34 research outputs found

    ํ˜•์„ ๊ตฌ์กฐ ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์˜ ๊ฐ•์œ ์ „ ํŠน์„ฑ ๋ฐ ์•„๋‚ ๋กœ๊ทธ ์†Œ์ž ํ™œ์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ๊ณผํ•™๊ต์œก๊ณผ(๋ฌผ๋ฆฌ์ „๊ณต), 2022.2. ์ฑ„์Šน์ฒ .Recent discovery of non-centrosymmetric inversion symmetry-breaking and spontaneous polarization in HfO2 thin films has shed renewed light on the feasibility of ferroelectric logic and memory device applications. Ferroelectric HfO2 is considered an alternative to ferroelectric perovskites because of its compatibility with current complementary metal-oxide-semiconductor (CMOS) technologies and high scalability. A large remnant polarization of 10โ€“40 ฮผC/cm2 can be obtained for HfO2 films with the orthorhombic Pca21 phase. Diverse electric properties with structural changes can be realized via dopant control and electric field cycling. Integration of HfO2 films with the complementary metal-oxide-semiconductor (CMOS) process will aid the development of next-generation non-volatile logic and memory applications. In this dissertation, the distinctive feature of ferroelectric HfO2 and epitaxial integration of ferroelectric HfO2 on the Si substrate will be discussed. First, unprecedented stability in the sub-loop switching behavior and accessibility to intermediate polarization states in ferroelectric Si-doped HfO2 were examined. Through the combination of conventional voltage measurements, hysteresis temperature dependence analysis, piezoelectric force microscopy, first-principles calculations, and Monte Carlo simulations, the unprecedented stability of intermediate states in ferroelectric HfO2 can be attributed to the small critical volume size for nucleation and the large activation energy for ferroelectric dipole flipping. This results demonstrates the potential of ferroelectric HfO2 for analog device applications enabling neuromorphic computing. Second, the ferroelectric behavior of Y-doped HfO2 (YHO) thin film epitaxially stabilized on an Si substrate with a yttria-stabilized zirconia (YSZ) buffer layer was investigated for the transistor based memory applications. Structural analysis exhibited epitaxial relation between YHO and Si substrate even the existence of thermally regrown SiOx layer. Piezoresponse force microscopy results show the ferroelectric domain pattern, implying the existence of ferroelectricity in the epitaxial HfO2 film. The epitaxially-stabilized HfO2 film in the form of a metal-ferroelectric-insulator-semiconductor structure exhibits ferroelectric hysteresis with a clear ferroelectric switching current in polarization-voltage measurements. The HfO2 thin film also demonstrates ferroelectric retention comparable to that of current perovskite-based metal-ferroelectric-insulator-semiconductor structures. At last, colossal resistance change in the ferroelectric HfO2 based tunnel junction was investigated. Ferroelectric HfO2 ultrathin film (~ 1 nm) integrated directly on a silicon wafer exhibited On/Off tunneling electroresistance ratio of 106. To achieve this large On/Off ratio, we integrated the epitaxial fluorite-structure HfO2 thin film on the silicon substrate. The polarization direction in the metal-ferroelectric-semiconductor junction altered the depletion width, leaving behind the change in the tunnel barrier. Industry-relevant HfO2 with high CMOS compatibility could lead to fast adoption of a ferroelectric tunnel barrier with newly observed ferroelectricity in fluorite-structured HfO2 films.์ตœ๊ทผ ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์—์„œ ๋ฐœ๊ฒฌ๋œ ์ค‘์‹ฌ ๋Œ€์นญ์„ฑ์ด ๊นจ์ง„ ๋ฐ˜์ „ ๋Œ€์นญ ํŒŒ๊ดด์™€ ์ž๋ฐœ๋ถ„๊ทน์€ ๊ฐ•์œ ์ „์ฒด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ฉ”๋ชจ๋ฆฌ ๋ฐ ๋…ผ๋ฆฌ ์žฅ์น˜์˜ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ๊ธธ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ฐ•์œ ์ „์ฒด ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์€ ์‹œ๋ชจ์Šค ๊ธฐ์ˆ ๊ณผ์˜ ํ˜ธํ™˜์„ฑ๊ณผ ๋†’์€ ์ง‘์ ‘๋„๋กœ ์ธํ•ด์„œ ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ๊ธฐ๋ฐ˜ ๊ฐ•์œ ์ „์ฒด์˜ ๋Œ€์•ˆ์œผ๋กœ ์—ฌ๊ฒจ์ง€๊ณ  ์žˆ๋‹ค. ์‚ฌ๋ฐฉ์ •๊ณ„ Pca21 ๊ตฌ์กฐ ๊ฐ•์œ ์ „์ฒด ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์—์„œ 10-40 ฮผC/cm2 ์˜ ํฐ ์ž๋ฐœ๋ถ„๊ทน ๊ฐ’์ด ๋ณด๊ณ ๋˜์—ˆ๋‹ค. ๊ฐ•์œ ์ „ ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์˜ ๊ตฌ์กฐ ๋ณ€ํ™”๋ฅผ ์ˆ˜๋ฐ˜ํ•œ ๋‹ค์–‘ํ•œ ์ „๊ธฐ์  ํŠน์„ฑ์ด ๋„ํ•‘์ด๋‚˜ ์ „๊ธฐ์žฅ์˜ ๋ฐ˜๋ณต์„ ํ†ตํ•˜์—ฌ ํ™•๋ณด๋  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ๊ฐ•์œ ์ „์ฒด ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์˜ ์‹œ๋ชจ์Šค ๊ณต์ • ์ ์šฉ ์—ฐ๊ตฌ๋Š” ์ฐจ์„ธ๋Œ€ ๋น„ํœ˜๋ฐœ์„ฑ ๋ฉ”๋ชจ๋ฆฌ ๋ฐ ๋…ผ๋ฆฌ ์†Œ์ž์˜ ๋ฐœ์ „์— ๋„์›€์ด ๋  ๊ฒƒ์ด๋‹ค. ์ด ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ•์œ ์ „์ฒด ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์˜ ๋…ํŠนํ•œ ํŠน์„ฑ๊ณผ ๊ฐ•์œ ์ „์ฒด ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์˜ ์‹ค๋ฆฌ์ฝ˜๊ณผ์˜ ๊ฒฐ๋งž์Œ ์„ฑ์žฅ์— ๊ด€ํ•˜์—ฌ ๋…ผํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ์‹ค๋ฆฌ์ฝ˜ ๋„ํ•‘๋œ ๊ฐ•์œ ์ „์ฒด ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์˜ ์ „๋ก€ ์—†๋Š” ์•ˆ์ •์ ์ธ ํ•˜์œ„ ๋ฃจํ”„ ์Šค์œ„์นญ ๋™์ž‘๊ณผ ์ค‘๊ฐ„ ๋ถ„๊ทน ์ƒํƒœ์˜ ์ ‘๊ทผ์— ๊ด€ํ•˜์—ฌ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์ผ๋ฐ˜์ ์ธ ์ „์•• ์ธ๊ฐ€ ์‹คํ—˜, ์ด๋ ฅ๊ณก์„ ์˜ ์˜จ๋„ ์˜์กด์„ฑ, ์••์ „ํž˜ ํ˜„๋ฏธ๊ฒฝ, ์ œ 1 ์›๋ฆฌ ๊ณ„์‚ฐ, ๋ชฌํ…Œ ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ์ „๋ก€ ์—†๋Š” ๊ฐ•์œ ์ „ ์ค‘๊ฐ„ ๋ถ„๊ทน ์ƒํƒœ์˜ ์•ˆ์ •์„ฑ์ด ๊ฐ•์œ ์ „์ฒด ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์˜ ์ž‘์€ ํ•ต ์ž„๊ณ„ ๋ถ€ํ”ผ์™€ ๋ถ„๊ทน์„ ๋’ค์ง‘๊ธฐ ์œ„ํ•œ ๋†’์€ ํ™œ์„ฑํ™” ์—๋„ˆ์ง€์— ๊ธฐ์ธํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ•ด๋‹น ๊ฒฐ๊ณผ๋Š” ๊ฐ•์œ ์ „์ฒด ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์˜ ์•„๋‚ ๋กœ๊ทธ ์†Œ์ž๋กœ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์ œ์‹œํ•˜๋ฉฐ ์‹ ๊ฒฝ ๋ชจ์‚ฌ ์ปดํ“จํŒ…์˜ ๊ฐ€๋Šฅ์„ฑ์„ ์—ด์—ˆ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ, ํŠธ๋žœ์ง€์Šคํ„ฐ ๊ธฐ๋ฐ˜ ๋ฉ”๋ชจ๋ฆฌ ํ™œ์šฉ์„ ์œ„ํ•˜์—ฌ ์ดํŠธ๋ฅจ ์•ˆ์ •ํ™” ์ง€๋ฅด์ฝ”๋Š„ ์ค‘๊ฐ„ ์ธต์„ ์ด์šฉํ•˜์—ฌ ์‹ค๋ฆฌ์ฝ˜ ์œ„์— ๊ฒฐ๋งž์Œ ์„ฑ์žฅํ•œ ์ดํŠธ๋ฅจ ๋„ํ•‘๋œ ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์˜ ๊ฐ•์œ ์ „ ํŠน์„ฑ์— ๊ด€ํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ตฌ์กฐ๋ถ„์„์—์„œ ๊ณ ์˜จ ์ฆ์ฐฉ ๊ณผ์ •์—์„œ ํ˜•์„ฑ๋œ ์‹ค๋ฆฌ์ฝ˜ ์‚ฐํ™”๋ง‰์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ดํŠธ๋ฅจ ๋„ํ•‘๋œ ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์ด ์‹ค๋ฆฌ์ฝ˜๊ณผ ๊ฒฐ๋งž์Œ ๊ด€๊ณ„์— ์žˆ๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์••์ „ํž˜ ํ˜„๋ฏธ๊ฒฝ์„ ํ†ตํ•˜์—ฌ ๊ฐ•์œ ์ „์ฒด ๋„๋ฉ”์ธ ์˜์—ญ์„ ํ™•์ธํ•˜์—ฌ ๊ฐ•์œ ์ „ ํŠน์„ฑ์ด ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฒฐ๋งž์Œ ์„ฑ์žฅํ•œ ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์€ ๊ธˆ์†-๊ฐ•์œ ์ „์ฒด-์œ ์ „์ฒด-๋ฐ˜๋„์ฒด ๊ตฌ์กฐ์—์„œ ๋ถ„๋ช…ํ•œ ์Šค์œ„์นญ ์ „๋ฅ˜๋ฅผ ๋ถ„๊ทน-์ „์•• ์‹คํ—˜์—์„œ ๋ณด์˜€๋‹ค. ๋˜ํ•œ, ๊ธฐ์กด ํŽ˜๋กœ๋ธŒ์Šค์นด์ดํŠธ ๊ธฐ๋ฐ˜์˜ ๊ฐ•์œ ์ „์ฒด ์†Œ์ž ๊ตฌ์กฐ์—์„œ ํ™•๋ณด๋˜๋Š” ์ •๋„์˜ ๋ถ„๊ทน ์œ ์ง€๋ ฅ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๊ฐ•์œ ์ „์ฒด ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ ๊ธฐ๋ฐ˜ ํ„ฐ๋„ ์ ‘ํ•ฉ์— ๋‚˜ํƒ€๋‚œ ํฐ ์ €ํ•ญ ๋ณ€ํ™”์— ๋Œ€ํ•ด ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์•ฝ 1 ๋‚˜๋…ธ๋ฏธํ„ฐ ๋‘๊ป˜์˜ ์–‡์€ ๊ฐ•์œ ์ „์ฒด ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์„ ์‹ค๋ฆฌ์ฝ˜ ์œ„์— ์ง์ ‘ ์ ‘ํ•ฉํ•˜์—ฌ 106 ์ •๋„์˜ ํ„ฐ๋„๋ง ์ผœ์ง/๊บผ์ง ์ €ํ•ญ ์ƒํƒœ ๋ณ€ํ™”๋น„๋ฅผ ํ™•๋ณดํ•˜์˜€๋‹ค. ํฐ ์ €ํ•ญ ๋ณ€ํ™”๋น„๋ฅผ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ๋‹จ๊ฒฐ์ •ํ˜• ํ˜•์„ ๊ตฌ์กฐ ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์„ ์‹ค๋ฆฌ์ฝ˜์œ„์— ๊ฒฐ๋งž์Œ ์„ฑ์žฅํ•˜์˜€๋‹ค. ๊ธˆ์†-๊ฐ•์œ ์ „์ฒด-๋ฐ˜๋„์ฒด ์ ‘ํ•ฉ์—์„œ ๊ฐ•์œ ์ „ ๋ถ„๊ทน ๋ฐฉํ–ฅ์€ ๊ฒฐํ•์ธต์˜ ํญ ๋ณ€ํ™”๋ฅผ ๋งŒ๋“ค์–ด ๋ƒˆ์œผ๋ฉฐ, ๊ฒฐํ•์ธต์˜ ๋ณ€ํ™”๋Š” ํ„ฐ๋„๋ง ์žฅ๋ฒฝ์˜ ๋ณ€ํ™”๋ฅผ ๋งŒ๋“ค์–ด๋ƒˆ๋‹ค. ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ์˜ ๋†’์€ ์‹œ๋ชจ์Šค ๊ณต์ • ํ˜ธํ™˜์„ฑ์œผ๋กœ ์ธํ•ด ํ•ด๋‹น ์—ฐ๊ตฌ์—์„œ ๋ฐœ๊ฒฌ๋œ ๊ฐ•์œ ์ „์ฒด ํ•˜ํ”„๋Š„ ์‚ฐํ™”๋ฌผ ๊ธฐ๋ฐ˜ ํ„ฐ๋„๋ง ์†Œ์ž์—์„œ ๊ด€์ธก๋œ ํฐ ์ €ํ•ญ ๋ณ€ํ™”๋Š” ๋น ๋ฅด๊ฒŒ ์‚ฐ์—… ๋ถ„์•ผ์— ์ ์šฉ๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค.List of Figures 1 Abstract 7 Chapter 1. Introduction 9 1.1 Ferroelectricity 9 1.2 Ferroelectric Hafnium Oxide 10 1.3 References 12 Chapter 2. Experimental Methods 13 2.1 Pulsed laser deposition 13 2.2 Structure Analysis 14 2.3 Piezoresponse Force Microscopy 15 2.4 References 17 Chapter 3. Stability of Subloop Behavior for Analog Devices in Ferroelectric HfO2 18 3.1 Introduction 18 3.2 Sample Fabrication 20 3.3 Stable Subloop Behavior of Ferroelectric Polarization 22 3.4 Parameters for Ferroelectric Switching of HfO2 28 3.5 Slow Domain Wall Motion of HfO2 31 3.6 Theoretical Calculations and Simulations 34 3.7 Conclusion 40 3.8 References 42 Chapter 4. Growth of Epitaxial Ferroelectric Y-doped HfO2 on Si for 1T-FeRAM Applications 52 4.1 Introduction 52 4.2 Sample Fabrication 53 4.3 Structural Analysis 53 4.4 Microscopic Ferroelectricity Analysis 56 4.5 Macroscopic Ferroelectricity Analysis 58 4.6 Conclusion 62 4.7 References 63 Chapter 5. Growth of Ultrathin Epitaxial Ferroelectric HfO2 on Si for Tunneling Device 67 5.1 Introduction 67 5.2 Sample Fabrication 69 5.3 Structural Analysis 69 5.4 Microscopic Ferroelectricity Analysis 73 5.5 Ferroelectric Polarization Modulated Resistance States 74 5.6 Theoretical Calculations and Simulations 78 5.7 Conclusion 82 5.8 References 84 Chapter 6. Conclusion 90 Curriculum Vitage and List of Publication 92 Abstract in Korean 97 Appendix 99 ๊ฐ์‚ฌ์˜ ๊ธ€ 118๋ฐ•

    A Study on the Improvement Plan of Customs Administration for Vitalizing Cruise Industry - Focused on Busan Port

    Get PDF
    ํฌ๋ฃจ์ฆˆ ์‚ฐ์—…์€ ์ง€์†์ ์ธ ์ˆ˜์š”์ฆ๊ฐ€์™€ ๋ง‰๋Œ€ํ•œ ๋ถ€๊ฐ€๊ฐ€์น˜๋กœ ์ธํ•ด 21์„ธ๊ธฐ ๊ฐ€์žฅ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋Š” ๊ด€๊ด‘์‚ฐ์—…์ด๋‹ค. ํŠนํžˆ ๋™๋ถ์•„๋ฅผ ์ค‘์‹ฌ์œผ๋กœํ•œ ํฌ๋ฃจ์ฆˆ ์‚ฐ์—…์€ ํญ๋ฐœ์ ์œผ๋กœ ์„ฑ์žฅํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์•„์‹œ์•„ ์ง€์—ญ์€ ํ•œ-์ค‘-์ผ ๊ฐ„์˜ ์—ฐ๊ณ„์ƒํ’ˆ์œผ๋กœ ์‹œ์žฅ๊ฒฝ์Ÿ๋ ฅ์ด ๋งค์šฐ ํฐ ์ง€์—ญ์œผ๋กœ ํ‰๊ฐ€๋˜๊ณ  ์žˆ๋‹ค. ํฌ๋ฃจ์ฆˆ ์‚ฐ์—…์˜ ์ค‘์š”์„ฑ์ด ์ ์ฐจ ์ฆ๊ฐ€๋˜๋ฉด์„œ ํฌ๋ฃจ์ฆˆ์‚ฐ์—… ๊ด€๋ จ ์—ฐ๊ตฌ๋Š” ๊ฐ ๋ถ„์•ผ์—์„œ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ํฌ๋ฃจ์ฆˆ๋ฅผ ์œ ์น˜ํ•˜๊ธฐ ์œ„ํ•œ ๊ตญ๊ฐ€๊ฐ„ ๊ฒฝ์Ÿ์ด ์น˜์—ดํ•ด ์ง์— ๋”ฐ๋ผ ์ •๋ถ€์˜ ํฌ๋ฃจ์ฆˆ์ง€์› ์ •์ฑ…๋„ ์ง€์†์ ์œผ๋กœ ๋ฐœํ‘œ๋˜๊ณ  ์žˆ๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ํฌ๋ฃจ์ฆˆ์‚ฐ์—… ํ™œ์„ฑํ™”๋ฅผ ์œ„ํ•œ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ์ง€๋งŒ ๊ด€๊ด‘ํ™œ์„ฑํ™”๋ฅผ ์œ„ํ•œ ์ƒํ’ˆ๊ฐœ๋ฐœ๊ณผ ๊ด€๊ด‘๊ฐ ์œ ์น˜๋ฅผ ์œ„ํ•œ ๋งˆ์ผ€ํŒ… ์ „๋žต์—๋งŒ ์ง‘์ค‘ ๋˜๋‹ค๋ณด๋‹ˆ ์ •์ž‘ ์šฐ๋ฆฌ๋‚˜๋ผ๋ฅผ ์ฐพ๋Š” ์™ธ๊ตญ๊ด€๊ด‘๊ฐ์ด ์ œ์ผ ๋จผ์ € ๋งž์ดํ•˜๊ฒŒ๋˜๋Š” ๊ตญ๊ฒฝ๊ด€๋ฆฌ ์ตœ์ผ์„ ์ธ CIQ(์„ธ๊ด€-์ถœ์ž…๊ตญ-๊ฒ€์—ญ) ํŠนํžˆ, ๊ด€์„ธํ–‰์ •๋ถ€๋ถ„์˜ ๋ฌธ์ œ์ ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์ „๋ฌดํ•œ ์‹ค์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ์ข… ๋ฌธํ—Œ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•œ ํฌ๋ฃจ์ฆˆ ์‚ฐ์—…์˜ ํ˜„ํ™ฉ ๋ฐ ์ „๋ง์„ ์‚ดํŽด๋ณด๊ณ , ํฌ๋ฃจ์ฆˆ์‚ฐ์—…์— ์ข…์‚ฌํ•˜๊ณ  ์žˆ๋Š” ํฌ๋ฃจ์ฆˆ ์„ ์‚ฌ ๋Œ€๋ฆฌ์ , ํ•ญ๋งŒ๊ณต์‚ฌ, ์„ธ๊ด€ ํ–‰์ •๊ด€ ๋“ฑ์˜ ์‹ค๋ฌด์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœํ•œ ์ธํ„ฐ๋ทฐ๋ฅผ ํ†ตํ•ด ์ด์šฉ์ž ์ธก๋ฉด์—์„œ์˜ ๊ด€์„ธํ–‰์ •์ƒ์˜ ๋ฌธ์ œ์ ์„ ๋„์ถœํ•˜๊ณ  ํฌ๋ฃจ์ฆˆ ์‚ฐ์—… ํ™œ์„ฑํ™”๋ฅผ ์œ„ํ•œ ๊ด€์„ธํ–‰์ •์ƒ์˜ ๊ฐœ์„ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ํฌ๋ฃจ์ฆˆ์„  ์ž…ํ•ญ์—์„œ๋ถ€ํ„ฐ ์ถœํ•ญ์‹œ์ ๊นŒ์ง€ ์„ธ๊ด€์ด ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ๋Š” ์—…๋ฌดํ”„๋กœ์„ธ์Šค๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์ ๊ฒ€ํ•˜๊ณ , ํ–ฅํ›„ ์šฐ๋ฆฌ๋‚˜๋ผ๋ฅผ ๋ชจํ•ญ์œผ๋กœํ•œ ๋‚ด๊ตญ์  ํฌ๋ฃจ์ฆˆ์„ ์˜ ์ทจํ•ญ์— ๋Œ€๋น„ํ•˜์—ฌ ์ด์šฉ์ž์ธก๋ฉด์—์„œ์˜ ๊ด€์„ธํ–‰์ •์ƒ์˜ ๋ถˆํŽธ์‚ฌํ•ญ์„ ์„ ์ œ์ ์œผ๋กœ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ํฌ๋ฃจ์ฆˆ์‚ฐ์—… ํ™œ์„ฑํ™”๋ฅผ ์œ„ํ•œ ์†Œ์ค‘ํ•œ ๋ฐ‘๊ฑฐ๋ฆ„์ด ๋˜๊ธธ ๊ธฐ๋Œ€ํ•œ๋‹ค.|Cruise industry is the tourism industry that has commanded the most attention in the 21st century by increased demand and an enormous amount of additional value. Specially, cruise industry in Northeast Asia is growing explosively, and Asia is being considered as a region with great market competitive power for China-Korea-Japan products. Studies on cruise industry are being conducted actively in various fields as cruise industry became increasingly important, and governmentโ€™s cruise support policies for attracting cruise are being announced continuously as competition between nations became fierce. Many studies for vitalizing the cruise industry have been conducted but there are no studies on problems of CIQ(customs-immigration-quarantine), specially Koreas customs administration, the forefront of border control that foreign tourists visiting Korea encounter first, as studies only focused on the marketing strategy for developing products and attracting tourists for vitalizing tourism. Therefore, this study investigated the present condition and prospect of cruise industry through various literature reviews and derived customs administrative problems in user perspective through interviews on hands-on workers of agents for the cruise industry, harbor construction, and customs administrator who are engaged in the cruise industry, and suggested customs administrative improvement plans to vitalize the cruise industry. This study is expected to serve as a valuable foundation for vitalizing the cruise industry by checking the work process of customs from port entry to departure of cruise ships and improving customs administrative inconveniences preemptively in user perspective in preparation for the service of local cruise ships with our country as the home port.์ œ1์žฅ ์„œ๋ก  1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1.2 ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• ๋ฐ ๊ตฌ์„ฑ 2 ์ œ2์žฅ ํฌ๋ฃจ์ฆˆ์‚ฐ์—…์˜ ์˜์˜ ๋ฐ ํ˜„ํ™ฉ 2.1. ํฌ๋ฃจ์ฆˆ์‚ฐ์—…์˜ ์˜์˜ ๋ฐ ํŠน์ง• 4 2.1.1 ํฌ๋ฃจ์ฆˆ์˜ ๊ฐœ๋… 4 2.1.2 ํฌ๋ฃจ์ฆˆ์˜ ํŠน์ง• 7 2.1.3 ํฌ๋ฃจ์ฆˆ์˜ ๋ถ„๋ฅ˜ 11 2.1.4 ํฌ๋ฃจ์ฆˆ์‚ฐ์—…์— ๊ด€ํ•œ ์„ ํ–‰์—ฐ๊ตฌ 14 2.2 ํฌ๋ฃจ์ฆˆ์‚ฐ์—… ํ˜„ํ™ฉ ๋ฐ ์ „๋ง 17 2.2.1 ์„ธ๊ณ„ ํฌ๋ฃจ์ฆˆ์‚ฐ์—…์˜ ํ˜„ํ™ฉ๊ณผ ์ „๋ง 17 2.2.2 ๊ตญ๋‚ด ํฌ๋ฃจ์ฆˆ์‚ฐ์—…์˜ ํ˜„ํ™ฉ๊ณผ ์ „๋ง 19 2.3 ๋ถ€์‚ฐํ•ญ์˜ ํฌ๋ฃจ์ฆˆ์‚ฐ์—…์˜ ํ˜„ํ™ฉ๊ณผ ์—ฌ๊ฑด ๋ถ„์„ 21 2.3.1 ๋ถ€์‚ฐํ•ญ์˜ ์ž…์ง€์—ฌ๊ฑด ๋ฐ ํ™˜๊ฒฝ 21 2.3.2 ๋ถ€์‚ฐํ•ญ ํฌ๋ฃจ์ฆˆ ๊ด€๋ จ ์‹œ์„ค ํ˜„ํ™ฉ 23 ์ œ3์žฅ ํฌ๋ฃจ์ฆˆ์‚ฐ์—…๊ณผ ๊ด€์„ธํ–‰์ • 3.1. ํฌ๋ฃจ์ฆˆ์‚ฐ์—…์—์„œ์˜ ๊ด€์„ธํ–‰์ • ๊ธฐ๋Šฅ ๋ฐ ์—ญํ•  26 3.2 ํฌ๋ฃจ์ฆˆ๊ด€๋ จ ์„ธ๊ด€์˜ ์ฃผ์š”์ฒ˜๋ฆฌ์—…๋ฌด ๋ฐ ๊ด€๋ จ๊ทœ์ • 26 3.3. ํ•ด์™ธ ์ฃผ์š” ๊ธฐํ•ญ์ง€๋ณ„ ํฌ๋ฃจ์ฆˆ ํ†ต๊ด€์ œ๋„ ๋น„๊ต 39 ์ œ4์žฅ ํฌ๋ฃจ์ฆˆ์‚ฐ์—…์—์„œ์˜ ๊ด€์„ธํ–‰์ • ๋ฌธ์ œ์  ๋ฐ ๊ฐœ์„ ๋ฐฉ์•ˆ 4.1. ํฌ๋ฃจ์ฆˆ์‚ฐ์—…์—์„œ์˜ ๊ด€์„ธํ–‰์ • ๋ฌธ์ œ์  50 4.1.1 ์—ฌํ–‰์žํ†ต๊ด€๋ถ€๋ถ„ 57 4.1.2 ๊ฐ์‹œํ–‰์ •๋ถ€๋ถ„ 61 4.2. ํฌ๋ฃจ์ฆˆ์‚ฐ์—…์—์„œ์˜ ๊ด€์„ธํ–‰์ • ๊ฐœ์„ ๋ฐฉ์•ˆ 64 4.2.1 ์—ฌํ–‰์žํ†ต๊ด€๋ถ€๋ถ„ 64 4.2.2 ๊ฐ์‹œํ–‰์ •๋ถ€๋ถ„ 68 ์ œ5์žฅ. ๊ฒฐ๋ก  5.1. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ์š”์•ฝ 72 5.2. ์—ฐ๊ตฌ ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ๋ฐฉํ–ฅ ์ œ์‹œ 73Maste

    ๋น„์ •๊ทœ ๊ฒฉ์ž์˜ ์ƒ์„ฑ๊ณผ ์ ์„ฑ์œ ๋™ํ•ด์„

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์กฐ์„ ํ•ด์–‘๊ณตํ•™๊ณผ,1998.Maste

    ์‹œ๊ฐํ‹€๊ณผ ๋™์–‘ํ™” ๊ตฌ๋„๋ก ์— ์˜ํ•œ ํ•œ๊ตญ ์ „ํ†ต๊ฑด์ถ• ๊ณต๊ฐ„๋ถ„์„ : ๏ค”ๅ–„้ฝŠ ไธ€ๅป“์„ ์ค‘์‹ฌ์œผ๋กœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ฑด์ถ•ํ•™๊ณผ,1998.Maste

    ์ด์‚ฐ์ตœ์ ํ™”๋ฅผ ์ด์šฉํ•œ ์ ์‘์  ๋งค์นญ ๊ธฐ๋ฐ˜ ๊ด‘ํ๋ฆ„ ์˜ˆ์ธก ๊ธฐ๋ฒ•

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 8. ์ด์ƒ์šฑ.๊ด‘ํ๋ฆ„์˜ˆ์ธก์€ ์ฐธ์กฐ์˜์ƒ๊ณผ ๋ชฉํ‘œ์˜์ƒ๊ฐ„์— ์ด˜์ด˜ํ•œ ์‹œ๊ฐ์  ์—ฐ๊ด€์„ฑ์„ ์ฐพ๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ๊ทธ๋Ÿฌํ•œ ์—ฐ๊ด€์„ฑ์€ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์˜ ๋‹ค์–‘ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ง€๋‚œ ๋ช‡ ์‹ญ๋…„๋™์•ˆ ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜์–ด ์™”์ง€๋งŒ ๊ด‘ํ๋ฆ„์˜ˆ์ธก์€ ์—ฌ์ „ํžˆ ์–ด๋ ค์šด ๋ฌธ์ œ์ด๊ณ  ๊ณ„์† ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ๋Š”, ๋ฌผ์ฒด์˜ ๋‹ค์–‘ํ•œ ์™ธ๊ด€์€ ์˜์ƒ์˜ ๋‚ด์  ์˜์—ญํ™”๋ฅผ ์•ฝํ™”์‹œํ‚ค๊ณ  ์›€์ง์ž„ ๊ฒฝ๊ณ„์—์„œ์˜ ์˜ˆ์ธก์„ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋ฌผ์ฒด์˜ ๋ณต์žกํ•˜๊ณ  ํฐ ์›€์ง์ž„์ด ์žˆ๋Š” ๊ฒฝ์šฐ์—๋„ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์˜ˆ์ธก ์„ฑ๋Šฅ์„ ์ €ํ•˜์‹œํ‚จ๋‹ค. ๋˜ํ•œ ์›€์ง์ด๋Š” ๋ฌผ์ฒด์˜ ๊ฒฝ๊ณ„ ๋ถ€๋ถ„์—์„œ๋Š” ์–ด์ฉ” ์ˆ˜ ์—†์ด ๊ฐ€๋ฆฌ์›€ ํ˜„์ƒ์ด ๋‚˜ํƒ€๋‚˜๊ฒŒ ๋˜๋Š”๋ฐ ์ด ๋˜ํ•œ ์˜ˆ์ธก์˜ ์ •ํ™•๋„๋ฅผ ๋–จ์–ด๋œจ๋ฆฌ๋Š” ์š”์ธ์ด ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ช‡ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ฐฉ๋ฒ•๋“ค์€ ๊ด‘ํ๋ฆ„ ์˜ˆ์ธก ๋ฌธ์ œ๋ฅผ ์ด์‚ฐ ๋ ˆ์ด๋ธ”๋ง ๋ฌธ์ œ๋กœ ์น˜ํ™˜ํ•˜์—ฌ ์ด์— ๋Œ€ํ•œ ์—๋„ˆ์ง€ ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•˜๊ณ  ์ด์‚ฐ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ตœ์ ํ™”์‹œํ‚ค๋Š” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•œ๋‹ค. ์šฐ์„ , ์›€์ง์ž„ ๊ฒฝ๊ณ„์—์„œ์˜ ์˜ค๋ฅ˜๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•˜์—ฌ ์ƒˆ๋กœ์šด ์ ์‘์  ์œˆ๋„์šฐ ๋งค์นญ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์€ ์ ์‘์  ๊ฐ€์ค‘์น˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ํฐ ์œˆ๋„์šฐ์— ๊ธฐ๋ฐ˜ํ•˜๊ณ  ์žˆ๋‹ค. ์ด ๊ฐ€์ค‘์น˜๋Š” ์˜์ƒ ๋ฏธ๋ถ„์น˜, ์ƒ‰ ํ†ต๊ณ„, ๊ทธ๋ฆฌ๊ณ  ๊ฐ€๋ฆฌ์›€๊ณผ ๊ฐ™์€ ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์˜ ์กฐ๊ฑด๋“ค๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ œ์•ˆํ•œ ์กฐ๊ฑด๋“ค์„ ์ด์šฉํ•œ ๊ด‘ํ๋ฆ„ ์˜ˆ์ธก์€ ํ˜„์žฌ์˜ ๊ธฐ์ˆ ๋“ค์— ๋Œ€๋น„ํ•ด ๊ฒฝ์Ÿ๋ ฅ ์žˆ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜๊ณ  ํŠนํžˆ ์›€์ง์ž„ ๊ฒฝ๊ณ„์—์„œ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋ณต์žกํ•˜๊ณ  ํฐ ์›€์ง์ž„์ด ์žˆ๋Š” ์˜์ƒ๋“ค์˜ ๊ด‘ํ๋ฆ„ ์˜ˆ์ธก์„ ์œ„ํ•ด ์ด์‚ฐ ํ•จ์ˆ˜์™€ ํ™•์‚ฐ ํ…์„œ์— ๊ธฐ๋ฐ˜ํ•œ ์ƒˆ๋กœ์šด ์—๋„ˆ์ง€ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ๋ชจ๋ธ์€ ๊ด‘ํ๋ฆ„ ํ•„๋“œ์˜ ๋‹ค๋“ฌ์งˆ ๊ณผ์ •์ด ์ปจ๋ณผ๋ฃจ์…˜ ์ปค๋„ ํ•„ํ„ฐ๋ง๊ณผ ํก์‚ฌํ•˜๋‹ค๋Š” ์ ์— ์ฐฉ์•ˆํ•˜์—ฌ, ํ•„ํ„ฐ๋œ ํ๋ฆ„๊ณผ ์›๋ž˜์˜ ํ๋ฆ„์˜ ์ฐจ๋ฅผ ๋‹ค๋“ฌ์งˆ ์‚ฌ์ „์ •๋ณด๋กœ ํ™œ์šฉํ•˜๊ฒŒ ๋œ๋‹ค. ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ๊ธฐ๋ฒ•์ด ๋ณต์žกํ•˜๊ณ  ํฐ ์›€์ง์ž„์ด ์žˆ๋Š” ์˜์ƒ์— ๋Œ€ํ•˜์—ฌ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ  ์žˆ๋‹ค๋Š” ์ ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋์œผ๋กœ ์ƒˆ๋กœ์šด ๊ฐ€์ค‘์น˜ ๊ธฐ๋ฐ˜ ์œˆ๋„์šฐ ๋งค์นญ์„ ์ด์šฉํ•˜์—ฌ ๊ด‘ํ๋ฆ„ ์˜ˆ์ธก๊ณผ ๊ฐ€๋ฆฌ์›€ ๊ฒ€์ถœ์„ ๋™์‹œ์— ํ•ด๋‚ผ ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•œ ๊ฐ€์ค‘์น˜๋Š” ๊ฐ€๋ฆฌ์›€์˜ ๋ฐ€๋„๊ฐ€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋งค์šฐ ๋น„์ค‘์ด ์ž‘๋‹ค๋Š” ๊ฐ€์ •์„ ์ด์šฉํ•˜์—ฌ ๊ทธ๊ฒƒ์„ ๊ฒ€์ถœํ•˜๋Š”๋ฐ ํšจ์œจ์ ์ธ ๋‹จ์„œ๋ฅผ ์ œ๊ณตํ•˜๊ณ  ์ด๋Ÿฌํ•œ ์˜์—ญ์—์„œ์˜ ํ•ฉ๋ฆฌ์ ์ธ ๊ด‘ํ๋ฆ„์˜ ์ถ”์ ๋„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์ด ๊ด‘ํ๋ฆ„ ์˜ˆ์ธก์˜ ์˜ค๋ฅ˜๋ฅผ ์ค„์—ฌ์ค„ ๋ฟ ์•„๋‹ˆ๋ผ ๊ฒ€์ถœ์˜ ์ •ํ™•๋„๋„ ๋†’์ด๊ณ  ์žˆ์–ด, ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊ธฐ์กด์˜ ๊ธฐ๋ฒ•๋ณด๋‹ค ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ  ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.Optical flow estimation aims to find dense visual correspondences between a reference and a target images. Obtaining such dense correspondences may benefit various computer vision algorithms. For decades, many researches have been dedicated to resolve the problem, but it still remains challenging problem and is actively studied these days. Specifically, various appearance of objects may weaken implicit segmentation of flow and degrade estimation on motion boundaries. Complex and large displacement of an object may also degenerate the performance. In addition, individual movements of adjacent objects inherently produce occlusion in the target imageand may increase the estimation error as the corresponding point for the occlusion is actually undefined. In this work, we propose several methods to address these problems. Our methods construct discrete energy models for the problems and obtain solutions with discrete optimization techniques. First, to reduce errors of estimated flow around motion boundaries, we propose a novel adaptive window matching approach utilizing statistical information in the window. The proposed approach is based on using large correlation windows with adaptive support-weights. We present three new types of weighting constraints derived from image gradient, color statistics and occlusion information. Each of the proposed constraints appreciably elevates the quality of estimations, and that they jointly yield results that compare favorably to current techniques, especially on the motion boundaries. Second, to handle complex non-transitional motion with large displacement, we present a new energy model presenting discrete analog to the diffusion tensor-based regularizer. Inspired from the fact that the regularization process works as a convolution kernel filtering, we formulate the difference between original flow and filtered flow as a smoothness prior. Experiments demonstrate the proposed method yields plausible results on the various data sets including large displacement and complex motion boundaries. Third, we address occlusion by simultaneously estimate flow and detect occlusion in a single framework using a novel support-weight based window matching. The proposed support-weight provides a very effective clue to detect occlusion based on the assumption that occlusion is sparseand also presents reasonable estimation for the flow of the occluded pixels. Our method improves the flow accuracy as well as detection performance, compared to the approach alternatively finding solutions in individual frameworksand also yields highly competitive results outperforming the previous state-of-the-art methods.1 Introduction 1 1.1 Outline of this work 2 2 Background 5 3 Adaptive Window Correlation with Local Statistics 9 3.1 Introduction 9 3.1.1 Previous work 10 3.1.2 Our approach 10 3.2 Background 13 3.2.1 Coarse-to-fine approach 14 3.2.2 Data matching criteria 15 3.3 Proposed Constraints for Adaptive Window Correlation 16 3.3.1 Gradient structure constraint 16 3.3.2 Perceptual color constraint 17 3.3.3 Occlusion constraint 19 3.4 Efficient Optimization 21 3.4.1 Node decomposition 22 3.5 Experimental Results 24 3.5.1 Effect of individual constraints 24 3.5.2 Comparison to previous constraints 27 3.5.3 Comparison to other methods 27 3.6 Discussion 29 4 Convolution Kernel Prior 33 4.1 Introduction 33 4.1.1 Previous work 33 4.1.2 Proposed approach 35 4.2 Convolution Kernel Prior 36 4.3 Adaptive Regularizer 40 4.4 Optimization 43 4.4.1 Coarse-to-fine approach 43 4.4.2 Node decomposition 44 4.5 Experimental Results 45 4.5.1 Overall performance 47 4.5.2 The control group 47 4.5.3 Large displacements 50 4.6 Discussion 50 5 Sparse Occlusion Detection via Window Matching 53 5.1 Introduction 53 5.1.1 Related work 54 5.1.2 Proposed approach 55 5.2 Background 59 5.3 Proposed Data Matching 60 5.3.1 Coarse-to-fine occlusion update 62 5.4 Optimization 63 5.4.1 Node decomposition 64 5.4.2 Regularization for occlusion 66 5.4.3 Min convolution 66 5.4.4 Incremental flow update 66 5.5 Experiments 67 5.6 Discussion 71 6 Conclusion 73 Bibliography 75Docto

    ๋ฐฐ์œ„ ์ค‘ํ•ฉ๋œ ์ด์ค‘๋ง‰๊ณผ ๋ณ€ํ˜•๋œ ํด๋ฆฌ์—ํ‹ธ๋ Œ์ด๋ฏผ์— ๊ธฐ์ดˆํ•œ ์ธ๊ณต ๊ธˆ์† ์—์Šคํ…Œ๋ฅด ๋ถ„ํ•ดํšจ์†Œ

    No full text
    Thesis (doctoral)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :ํ™”ํ•™๊ณผ ์œ ๊ธฐํ™”ํ•™์ „๊ณต,1995.Docto

    Classification into major and minor Honey-producing and pollen-collecting woody plants in Korea and their flowering period

    No full text
    ํ•œ๋ฐ˜๋„์—๋Š” ์ž์ƒ์ข… 2,898์ข…๊ณผ ๋„์ž…์ข… 395์ข…์„ ํ•ฉ์ณ์„œ ์ด 3,293์ข…(species)์˜ ๊ด€์†์‹๋ฌผ์ด ์ž๋ผ๊ณ  ์žˆ์œผ๋ฉฐ, ์•„์ข…, ๋ณ€์ข…, ์žก์ข…์„ ํฌํ•จ์‹œํ‚จ๋‹ค๋ฉด, ์ž์ƒ์ข… 4,158์ข…๊ณผ ๋„์ž…์ข… 438์ข…์„ ํ•ฉ์ณ์„œ ์ด 4,596์ข…(taxa)์ด ๋ถ„ํฌํ•˜๊ณ  ์žˆ๋‹ค(Lee, 1976). ์ด ์ค‘์—์„œ ๊ฒฝ์ œ์ ์œผ๋กœ ์ด์šฉ๊ฐ€๋Šฅํ•œ ๊ฒฝ์ œ์‹๋ฌผ์€ ์•ฝ 2,500์ข… ๊ฐ€๋Ÿ‰๋˜๋ฉฐ, ์ด๋ฅผ ์„ธ๋ถ„ํ•˜๋ฉด ์‹์šฉ 1,100์ข…, ์•ฝ์šฉ 941์ข…, ์ฑ„์†Œ์šฉ 250์ข…, ๊ด€์ƒ์šฉ 630์ข…์— ์ด๋ฅธ๋‹ค. ๋ชฉ๋ณธ์‹๋ฌผ์€ ์ž์ƒ์ข… 625์ข…๊ณผ ๋„์ž…์ข… 129์ข…์„ ํ•ฉ์ณ์„œ ์ด 754์ข…์— ์ด๋ฅด๋ฉฐ ์•„์ข…, ๋ณ€์ข…, ์žก์ข…์„ ํฌํ•จ์‹œํ‚จ๋‹ค๋ฉด ์ž์ƒ์ข… 1,178์ข…๊ณผ ๋„์ž…์ข… 145์ข…์„ ํ•ฉ์ณ์„œ ์ด 1,323์ข…(taxa)์ด ๋ถ„ํฌํ•˜๊ณ  ์žˆ๋‹ค...

    Fabrication and characteristics of the transparent super-hydrophobic film having nanogfibers array structures

    No full text
    MasterTransparent and super-hydrophobic films are fabricated by using PDMS method and silane process, based on anodization process in phosphoric acid. Contact angle tests performed to obtain the contact angle of each film according to anodizing time. And transmittance tests also performed to obtain the transparency of each TPT replica film according to anodizing time. Characteristics such as contact angle and transmittance were investigated in drop shape analysis system and UV-spectrometer. Pore length of AAO nanohoneycomb structures increases with increasing anodizing time. And also contact angle increases with increasing anodizing time because increasing pillar length can trap more air between TPT replica film and a drop of water. But transmittance decreases with increasing anodizing time because increasing pillar length can cause scattering effect. As a result of this study, we know that the pillar length and transparency are competitive relationship
    corecore