9 research outputs found

    ๋จธ์‹  ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•๊ณผ ์ •๋ณด ์ด๋ก ์„ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ด์ƒ ๊ฐ์ง€ ๋ฐ ์ง„๋‹จ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2021.8. ๋ฌธ๊ฒฝ๋นˆ.๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์€ ํšจ๊ณผ์ ์ด๊ณ  ์•ˆ์ „ํ•œ ๊ณต์ • ์šด์ „์„ ์œ„ํ•œ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ๊ณต์ • ์ด์ƒ์€ ๋ชฉํ‘œ ์ƒ์„ฑ๋ฌผ์˜ ํ’ˆ์งˆ์— ์˜ํ–ฅ์„ ์ฃผ๊ฑฐ๋‚˜ ๊ณต์ •์˜ ์ •์ƒ ๊ฐ€๋™์„ ๋ฐฉํ•ดํ•˜์—ฌ ์ƒ์‚ฐ์„ฑ์„ ์ €ํ•ดํ•  ์ˆ˜ ์žˆ๋‹ค. ํญ๋ฐœ์„ฑ ๋ฐ ์ธํ™”์„ฑ ๋ฌผ์งˆ์„ ์ฃผ๋กœ ๋‹ค๋ฃจ๋Š” ํ™”ํ•™๊ณต์ •์˜ ๊ฒฝ์šฐ ๊ณต์ • ์ด์ƒ์€ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์š”์†Œ์ธ ๊ณต์ •์˜ ์•ˆ์ „์„ ์œ„ํ˜‘ํ•˜๋Š” ์š”์†Œ๋กœ ์ž‘์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•œํŽธ, ํ˜„๋Œ€์˜ ๊ณต์ •์˜ ๋ฒ”์œ„๊ฐ€ ํ™•์žฅ๋˜๊ณ  ์ž๋™ํ™”์™€ ๊ณ ๋„ํ™”๊ฐ€ ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ์ ์  ๋” ์‹ ๋ขฐ๋„ ๋†’์€ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์ด ์š”๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง์€ ํฌ๊ฒŒ ์„ธ ๋‹จ๊ณ„๋กœ ๊ตฌ๋ถ„๋  ์ˆ˜ ์žˆ๋‹ค. ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ณต์ •์˜ ์ด์ƒ ์—ฌ๋ถ€๋ฅผ ํŒ๋‹จํ•˜๋Š” ๊ณต์ • ์ด์ƒ ๊ฐ์ง€, ๋‹ค์Œ์œผ๋กœ ๊ฐ์ง€๋œ ์ด์ƒ์˜ ์›์ธ์„ ํŒŒ์•…ํ•˜๋Š” ์ด์ƒ ์ง„๋‹จ, ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ณต์ • ์ด์ƒ์˜ ์›์ธ์„ ์ œ๊ฑฐํ•˜๊ณ  ์ •์ƒ ์ƒํƒœ๋กœ ํšŒ๋ณต์‹œํ‚ค๋Š” ๋ณต์›์œผ๋กœ ๋‚˜๋‰˜์–ด์ง„๋‹ค. ํŠนํžˆ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€์™€ ์ง„๋‹จ ์‹œ์Šคํ…œ์„ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ๋“ค์ด ์ œ์•ˆ๋˜์–ด์™”์œผ๋ฉฐ, ๊ทธ ๋ฐฉ๋ฒ•๋ก ๋“ค์€ ํฌ๊ฒŒ ์„ธ ๊ฐ€์ง€๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌผ๋ฆฌ ์ด๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ชจ๋ธ ๋ถ„์„ ๋ฐฉ๋ฒ•๊ณผ ํŠน์ • ๋ถ„์•ผ์˜ ๊ฒฝํ—˜ ์ง€์‹์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ์ง€์‹ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์— ๋น„ํ•ด ๋ฒ”์šฉ์ ์ธ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ๊ณผ ํ˜„๋Œ€ ๊ณต์ •์˜ ํ’๋ถ€ํ•œ ๊ณต์ • ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๊ณต๋˜๋Š” ์กฐ๊ฑด์˜ ์ถฉ์กฑ์œผ๋กœ ์ธํ•ด ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ์ด ๋„๋ฆฌ ํ™œ์šฉ๋˜์–ด์ง€๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ๋ฒ•๋ก ๋“ค์€ ๊ณต์ •์˜ ๊ทœ๋ชจ์™€ ๋ณต์žก๋„๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๊ทธ ์žฅ์ ์ด ๋”์šฑ ๊ทน๋Œ€ํ™”๋˜๋Š” ํŠน์ง•์„ ๊ฐ–๋Š”๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์กด์˜ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ๋ฒ•๋ก ๋“ค์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ๋ฐฉ๋ฒ•๋ก ๊ณผ ์ด์ƒ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ์‹œ์Šคํ…œ์€ ์ฐจ์› ์ถ•์†Œ๋ฐฉ๋ฒ•๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์ฐจ์› ์ถ•์†Œ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ๋ชจ๋ธ์€ ๊ณต์ • ๋ฐ์ดํ„ฐ์— ๋‚ด์žฌ๋˜์–ด ์žˆ๋Š” ํŠน์ง•์œผ๋กœ ์ •์˜๋˜๋Š” ์ €์ฐจ์›์˜ ์ž ์žฌ ๊ณต๊ฐ„์„ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์ „ํ†ต์ ์ธ ๋‹ค๋ณ€๋Ÿ‰ ๊ณต์ • ๋ชจ๋‹ˆํ„ฐ๋ง ๋ฐฉ๋ฒ•์ธ ์ฃผ ์„ฑ๋ถ„ ๋ถ„์„๊ณผ ๋จธ์‹  ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์ธ ์˜คํ† ์ธ์ฝ”๋”๊ฐ€ ์žˆ๋‹ค. ์ตœ๊ทผ ํ’๋ถ€ํ•œ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ ๋•๋ถ„์— ๋‹ค์–‘ํ•œ ๋จธ์‹  ๋Ÿฌ๋‹ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•œ ์ด์ƒ ๊ฐ์ง€ ์‹œ์Šคํ…œ์ด ๋„๋ฆฌ ํ™œ์šฉ๋˜๊ณ  ์žˆ์ง€๋งŒ, ์•ž์„œ ์†Œ๊ฐœํ•œ ํ˜„๋Œ€ ๊ณต์ •์˜ ๋‹ค์–‘ํ•œ ํŠน์ง•์œผ๋กœ ์ธํ•ด ๋”์šฑ ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์˜ ๋ชจ๋‹ˆํ„ฐ๋ง ๊ธฐ๋ฒ•์˜ ๊ฐœ๋ฐœ์ด ์š”๊ตฌ๋˜์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด์„œ ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋ฅผ ๋ณ€๊ฒฝํ•˜๊ฑฐ๋‚˜ ๋ชจ๋ธ์˜ ํ•™์Šต ์ ˆ์ฐจ๋ฅผ ๋ณ€ํ˜•ํ•˜๋Š” ์ ‘๊ทผ๋ฒ•๋“ค์ด ์ฃผ๋กœ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก ๋“ค์€ ๊ถ๊ทน์ ์œผ๋กœ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ํ’ˆ์งˆ์— ์˜์กด์ ์ด๋ผ๋Š” ํŠน์„ฑ์€ ์—ฌ์ „ํžˆ ๋‚จ์•„์žˆ๋‹ค. ์ฆ‰, ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ๋ถ€์กฑํ•œ ์ •๋ณด๋ฅผ ๋ณด์™„ํ•จ์œผ๋กœ์จ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์˜ ์™„์„ฑ๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์ด ์š”๊ตฌ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ๋Š” ์ฒซ ๋ฒˆ์งธ ์ฃผ์ œ๋กœ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๊ธฐ๋ฒ•์„ ๊ฒฐํ•ฉํ•œ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๊ธฐ๋ฒ•์€ ์—ฌ๋Ÿฌ ์ง‘ํ•ฉ์„ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ถ„๋ฅ˜๊ธฐ ๋ชจ๋ธ๋ง์‹œ์— ํŠน์ • ์ง‘ํ•ฉ์˜ ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ์— ์ฃผ๋กœ ํ™œ์šฉ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฝ์šฐ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ํ†ตํ•ด ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ๊ท ํ˜•์„ ๋งž์ถค์œผ๋กœ์จ ๋ชจ๋ธ์˜ ํ•™์Šต ํšจ์œจ์„ ์ฆ์ง„์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด์—, ๋ณธ ์—ฐ๊ตฌ์—์„œ์˜ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์€ ํ•œ ์ง‘ํ•ฉ ๋‚ด์—์„œ์˜ ๋ถˆ๊ท ํ˜•์„ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์ ์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ •์ƒ ์กฐ๊ฑด์˜ ๊ณต์ • ๋ฐ์ดํ„ฐ๋Š” ์ •์ƒ๊ณผ ์ด์ƒ์˜ ๊ฒฝ๊ณ„์— ๋ถ„ํฌํ•˜๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ํฌ๋ฐ•ํ•˜๊ฒŒ ์กด์žฌํ•˜๋Š” ํŠน์ง•์„ ๊ฐ–๋Š”๋‹ค. ์ด์ƒ ๊ฐ์ง€ ์‹œ์Šคํ…œ์ด ์ •์ƒ ์ƒํƒœ์˜ ์ €์ฐจ์› ํŠน์ง• ๊ณต๊ฐ„์„ ํ•™์Šตํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ •์ƒ๊ณผ ์ด์ƒ์„ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ชจ๋ธ์ด๋ผ๋Š” ์ ์„ ๊ณ ๋ คํ•˜๋ฉด ๊ฒฝ๊ณ„ ์˜์—ญ์˜ ๋ฐ์ดํ„ฐ์˜ ์ฆ๊ฐ•์ด ํŠน์ง• ๊ณต๊ฐ„ ํ•™์Šต์— ๊ธ์ •์ ์œผ๋กœ ์ž‘์šฉํ•  ๊ฒƒ์„ ๊ธฐ๋Œ€ํ•ด ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋งฅ๋ฝ์—์„œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ๋จผ์ €, ๊ธฐ์กด์˜ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ธ๊ณต ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ์œ„ํ•œ ์ƒ์„ฑ๋ชจ๋ธ์ธ ๋ณ€๋ถ„ ์˜คํ† ์ธ์ฝ”๋”๋ฅผ ํ•™์Šตํ•œ๋‹ค. ์ƒ์„ฑ ๋ชจ๋ธ๋กœ ํ•™์Šตํ•œ ์ •์ƒ ์šด์ „ ๋ฐ์ดํ„ฐ์˜ ์ €์ฐจ์› ๋ถ„ํฌ์˜ ๊ฒฝ๊ณ„์˜์—ญ์— ํ•ด๋‹นํ•˜๋Š” ๋ฐ์ดํ„ฐ๋“ค์„ ์ธ๊ณต ๋ฐ์ดํ„ฐ๋กœ ์ƒ์„ฑํ•˜์—ฌ ํ•™์Šต๋ฐ์ดํ„ฐ์— ์ฆ๊ฐ•์‹œํ‚จ๋‹ค. ์ด๋ ‡๊ฒŒ ์ฆ๊ฐ•๋œ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด์ƒ ๊ฐ์ง€ ๋ชจ๋ธ์„ ์œ„ํ•œ ๋จธ์‹  ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ฐจ์› ์ถ•์†Œ ๋ฐฉ๋ฒ•์ธ ์˜คํ† ์ธ์ฝ”๋”๋ฅผ ํ•™์Šตํ•˜์—ฌ ์ด์ƒ ๊ฐ์ง€ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ์ฆ๊ฐ•๋œ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์˜คํ† ์ธ์ฝ”๋”์˜ ์ž ์žฌ ๊ณต๊ฐ„ ํ•™์Šต์ด ๋” ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰๋  ์ˆ˜ ์žˆ๊ณ , ์ด๋Š” ๊ณง ์ •์ƒ๊ณผ ์ด์ƒ ์ƒํƒœ๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ์ด์ƒ ๊ฐ์ง€ ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ ๊ฐœ์„ ์œผ๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ์ฐจ์› ์ถ•์†Œ ๊ธฐ๋ฒ•์€ ์ „ํ†ต์ ์ธ ์ด์ƒ ์ง„๋‹จ ๋ฐฉ๋ฒ•์œผ๋กœ๋„ ํ™œ์šฉ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Š” ์ฐจ์› ์ถ•์†Œ์‹œ์˜ ์ •๋ณด์˜ ์†์‹ค๋กœ ์ธํ•ด ์ €์กฐํ•˜๊ณ  ์ผ๊ด€์„ฑ์ด ๋ถ€์กฑํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์˜ ํ•œ๊ณ„์ ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด ๊ณต์ • ๋ณ€์ˆ˜ ๊ฐ„์˜ ์ธ๊ณผ ๊ด€๊ณ„๋ฅผ ์ง์ ‘์ ์œผ๋กœ ๋ถ„์„ํ•˜๋Š” ๊ธฐ๋ฒ•๋“ค์ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ๊ทธ ์ค‘ ํ•˜๋‚˜์ธ ์ •๋ณด ์ด๋ก  ๊ธฐ๋ฐ˜์˜ ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ๋Š” ํŠน์ • ๋ชจ๋ธ์ด๋‚˜ ์„ ํ˜• ๊ฐ€์ •์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋น„์„ ํ˜• ๊ณต์ •์˜ ์ด์ƒ ์ง„๋‹จ์— ๋Œ€ํ•ด ์ผ๋ฐ˜์ ์œผ๋กœ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ๋ฅผ ์ด์šฉํ•œ ์ธ๊ณผ๊ด€๊ณ„ ๋ถ„์„ ๋ฐฉ๋ฒ•์€ ๊ณ ๋น„์šฉ์˜ ๋ฐ€๋„ ์ถ”์ •์„ ํ•„์š”๋กœ ํ•œ๋‹ค๋Š” ๋‹จ์ ์œผ๋กœ ์ธํ•ด ์†Œ๊ทœ๋ชจ ๊ณต์ •์— ๋Œ€ํ•ด์„œ๋งŒ ์ œํ•œ์ ์œผ๋กœ ์ ์šฉ๋˜์–ด ์™”๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„์ ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ์•ˆ์œผ๋กœ ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ผ๋Š” ์กฐ์ • ๋ฐฉ๋ฒ•์„ ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ์™€ ๊ฒฐํ•ฉํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋Š” ๋น„ ๋ฐฉํ–ฅ์„ฑ ๊ทธ๋ž˜ํ”„ ๋ชจ๋ธ์—์„œ ์„ฑ๊ธด ๊ตฌ์กฐ๋ฅผ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ ์ „์ฒด ๊ณต์ • ๊ทธ๋ž˜ํ”„๋กœ๋ถ€ํ„ฐ ์ƒ๊ด€ ๊ด€๊ณ„๊ฐ€ ๋†’์€ ๋ถ€๋ถ„ ๊ทธ๋ž˜ํ”„๋ฅผ ์ถ”์ถœํ•ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€์žฅ ๋†’์€ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๊ฐ–๋Š” ๋ถ€๋ถ„ ๊ทธ๋ž˜ํ”„์™€ ๋…๋ฆฝ๋œ ๋‚˜๋จธ์ง€ ๋ณ€์ˆ˜๋“ค์ด ๊ทธ๋ž˜ํ”„ ๋ผ์˜์˜ ์ถœ๋ ฅ์œผ๋กœ ์ œ์‹œ๋˜๊ธฐ ๋•Œ๋ฌธ์—, ๋‚˜๋จธ์ง€ ๋ณ€์ˆ˜๋“ค์— ๋Œ€ํ•œ ๋ฐ˜๋ณต์ ์ธ ์ ์šฉ์„ ํ†ตํ•ด ์ „์ฒด ๊ณต์ • ๋ณ€์ˆ˜๋“ค์„ ์—ฐ๊ด€์„ฑ์ด ๋†’์€ ๋ช‡๋ช‡์˜ ๋ถ€๋ถ„ ๊ทธ๋ž˜ํ”„๋กœ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์—ฐ๊ด€์„ฑ์ด ๋‚ฎ์€ ๊ด€๊ณ„๋ฅผ ์‚ฌ์ „์— ๋ฐฐ์ œํ•จ์œผ๋กœ์จ ์ธ๊ณผ ๊ด€๊ณ„ ๋ถ„์„์˜ ๋Œ€์ƒ์„ ํฌ๊ฒŒ ์ถ•์†Œํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, ์ด ๋‹จ๊ณ„๋ฅผ ํ†ตํ•ด ๊ณ ๋น„์šฉ์˜ ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ์˜ ํ•œ๊ณ„์ ์„ ์™„ํ™”ํ•˜๊ณ , ๊ทธ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๋‘ ๋ฐฉ๋ฒ•์„ ๊ฒฐํ•ฉํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ด์ƒ ์ง„๋‹จ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋จผ์ €, ๊ณต์ • ์ด์ƒ์ด ๋ฐœ์ƒํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๋ฐ˜๋ณต์  ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ์ ์šฉํ•˜์—ฌ ์ „์ฒด ๊ณต์ • ๋ณ€์ˆ˜๋“ค์„ ์—ฐ๊ด€์„ฑ์ด ๋†’์€ 5๊ฐœ์˜ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์œผ๋กœ ๊ตฌ๋ถ„ํ•œ๋‹ค. ๊ตฌ๋ถ„๋œ ๊ฐ๊ฐ์˜ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์„ ๋Œ€์ƒ์œผ๋กœ ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ๋ฅผ ์ด์šฉํ•œ ์ธ๊ณผ๊ด€๊ณ„ ์ฒ™๋„๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ๊ฐ€์žฅ ์œ ๋ ฅํ•œ ์›์ธ ๋ณ€์ˆ˜๋ฅผ ํŒ๋ณ„ํ•ด๋‚ธ๋‹ค. ์ฆ‰, ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ํ†ตํ•ด ํšจ๊ณผ์ ์œผ๋กœ ์ธ๊ณผ๊ด€๊ณ„ ๋ถ„์„์˜ ๋Œ€์ƒ์„ ์ถ•์†Œํ•จ์œผ๋กœ์จ ๋ถˆํ•„์š”ํ•œ ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ ๊ณ„์‚ฐ์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ๋น„์šฉ์„ ํฌ๊ฒŒ ์ ˆ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์€ ๋Œ€๊ทœ๋ชจ ์‚ฐ์—… ๊ณต์ •์— ๋Œ€ํ•ด์„œ๋„ ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ๋ฅผ ์ด์šฉํ•œ ์ด์ƒ ์ง„๋‹จ ๊ธฐ๋ฒ•์˜ ์ ์šฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋‹ค๋Š” ์ ์—์„œ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฐ์—… ๊ทœ๋ชจ์˜ ๋ฒค์น˜๋งˆํฌ ๊ณต์ • ๋ชจ๋ธ์ธ ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ •์— ์ด๋ฅผ ์ ์šฉํ•˜๊ณ  ๊ฒฐ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ฒค์น˜๋งˆํฌ ๊ณต์ • ๋ชจ๋ธ์€ ๋‹ค์ˆ˜์˜ ๋‹จ์œ„ ๊ณต์ •์„ ํฌํ•จํ•˜๊ณ , ์žฌ์ˆœํ™˜ ํ๋ฆ„๊ณผ ํ™”ํ•™ ๋ฐ˜์‘์„ ํฌํ•จํ•˜๊ณ  ์žˆ์–ด ์‹ค์ œ ๊ณต์ •๊ณผ ๊ฐ™์€ ๋ณต์žก๋„๋ฅผ ๊ฐ–๋Š” ๊ณต์ • ๋ชจ๋ธ๋กœ์„œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•๋ก ๋“ค์˜ ์„ฑ๋Šฅ์„ ์‹œํ—˜ํ•ด๋ณด๊ธฐ์— ์ ํ•ฉํ–ˆ๋‹ค. ์„ฑ๋Šฅ ํ…Œ์ŠคํŠธ๋Š” ํ…Œ๋„ค์‹œ ์ด์ŠคํŠธ๋งŒ ๊ณต์ • ๋ชจ๋ธ์— ํฌํ•จ๋˜์–ด ์žˆ๋Š” ์‚ฌ์ „์— ์ •์˜๋œ 28๊ฐœ ์ข…๋ฅ˜์˜ ๊ณต์ • ์ด์ƒ์— ๋Œ€ํ•˜์—ฌ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ์ ‘๋ชฉํ•œ ๊ณต์ • ์ด์ƒ ๊ฐ์ง€ ๋ฐฉ๋ฒ•๋ก ์€ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋ก  ๋Œ€๋น„ ๋†’์€ ์ด์ƒ ๊ฐ์ง€์œจ์„ ๋ณด์˜€๋‹ค. ์ผ๋ถ€์˜ ๊ฒฝ์šฐ ์ด์ƒ ๊ฐ์ง€ ์ง€์—ฐ์ธก๋ฉด์—์„œ๋„ ๊ฐœ์„ ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ์ด์ƒ ์ง„๋‹จ์„ ์œ„ํ•ด ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ์™€ ๊ทธ๋ž˜ํ”„ ๋ผ์˜๋ฅผ ๊ฒฐํ•ฉํ•œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•๋ก ์€ ์ „์ฒด ๊ณต์ •์— ์ „๋‹ฌ ์—”ํŠธ๋กœํ”ผ๋ฅผ ์ง์ ‘ ์ ์šฉํ•œ ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋ก  ๋Œ€๋น„ ์•ฝ 20%์˜ ๊ณ„์‚ฐ ๋น„์šฉ๋งŒ์œผ๋กœ๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ด์ƒ์˜ ์›์ธ์„ ํŒŒ์•…ํ•ด๋‚ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ์„ฑ๋Šฅ ํ…Œ์ŠคํŠธ ๊ฒฐ๊ณผ๋Š” ์ผ๋ถ€ ๊ณต์ • ์ด์ƒ์˜ ๊ฒฝ์šฐ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•๋ก ์ด ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋” ์ •ํ™•ํ•œ ์ด์ƒ ์ง„๋‹จ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค.Process monitoring system is an essential component for efficient and safe operation. Process faults can affect the quality of the product or interfere with the normal operation of the process, hindering productivity. In the case of chemical processes dealing with explosive and flammable materials, process fault can act as a threat to the process safety which should be the top priority. Meanwhile, modern processes demand a more advanced monitoring system as the scope of the process expands and the process automation and intensification progress. The framework of the process monitoring system can be classified into three stages. It is divided into process fault detection that determines the existence of process faults in a system in real-time, fault diagnosis that identifies the root cause of the faults, and finally, process recovery that removes the cause of the fault and normalizes the process. In particular, various methodologies for fault detection and diagnosis have been proposed, and they can be categorized into three approaches. Data-driven methodologies are widely utilized due to the general applicability and the conditions under which abundant process data are provided compared to analytical methods based on the detailed first-principle models and knowledge-based methods on the specific domain knowledge. Furthermore, the advantage of the data-driven methods can be prominent as the scale and complexity of the process increase. In this thesis, fault detection and diagnosis methodologies to improve the performance of existing data-driven methods are proposed. Conventional data-driven fault detection systems have been developed based on dimensionality reduction methods. The fault detection models using dimensionality reduction identify the low dimensional latent space defined by features inherent in process data, performing process monitoring based on it. As the representative methods, there are principal component analysis which is the conventional multivariate process monitoring approach, and autoencoder which is one of the machine learning techniques. Although the monitoring systems using various machine learning techniques have been widely utilized thanks to sufficient process data and good performance, a monitoring scheme that improves the performance of up-to-date methods is required due to the aforementioned factors. To improve the performance of such a data-driven monitoring system, approaches that change the structure of the model or learning procedure have been mainly discussed. Meanwhile, the nature that data-driven methods are ultimately dependent on the quality of the training dataset still remains. In other words, a methodology to enhance the completeness of the monitoring system by supplementing the insufficient information in the training dataset is required. Thus, a process fault detection method that combines data augmentation techniques is proposed in the first part of the thesis. Data augmentation has been mostly employed to manage the deficiency of certain classes, between-class imbalance, in a classification problem. In this case, data augmentation can be effectively applied to improve the training performance by balancing the amount of each class. Data augmentation in this study, on the other hand, is applied to alleviate the with-in-class imbalance. The process data in normal operation has characteristics that the data samples in the borderline of normal and abnormal state are relatively sparse. Given that the modeling of the fault detection system corresponds to defining the low-dimensional feature space and monitoring the system in it, it can be expected that the supplement of the samples on the boundary of the normal state would positively affect the training process. In this context, the proposed method is as follows. First, variational autoencoder which is a generative model is constructed to generate the synthetic data using the original training data. The sample vector corresponding to the boundary region of the low-dimensional distribution of the normal state learned by the generative model is generated as the synthetic data and augmented to the original training data. Based on the augmented training data the fault detection system is established using autoencoder, a machine learning algorithm for feature extraction. The feature learning of autoencoder can be performed more effectively by using the augmented training data, which can lead to the improvement of the fault detection system that distinguishes between normal and abnormal states. The dimensionality reduction methods have been also utilized as the fault isolation method known as the contribution charts. However, the approaches showed limited performance and inconsistent analysis results due to the information loss during the dimension reduction process. To resolve the limitations of the conventional method, the approaches that directly figure out the causal relationships between process variables have been developed. As one of them, transfer entropy, an information-theoretic causality measure, is generally known to have good fault isolation performance in the fault isolation of nonlinear processes because it is neither linearity assumption nor model-based method. However, it has been limitedly applied to the small-scale process because of the drawback that the causal analysis using transfer entropy requires costly density estimation. To resolve the limitation, the method that combines graphical lasso which is a regularization method with transfer entropy is proposed. Graphical lasso is a sparse structure learning algorithm of the undirected graph model, which can be used to sort out the most relevant sub-group in the entire graph model. As graphical lasso algorithm presents the output as a highly correlated subgroup with the rest of the variables, the iterative application of graphical lasso can substitute the entire process into several subgroups. This process can greatly reduce the subject of causal analysis by excluding relationships with little relevance in advance. Accordingly, the limitation of demanding cost of transfer entropy can be mitigated and thus the applicability of fault isolation using transfer entropy can be expanded through this process. Combining the two methods, the following fault isolation method is proposed. First of all, the entire process variables are divided into the five most relevant subgroups based on the data when the fault has occurred. The root cause variable can be isolated from the most significant relationship by calculating the causality measure using transfer entropy only within each subgroup. It is possible to significantly reduce the computational cost due to transfer entropy by efficiently decreasing the subject of causal analysis through graphical lasso. Therefore, the proposed method is noteworthy in that it enables the application of fault isolation using transfer entropy for industrial-scale processes. The proposed methodologies in each stage are verified by applying them to the industrial-scale benchmark process model, the Tennessee Eastman process (TEP). The benchmark process model is suitable to test the performance of the proposed methods because it is a process model with similar complexity as a real chemical process involving multiple unit operations, recycle stream, and chemical reactions in it. The performance test is performed with respect to the 28 predefined process faults scenarios in TEP model. Application results of the proposed fault detection method performed better than the case using the conventional approach in terms of the fault detection rate. In some fault cases, the fault detection delay, the time required to first detect a fault since it occurred, also showed improvement. Fault isolation results by the proposed method integrating transfer entropy with graphical lasso showed that it could effectively identify the cause of the process fault with only about 20% of the computational cost compared to the base case that directly applied the transfer entropy to the entire process for fault isolation. In addition, the demonstration results suggested that the proposed method could outperform the base case in terms of accuracy in some particular cases.Chapter 1 Introduction -2 1.1. Research Motivation -2 1.2. Research Objectives 5 1.3. Outline of the Thesis 7 Chapter 2 Backgrounds and Preliminaries 8 2.1. Autoencoder 8 2.2. Variational Autoencoder 3 2.3. Transfer Entropy 7 2.4. Graphical Lasso 11 Chapter 3 Process Fault Detection Using Autoencoder with Data Augmentation via Variational Autoencoder 23 3.1. Introduction 23 3.2. Process Fault Detection Model Integrated with Data Augmentation 28 3.2.1. Info-Variational Autoencoder for Data Augmentation 31 3.2.2. Autoencoder for Process Monitoring 33 3.3. Case study and Discussion 34 3.3.1. Tennessee Eastman Process 35 3.3.2. Implementation of the Proposed Methodology 39 3.3.3. Discussion of the Results 64 Chapter 4 Process Fault Isolation using Transfer Entropy and Graphical Lasso 80 4.1. Introduction 80 4.2. Fault Isolation using Transfer Entropy Integrated with Graphical Lasso 86 4.2.1. Graphical Lasso for Sub-group Modeling 89 4.2.2. Transfer Entropy for Fault Isolation 90 4.3. Case study and Discussion 1 92 4.3.1. Selective Catalytic Reduction Process 92 4.3.2. Implementation of the Proposed Methodology 97 4.3.3. Discussion of the Results 99 4.4. Case study and Discussion 2 102 4.4.1. Tennessee Eastman Process 102 4.4.2. Implementation of the Proposed Methodology 108 4.4.3. Discussion of the Results 109 Chapter 5 Concluding Remarks 130 5.1. Summary of the Contributions 130 5.2. Future Work 133 Bibliography 135๋ฐ•

    The Optimal Angle of Needle Insertion for Caudal Block in Adults

    Get PDF
    BACKGROUND: This study was conducted to investigate the optimal angle of needle insertion during caudal epidural injection in chronic low back pain patients using ultrasound imaging. METHODS: One hundred eight patients (40 male and 68 female patients) with low back pain and sciatica were studied.Soft tissue ultrasonography was performed to identify the sacral hiatus. The optimal angle of the needle to the skin was measured with an imaginary line drawn parallel to the sacral base using a protractor on a longitudinal plane. A 22-gauge caudal epidural needle was inserted and was guided by ultrasound to the sacral hiatus and into the caudal epidural space. RESULTS: The mean +/- SD for the intercornual distance, depth of the caudal space and the thickness of the sacrococcygeal membrane were 19.0 +/- 3.2 mm, 3.6 +/- 0.9 mm and 1.8 +/- 0.8 mm, respectively. The optimal angle showed a significant correlation with the depth of the caudal space and the thickness of the sacrococcygeal membrane. The mean +/- SD for the optimal angle of the needle insertion was 23.5 +/- 6.9 degrees. CONCLUSIONS: We conclude that the needle should be inserted at an angle of approximately 23.5 degrees to the skin in order to avoid injury to the periosteum and an inadvertent intra-osseous injection.ope

    Cardiac Output Estimations by Esophageal Doppler Cannot Replace Estimations by the Thermodilution Method in Off-pump Coronary Artery Bypass Surgery Patients

    Get PDF
    Background: Esophageal doppler is discribed as a non-invasive alternative to cardiac output (CO) estimation by thermodilution, the current bedside "gold standard". This study was designed to evaluate the accuracy of CO estimations performed by esophageal doppler (EDCO), compared to those obtained using a continuous CO pulmonary flotation catheter (TDCO). Methods: In 16 patients undergoing off-pump coronary artery bypass surgery, CO was measured simultaneously by the esophageal doppler and the thermodilution method, after induction (A), after sternotomy (B), after coronary revascularization (C), and after sternal closure (D). Agreement between the TDCO and EDCO estimations was assessed by analyzing their mean differences and the distribution of these differences. Relative CO changes (percentages of the previous value) was analyzed by the same method. Results: Both absolute CO values and relative CO changes by esophageal doppler showed a considerable scatter compared to those obtained using the thermodilution method. The bias (EDCO-TDCO) between the two mehtods was -0.8 ยฑ 2.7 L/min for A, -0.9 ยฑ 2.5 L/min for B, -0.9 ยฑ 3.6 L/min for C, and -0.6 ยฑ 2.7 (mean ยฑ 2 SD) L/min for D. On analyzing changes in CO, no significant method bias was found but 2 SD of the bias were ยฑ 74% for A to B, ยฑ 100% for B to C, and ยฑ 83% for C to D. Conclusions: These results suggest that CO estimations by esophageal doppler cannot replace estimations by the thermodilution method in patients undergoing off-pump coronary artery bypass graft surgery.ope

    Optimal angle of needle insertion for caudal block in adults

    No full text
    ์˜ํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€]๋งŒ์„ฑ ์š”ํ†ต ๋ฐ ์‹ ๊ฒฝ๊ทผ๋ณ‘์ฆ์˜ ์น˜๋ฃŒ๋ฅผ ์œ„ํ•˜์—ฌ ๊ฒฝ๋ง‰ ์™ธ๊ฐ• ๋‚ด๋กœ ๊ตญ์†Œ๋งˆ์ทจ์ œ ๋ฐ ์Šคํ…Œ๋กœ์ด๋“œ๋ฅผ ์ฃผ์ž…ํ•˜๋Š” ์‹œ์ˆ ์€ ์ˆ˜ ์‹ญ ๋…„ ๋™์•ˆ ์‹œํ–‰๋˜์–ด ์˜จ ๊ธฐ๋ฒ•์ด๋‹ค. ๊ฒฝ๋ง‰ ์™ธ๊ฐ• ๋‚ด๋กœ ์•ฝ๋ฌผ์„ ์ฃผ์ž…ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ• ์ค‘ ์ฒœ์ถ” ์—ด๊ณต์„ ํ†ตํ•œ ๋ฏธ์ถ” ์ฐจ๋‹จ์€ ์ž„์ƒ์ ์œผ๋กœ ๊ฒฝํ—˜์ด ํ’๋ถ€ํ•œ ์ „๋ฌธ๊ฐ€๋ผ ํ• ์ง€๋ผ๋„ ๋งน๋ชฉ์ (blind)์œผ๋กœ ์‹œํ–‰๋  ๊ฒฝ์šฐ ๊ทธ ์‹คํŒจ์œจ์€ ์•ฝ 38% ๊นŒ์ง€๋„ ๋ณด๊ณ ๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๊ณจ๋ฐ€๋„๊ฐ€ ๊ฐ์†Œ๋˜์–ด ์žˆ๋Š” ๋…ธ์ธ ํ™˜์ž๋“ค์— ์žˆ์–ด์„œ๋Š” ๊ณจ ์ฒœ์ž์˜ ์œ„ํ—˜์„ฑ๋„ ๋†’๋‹ค. ๋ฏธ์ถ”์ฒœ์ž ์‹œ ํ˜ˆ์„ฑ ์ฒœ์ž๋‚˜ ๊ณจ์„ฑ ์ฒœ์ž๋ฅผ ํ•˜๊ฒŒ ๋˜๋ฉด ๊ตญ์†Œ๋งˆ์ทจ์ œ ๋ฐ ๋ณด์กฐ ์•ฝ์ œ๋“ค์˜ ์ „์‹ ์ ์ธ ๋…์„ฑ ๋ฐ˜์‘์ด ๋‚˜ํƒ€๋‚˜๊ฑฐ๋‚˜ ๊ณจ ์†์ƒ์— ๋”ฐ๋ฅธ ๊ทน์‹ฌํ•œ ํ†ต์ฆ์ด ๋ฐœ์ƒํ•˜๊ฒŒ ๋œ๋‹ค. ํ˜ˆ์„ฑ ๋˜๋Š” ๊ณจ์„ฑ ์ฒœ์ž์˜ ๋น„์œจ์„ ๋‚ฎ์ถ”๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ดˆ์ŒํŒŒ๋กœ ์ฒœ๊ณจ๊ด€์˜ ํ˜•ํƒœ์™€ ๋ฐ”๋Š˜์˜ ์œ„์น˜๋ฅผ ํ™•์ธํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์“ธ ์ˆ˜ ์žˆ์œผ๋‚˜, ํ•ญ์ƒ ์ดˆ์ŒํŒŒ๊ธฐ๊ธฐ๋ฅผ ์ค€๋น„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€ ์•„๋‹ˆ๋ฏ€๋กœ, ๊ณจ ์ฒœ์ž๋ฅผ ์ตœ์†Œํ™”์‹œํ‚ค๋ฉด์„œ ๊ฐ€์žฅ ์•ˆ์ „ํ•œ ์ฐจ๋‹จ์„ ๊ฐ€๋Šฅ์ผ€ ํ•˜๋Š” ์ฒœ์ž ๋ฐ”๋Š˜์˜ ๊ฐ๋„๋ฅผ ์ฒœ์ถ” ์—ด๊ณต ๋ถ€์œ„์˜ ์ดˆ์ŒํŒŒ ์˜์ƒ์„ ํ†ตํ•ด ๊ตฌํ•ด ๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ๋งŒ์„ฑ ์š”ํ†ต ๋ฐ ์‹ ๊ฒฝ๊ทผ๋ณ‘์ฆ์„ ์ฃผ์†Œ๋กœ ๋ณธ์› ํ†ต์ฆ ํด๋ฆฌ๋‹‰์„ ๋‚ด์›ํ•œ ์„ฑ์ธ ํ™˜์ž 108๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ์ฒœ์ถ” ์—ด๊ณต ๋ถ€์œ„ ์ดˆ์ŒํŒŒ ์˜์ƒ์„ ํ†ตํ•ด ์–‘์ธก ์—‰์น˜๋ผˆ๋ฟ” (sacral cornua) ๊ฐ„ ๊ฑฐ๋ฆฌ, ๋ฏธ์ถ”๊ด€ ๊นŠ์ด, ์ด์ƒ์ ์ธ ๊ฐ๋„ ๋“ฑ์„ ์ธก์ •ํ•œ ํ›„ ๋ฏธ์ถ” ์ฐจ๋‹จ์„ ์‹œํ–‰ํ•˜์˜€๋‹ค. ์ด์ƒ์ ์ธ ๊ฐ๋„๋Š” 23.52ยฐ ยฑ 6.93ยฐ ์ด์—ˆ๊ณ  ์ด๋Š” ๋ฏธ์ถ”๊ด€ ๊นŠ์ด๋ฅผ ์ œ์™ธํ•œ ๋‚˜๋จธ์ง€ ๋ณ€์ˆ˜๋“ค๊ณผ๋Š” ์œ ์˜ํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ด์ง€ ์•Š์•˜๋‹ค. ์–‘์ธก ์—‰์น˜๋ผˆ๋ฟ” ๊ฐ„ ๊ฑฐ๋ฆฌ๋‚˜ ๋ฏธ์ถ”๊ด€ ๊นŠ์ด๋Š” ํ™˜์ž์˜ ํ‚ค ๋ฐ ๋ชธ๋ฌด๊ฒŒ์™€ ์œ ์˜ํ•œ ๊ด€๊ณ„๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ฏธ์ถ” ์ฐจ๋‹จ ์‹œํ–‰ ์‹œ ์•ฝ 23ยฐ ์˜ ๊ฐ๋„๋กœ ์ฒœ์ž ๋ฐ”๋Š˜์˜ ์‚ฝ์ž…์„ ์‹œ๋„ํ•˜๋Š” ๊ฒƒ์ด ๊ทธ ์„ฑ๊ณต์œจ์„ ๋†’์ผ ์ˆ˜ ์žˆ์„ ๋ฟ ์•„๋‹ˆ๋ผ ๊ณจ์„ฑ ์ฒœ์ž ๋ฐ ํ˜ˆ์„ฑ ์ฒœ์ž ๋“ฑ์˜ ๋ถ€์ž‘์šฉ๋“ค์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. [์˜๋ฌธ]Background : This study was conducted to investigate the optimal angle of needle insertion during caudal epidural injection in chronic low back pain patients using ultrasound imaging.Methods : 108 patients(40 male and 68 female patients) with low back pain and sciatica were studied. Soft tissue ultrasonography was performed to locate the sacral hiatus. The optimal angle of the needle to the skin was measured with an imaginary line drawn parallel to the sacral base using a protractor on a longitudinal plane. A 22-gauge caudal epidural needle was inserted and guided by ultrasound to the sacral hiatus and into the caudal epidural space.Results : The mean values (SD) for the intercornual distance, depth of the caudal space and the thickness of the sacrococcygeal membrane were 18.96(3.21) mm, 3.64(0.89) mm, 1.83(0.82) mm, respectively. The optimal angle showed significant correlations with the depth of the caudal space and the thickness of the sacrococcygeal membrane. The mean value (SD) for the optimal angle of the needle was 23.52(6.93)ยฐ.Conclusions : We conclude that the needle should be inserted at an angle of approximately 23ยฐ to the skin in order to avoid injury to the periosteum and inadvertent intra-osseous injection.ope

    ํŽ„์Šค๋ ˆ์ด์ € ์ฆ์ฐฉ์—์„œ ๋ ˆ์ด์ € ์„ธ๊ธฐ์† ์กฐ์ ˆ๊ณผ ์™„์ถฉ ์ธต ์‚ฌ์šฉ์„ ํ†ตํ•œ Ba1-x KxBiO3 ๋ฐ•๋ง‰์˜ ๊ตฌ์กฐ์  ๋˜๋Š” ์ „๊ธฐ์  ๋ฌผ์„ฑ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋ฌผ๋ฆฌยท์ฒœ๋ฌธํ•™๋ถ€, 2017. 2. ๋…ธํƒœ์›.We investigated growth control of superconducting properties of BKBO films, by varying laser fluence using pulsed laser deposition technique. As cation stoichiometry, especially potassium concentration in BKBO films, was sensitively changed with laser fluence, we were able to precisely control Tc of BKBO films. Following the trend of the bulk phase diagram, Tc showed the highest value of 24.5 ยฑ 0.5 K at the optimal stoichiometry. Furthermore, we obtained a partially tensile-strained BKBO film with BaBiO3 buffer layer, and a well tensile-strained BKBO film with a BaCeO3 / BaZrO3 double buffer layer. In the both case, we observed sharp full-width-half-maximum of the BKBO (002) reflection rocking curve in X-ray diffractometer measurement, which shows the potential for BKBO films with few crystallographic defects by reducing the lattice mismatch with various buffer layer.Chapter 1. Introduction 1 1.1 Phase transitions of High-Tc Superconducting Ba1-x KxBiO3 1 1.2 Ba1-x KxBiO3 film fabrication by using Pulsed laser deposition 3 1.2.1. Oxide thin film growth by using Pulsed laser deposition 3 1.2.2. The effect of temperature on the film growth 4 1.2.3. The effect of laser fluence on the element distribution in the propagating plume 5 1.2.4. The film delamination and spalling 6 References 8 Chapter 2. Experimental Methods 11 2.1 Pulsed laser deposition 11 2.2 High-resolution X-ray diffraction 13 2.3 Rutherford Backscattering Spectrometer 15 2.4 Atomic force microscopy 16 2.5 Electrical transport measurement setup 17 References 18 Chapter 3. Ablation laser fluence as an effective parameter to control superconductivity in Ba1โˆ’xKxBiO3 films 19 3.1 Structural change with variation of laser fluence in HR-XRD 19 3.2 Cation composition which is highly dependent on laser fluence 22 3.3 A variation of Tc with laser fluence 25 3.4 Compensation of oxygen vacancies by post-annealing procedure 28 References 31 Chapter 4. Epitaxial growth of BKBO films on various buffer layer for a strain control 33 4.1 Ba1-x KxBiO3 film with BaBiO3 buffer layer 33 4.2 Ba1-x KxBiO3 film with BaCeO3/BaZrO3 double buffer layer 38 References 44 Chapter 5. Conclusions 45Maste
    corecore