์ด ๊ธ‰์†ํ•œ ์ง„์ „์„ ๋ณด์—ฌ ์™”๋‹ค. ๋ฐ˜๋ฉด ์ค‘๊ตญ์˜ ์˜ํ† ๋ณด์ „๊ณผ ์ฃผ๊ถŒ๋ฌธ์ œ ๋˜๋Š” ๊ฒฝ์ œ์  ์ด์ต๊ณผ ๊ฒฐ๋ถ€๋œ ์•ˆ๋ณด๋ฌธ์ œ์—์„œ๋Š” ์‹ ๋ขฐ๊ตฌ์ถ•์— ํฐ ์ง„์ „์„ ์ด๋ฃจ์ง€ ๋ชปํ•˜์˜€๋‹ค. ๋Œ€ํ‘œ์ ์ธ ์‚ฌ๋ก€๋Š” ํ•ด์ƒ์•ˆ๋ณด ์˜์—ญ์ด๋‹ค. ์ด ์˜์—ญ์—์„œ๋Š” ์˜ํ† ๋ณด์ „ ๋ฌธ์ œ์™€ ์ฃผ๊ถŒ๊ณผ ๋”๋ถˆ์–ด ๊ฒฝ์ œ์  ์ด์ต์ด ๊ฒฐํ•ฉ๋˜๋ฉด์„œ ๋ถ„์Ÿ๊ตญ๋“ค ๊ฐ„์˜ ์‹ ๋ขฐ๊ตฌ์ถ•์ด ํ˜•์„ฑ๋˜๊ธฐ ์–ด๋ ค์šฐ๋ฉฐ ๋‹ค๋งŒ ์ง€์†์ ์ธ ๋…ธ๋ ฅ์„ ํ†ตํ•˜์—ฌ ๊ฐˆ๋“ฑํšŒํ”ผ์˜ ์ƒํ™ฉ์„ ๋งŒ๋“ค์–ด๋‚ด๋Š”๋ฐ ๊ทธ์น˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌํˆฌ๋ช…์„ฑ ๋ฌธ์ œ๋Š” ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌ๋ ฅ์˜ ์™ธ๋ถ€์ธ์‹์— ๊ฐ€์žฅ ํฐ ์˜ํ–ฅ์„ ์ฃผ๋ฉฐ ์ค‘๊ตญ์˜ ์‹ ๋ขฐ๊ตฌ์ถ• ์ •์ฑ…์˜ ๋ฐœ์ „์— ๊ฐ€์žฅ ํฐ ์ €ํ•ด์š”์†Œ๋กœ ์ž‘์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์ค‘๊ตญ์˜ ๊ตญ๋ฐฉ๋ฐฑ์„œ ๋ฐœ๊ฐ„ ๋“ฑ์˜ ๋…ธ๋ ฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ตญ์ œ์‚ฌํšŒ์™€ ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌ ํˆฌ๋ช…์„ฑ์— ๋Œ€ํ•œ ์ž…์žฅ์˜ ์ฐจ์ด๋Š” ๋ฏธ๊ตญ, ์ผ๋ณธ, ๋Œ€๋งŒ ๋“ฑ์˜ ์ฃผ๋ณ€๊ตญ์ด ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌ๋ ฅ์— ๋Œ€ํ•œ ์ธ์‹์— ๋ถ€์ •์  ์˜ํ–ฅ์„ ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ ์ค‘๊ตญ์˜ ๊ตญ๋ฐฉ๋ฐฑ์„œ์— ๊ณต๊ฐœ๋˜๋Š” ์ž๋ฃŒ์˜ ํˆฌ๋ช…์„ฑ ์—ญ์‹œ ๊ตญ์ œ์‚ฌํšŒ์˜ ๊ธฐ์ค€์— ๋ชป ๋ฏธ์น˜๋Š” ์ˆ˜์ค€์— ๋จธ๋ฌผ๋Ÿฌ ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์ด ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌ์‹ ๋ขฐ๊ตฌ์ถ•์€ ์ „ ์˜์—ญ์—์„œ ๋ฐœ์ „์ด ์žˆ์–ด์™”์œผ๋ฉฐ ์ด๋Ÿฌํ•œ ์ถ”์„ธ๋Š” ์ ์ง„์ ์ด์ง€๋งŒ ์ง€์†์ ์œผ๋กœ ์œ ์ง€๋˜๊ณ  ์žˆ๋‹ค. ๋น„๋ก ์˜ํ† ๋ณด์ „, ์ฃผ๊ถŒ, ๊ฒฝ์ œ์  ์ด์ต์ด ์ƒ์ถฉ๋˜๋Š” ๋ถ„์•ผ์—์„œ์˜ ๊ตฐ์‚ฌ์‹ ๋ขฐ๊ตฌ์ถ•์˜ ๋ฐœ์ „์€ ๊ทธ๋ ‡์ง€ ์•Š์€ ์˜์—ญ์— ๋น„ํ•ด ํ˜„์ €ํžˆ ์ €์กฐํ•œ ์ƒํƒœ๋ฅผ ๋ณด์ด๋ฉด์„œ ์ „์ฒด์ ์œผ๋กœ ๋ถˆ๊ท ํ˜•ํ•œ ๋ฐœ์ „์–‘์ƒ์„ ๋ณด์ด๊ณ  ์žˆ์ง€๋งŒ ์ด๋Ÿฌํ•œ ํ˜„์ƒ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๊ณ ๋ คํ•  ๋•Œ ์ค‘๊ตญ์˜ ๊ตฐ์‚ฌ ์‹ ๋ขฐ๊ตฌ์ถ• ์ •์ฑ…์€ ๊ตญ์ œ์•ˆ๋ณด ํ™˜๊ฒฝ์— ๊ธ์ •์ ์ธ ๋ฐฉํ–ฅ์œผ๋กœ ์ถ”์ง„๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๋‹ค์–‘ํ•œ ์•ˆ๋ณด๋ฌธ์ œ์—์„œ ํ‰ํ™”์ ์ธ ํ•ด๊ฒฐ์„ ์œ„ํ•œ ๋…ธ๋ ฅ์ด ๋”์šฑ ์ฆ๊ฐ€ํ•  ๊ฒƒ์ด๋‹ค.Following the publication of its defense white papers in 1998, China began to emphasize military confidence-building. However, the international community continues to view China's military power pessimistically. In this paper, the procedure, characteristics and achievements of China's military confidence-building policy are examined relative to several security areas, and evaluated according to its contributions to the global security environment. Previous studies on this topic have typically focused on issues like bilateral or multilateral Confidence Building Measures concerning countries in a specific area or China's changing approach to confidence-building beginning in 1990s. Thus, there is little research regarding the consistent, overall confidence-building policy of China, especially since the 2000s. This paper divides China's military confidence-building activities into six security areas, namely, border areas, maritime security, regional security, military exchanges and cooperation, global confidence-building and military transparency. Particularly focusing on the overall development of procedures after 2000, the following arguments are put forward: First, China's military confidence-building has developed in every security area and where levels of development show disparity, this is due to conflicting national interests or disputed territory. Second, China's military confidence-building has developed incrementally and is proceeding positively toward greatly contributing to the global security environment. Military confidence-building began as a means to reconcile West and East during the Cold War, while following this period it came to be utilized universally as a means for resolving tension and conflict. China has adopted CBMs as a part of strategies such as the "Five Principles of Peaceful Co-existence" and the "New Security Concept" created to spur economic development and a stable external environment. While the development of China's military confidence-building can be observed in every security area, particularly border areas CBMs, where conflicts of national interests are conspicuously absent, have achieved rapid success. As a result, China has begun to clearly demarcate and disarm its borders. In other words, the border areas have been managed quite peacefully. This is important because it can lead to additional political, economic and security cooperation. The categories of regional security, military exchanges and cooperation and global security are also well-managed security areas where confidence-building has met with success. In these areas, typical issues have differed greatly from the likes of territorial disputes, being rather less complex non-traditional security matters. Here, China's confidence-building has developed by participating in multilateral security mechanisms such as the ARF and the SCO, conducting active military exchanges and joint drills and increasing activities like UN peacekeeping operations. On the other hand, confidence-building policy has achieved relatively less progress in those areas where national interests like territorial integrity, sovereignty and economic interests are conflicting. Maritime security is one of these areas, where due to the complicated interests involved it is rather difficult to build trust among parties and the task of avoiding disputes can often be quite taxing. Military transparency influences perceptions of China's military power. However, Chinas perceived deficiency in this regard has been a major barrier to the development of confidence-building policy. Despite efforts to the contrary, such as the publication of defense white papers, there is a decided perception gap between China and the international community, which is the main reason for Chinas overall negative image. The U.S, Japan and Taiwan provide representative examples of those that view China's transparency as insufficient. Indeed, the defense white papers are simply not up to the standards of transparency expected by the international community. Paradoxically, China's military confidence-building has improved in every security area and although this trend is incremental, it is consistent. However, the level of development differs depending on the security area. Generally, development has been better in areas where there are no conflicts of interest and worse in those where there are. However, the overall change is positive, while China's utilizations of peaceful means to mitigate conflict and tension are likely to increase in the future.Maste

    Application of welded wire mesh for shear reinforcement in multi-tee slab systems

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ฑด์ถ•ํ•™๊ณผ,2009.8.Maste

    ์ € NOx ๋ชจํ˜• ๊ฐ€์Šคํ„ฐ๋นˆ ์—ฐ์†Œ๊ธฐ์—์„œ ํ™”์—ผ๊ตฌ์กฐ ๋ฐ ์—ฐ์†Œ๋™ํŠน์„ฑ์— ๋Œ€ํ•œ ์‹คํ—˜์  ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2016. 2. ์œค์˜๋นˆ.There has been increased demand in recent years for low NOx gas turbines to meet stringent emissions goals by operating in a lean, premixed combustion and an advanced combustion system for aero gas turbine engine such as the Rich-Burn, Quick-Mix, Lean-Burn (RQL) combustor. Unfortunately, detrimental combustion instabilities are often excited within the combustor when it operates under lean and rich equvalence ratio conditions, degrading performance and reducing combustor life. To eliminate the onset of these combustion instabilities and develop effective approaches for their control, the mechanisms responsible for their combustion oscillation chartacteristics and jet spray mechanism of secondary quick mix zone must be understood. The main objective of this study was conducted to identify the secondary spray jet mechanism for the turbulent quick mixing zone and combustion instability characteristics in a swirl-stabilized and partially premixed model gas turbine combustor, with the attention focused on the effect of the various fuel-air mixing section geometries, fuel-air mixture velocities and effect of the formation of recirculation zones and vortex interaction on the combustion instability characteristics. Lastly, for the confirmed the this experimental study and analyzed mechanisms, we investigated an optimized operating strategy and developed a combustion tuning methodology for the GE 7FA+e DLN-2.6 (DLN : Dry Low NOx) ground state gas turbine engine used for power generation operated by Korea Western Power Co. Ltd. at Seo-Incheon power plant, Incheon, Republic of Korea. The flame recirculation zone is very important, as it can modulate the fuel flow rate and may be the source of instability, plus its flame structure has a major impact on heat release rate oscillation and flame stabilization. This study addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with attention focused on the effect of the formation of recirculation zones and vortex interaction on the combustion instability. To improve our understanding of the role of the recirculation zone and vortex combustion instability, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the laser diagnostics of Particle Image Velocimetry (PIV) measurement, while OH chemiluminescence was used to characterize the flow structure under both cold flow conditions and hot flow combustion conditions. and heat release oscillation rate with the use of a high-speed ICCD camera under both stable and unstable flame conditions. Multi-channel dynamic pressures were also measured at the same time to investigate characteristics of the combustion phenomenon. We also observed fundamental longitudinal type of combustion instability characteristics related to the instability of thermo-acoustics. The result suggests that the formation of the recirculation zone is strongly related to the occurrence of combustion instabilities. The effect of fuel-air mixture velocity on combustion instability characteristics have been investigated by measuring the flame structure, dynamic pressure mode and phase. The swirling CH4 - air flame was investigated with an overall equivalence ratio of 1.2 to lean blowout limit and dump plane velocity of 30 ~ 70 m/s. Phase locking analysis was performed to identify structural changes at each phase of the reference dynamic pressure sensor under conditions of instability. At an unstable condition, flame root size varies a lot compared to stable condition which is because of air and fuel mixture flow rate changes due to combustor pressure modulation. After this structural change, local extinction and re-ignition occur and it can generate a feedback loop for combustion instability. This analysis suggests that pressure fluctuation of combustion causes deformation of flame structure and variation of flame has a strong effect on combustion instability. In this section, we observed two types of combustion instability characteristics related to the instability of both the thermo-acoustics and flame vortex interaction mode. To investigate the instability characteristics of combustor geometry. The combustor and inlet mixing section length was varied in order to have different acoustic resonance characteristics from 800 to 1680 mm of the combustor and 470, 550 and 870 mm of the inlet mixing section. In this study, we observed two dominant instability frequencies. Lower instability frequencies were obtained around 240 ~ 380 Hz, which were associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed around 410 ~ 830 Hz. These were related to the secondary longitudinal mode in the combustion chamber and the secondary quarter wave mode in the inlet mixing section. These second mode instability frequency characteristics are coupled with the conditions of the combustor and inlet mixing section acoustic geometry. Also, these higher combustion instability characteristics include dynamic pressure oscillation of the inlet mixing section part, which was larger than the combustor section. As a result, combustion instability was strongly affected by the acoustically coupling characteristics of the combustor and inlet mixing section geometry, which is called the plenum. The effects of variable angled injection characteristics for quick mixing zone such as liquid column trajectory and breakup length has been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity and injection angle were varied to provide of jet operation conditions. The pulsed shadowgraph photography with highly resolution and PLLIF (Planar Liquid Laser Induced Fluorescence) measurements were used for determined the liquid column trajectory and breakup length of angles spray. As the result, this research has been shown that liquid column trajectories and liquid column breakup length were spatially dependent on air-stream velocity, fuel injection velocity, various injection angle, and normalized injector exit diameter. Furthermore, the empirical formula of liquid column trajectories and breakup length has been some different of drag coefficient results between forward injection and reverse angle injection in subsonic crossflow. In the Appendix section, the optimum combustion control of real gas turbine combustor was introduced. On the basis of a MARK-โ…ฅ system, the optimized tuning for operation of a DLN-2.6 combustor was studied for the maintenance of a GE 7FA+e gas turbine at a Seo-Incheon combined cycle power plant. Also, the optimum combustion control system was created by all of measuring the inlet and outlet combustion data of the GE 7FA+e gas turbine.CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Historical Overview of Combustion Instability 5 1.3 Mechanism of Combustion Instability 7 1.4 Objectives and Outline 9 CHAPTER 2 EXPERIMENTAL BACKGROUND 10 2.1 Acoustic Mode and Phase Analysis of Resonance Frequency 10 2.1.1 Acoustic wave equation 11 2.1.2 Theory of the Rayleigh criterion 15 2.1.3 Standing wave in combustor and inlet mixing section 17 2.2 Flow Dynamics of Swirl Injector 18 2.3 Liquid Jet Column Trajectory 20 CHAPTER 3 EXPERIMENTAL FACILITY AND TECHNIQUES 24 3.1 Model Gas Turbine Combustor 24 3.2 Combustion Data Acquisition System 29 3.3 Multi-Position Dynamic Pressure Sensing System 32 3.4 Chemiluminescence and Flame Structure Analysis 33 3.5 PIV (Particle Image Velocimetry) 35 3.6 PLLIF (Planar Liquid Laser Induced Fluorescence) 37 CHAPTER 4 SWIRL STABILIZED FLAME STRUCTURE AND RECIRCULATION ZONE 39 4.1 Background and Objectives 39 4.2 Experimental Method and Conditions 40 4.3 Results of Recirculation Zones 44 4.3.1 Effect of various combustion parameters in cold flow 44 4.3.2 Effect of combustion and instability carateristics 50 4.4 Analysis of Combustion Instability Frequency 58 CHAPTER 5 EFFECT OF FUEL-AIR MIXTURE VELOCITY 62 5.1 Background and Objectives 62 5.2 Experimental Method and Conditions 63 5.3 Flame and Abel-inverted Images 66 5.4 Main Instability Frequency and Strouhal Number 68 5.5 Combustion Instability Mode and Phase Analysis 72 5.6 Dynamic Pressure Gradient Variation 76 CHAPTER 6 EFFECT OF FUEL-AIR MIXING SECTION 82 6.1 Background and Objectives 82 6.2 Experimental Method and Conditions 82 6.3 Stability Map 90 6.4 Main Instability Frequency Analysis 96 6.5 Combustion Instability Mode and Phase Analysis 107 CHAPTER 7 SPRAY CHARACTERISTICS OF CANTED INJECTION ANGLES 118 7.1 Background and Objectives 118 7.2 Experimental Methods 121 7.2.1 Design of angle injectors 121 7.2.2 Experimental apparatus and conditions 123 7.3 Canted Injection Characteristics 125 7.4 Liquid Column Trajectory in Forward and Reverse Injections 129 7.5 The Verification of Liquid Column Trajectory 131 7.6 Spray Breakup Characteristics 135 CHAPTER 8 CONCLUSION 142 APPENDIX A GE 7FA+e DLN-2.6 GAS TURBINE COMBUSTOR 146 A.1 Introduction of DLN-2.6 Combustor 146 A.2 Operating Combustion Conditions of a DLN-2.6 Combustor 147 A.3 Measurement of Combustion Values 150 A.4 Combustion Instability and NOx Emission Characteristics 151 APPENDIX B DEVELOPMENT OF DYNAMIC PRESSURE TOOLKIT 153 APPENDIX C OPTIMUM COMBUSTION TUNING 156 BIBLIOGRAPHY 159 ABSTRACT IN KOREAN 173Docto

    ๊ฒฝ๊ณ„ ๋ฒŒ์น™ํ™” ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ 2์ฐจ์› ๋น„์••์ถ•์„ฑ ์œ ๋™์˜ ์ „์‚ฐ ๋ชจ์‚ฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :ํ˜‘๋™๊ณผ์ • ๊ณ„์‚ฐ๊ณผํ•™์ „๊ณต, 2006.Maste

    Brazing๋ฒ•์„ ์ด์šฉํ•œ ์ง€๋ฅด์ฝ”๋‹ˆ์•„๊ฐ„ ์ ‘ํ•ฉ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋ฌด๊ธฐ์žฌ๋ฃŒ๊ณตํ•™๊ณผ,1996.Maste

    (An) Empirical Study on Supporting Policy for Industrial Complex of Rural Areas

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ํ–‰์ •๋Œ€ํ•™์› :ํ–‰์ •ํ•™๊ณผ(ํ–‰์ •ํ•™์ „๊ณต),2009.8.Maste

    ์ ์ƒ‰ํ˜•๊ด‘์ฒด GdVOโ‚„:Euยณ+์˜ ํ•ฉ์„ฑ๊ณผ ๊ตฌ์กฐ ๋ฐ ๋ฐœ๊ด‘ ํŠน์„ฑ

    No full text
    Thesis(doctor`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์žฌ๋ฃŒ๊ณตํ•™๋ถ€,2007.Docto
    corecore