3 research outputs found

    ์ƒˆ๋กœ์šด ๋ฉ”๋ชจ๋ฆฌ ๊ธฐ์ˆ ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ ์„ค๊ณ„ ๊ธฐ์ˆ 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ์ตœ๊ธฐ์˜.Performance and energy efficiency of modern computer systems are largely dominated by the memory system. This memory bottleneck has been exacerbated in the past few years with (1) architectural innovations for improving the efficiency of computation units (e.g., chip multiprocessors), which shift the major cause of inefficiency from processors to memory, and (2) the emergence of data-intensive applications, which demands a large capacity of main memory and an excessive amount of memory bandwidth to efficiently handle such workloads. In order to address this memory wall challenge, this dissertation aims at exploring the potential of emerging memory technologies and designing a high-performance, energy-efficient memory hierarchy that is aware of and leverages the characteristics of such new memory technologies. The first part of this dissertation focuses on energy-efficient on-chip cache design based on a new non-volatile memory technology called Spin-Transfer Torque RAM (STT-RAM). When STT-RAM is used to build on-chip caches, it provides several advantages over conventional charge-based memory (e.g., SRAM or eDRAM), such as non-volatility, lower static power, and higher density. However, simply replacing SRAM caches with STT-RAM rather increases the energy consumption because write operations of STT-RAM are slower and more energy-consuming than those of SRAM. To address this challenge, we propose four novel architectural techniques that can alleviate the impact of inefficient STT-RAM write operations on system performance and energy consumption. First, we apply STT-RAM to instruction caches (where write operations are relatively infrequent) and devise a power-gating mechanism called LASIC, which leverages the non-volatility of STT-RAM to turn off STT-RAM instruction caches inside small loops. Second, we propose lower-bits cache, which exploits the narrow bit-width characteristics of application data by caching frequent bit-flips at lower bits in a small SRAM cache. Third, we present prediction hybrid cache, an SRAM/STT-RAM hybrid cache whose block placement between SRAM and STT-RAM is determined by predicting the write intensity of each cache block with a new hardware structure called write intensity predictor. Fourth, we propose DASCA, which predicts write operations that can bypass the cache without incurring extra cache misses (called dead writes) and lets the last-level cache bypass such dead writes to reduce write energy consumption. The second part of this dissertation architects intelligent main memory and its host architecture support based on logic-enabled DRAM. Traditionally, main memory has served the sole purpose of storing data because the extra manufacturing cost of implementing rich functionality (e.g., computation) on a DRAM die was unacceptably high. However, the advent of 3D die stacking now provides a practical, cost-effective way to integrate complex logic circuits into main memory, thereby opening up the possibilities for intelligent main memory. For example, it can be utilized to implement advanced memory management features (e.g., scheduling, power management, etc.) inside memoryit can be also used to offload computation to main memory, which allows us to overcome the memory bandwidth bottleneck caused by narrow off-chip channels (commonly known as processing-in-memory or PIM). The remaining questions are what to implement inside main memory and how to integrate and expose such new features to existing systems. In order to answer these questions, we propose four system designs that utilize logic-enabled DRAM to improve system performance and energy efficiency. First, we utilize the existing logic layer of a Hybrid Memory Cube (a commercial logic-enabled DRAM product) to (1) dynamically turn off some of its off-chip links by monitoring the actual bandwidth demand and (2) integrate prefetch buffer into main memory to perform aggressive prefetching without consuming off-chip link bandwidth. Second, we propose a scalable accelerator for large-scale graph processing called Tesseract, in which graph processing computation is offloaded to specialized processors inside main memory in order to achieve memory-capacity-proportional performance. Third, we design a low-overhead PIM architecture for near-term adoption called PIM-enabled instructions, where PIM operations are interfaced as cache-coherent, virtually-addressed host processor instructions that can be executed either by the host processor or in main memory depending on the data locality. Fourth, we propose an energy-efficient PIM system called aggregation-in-memory, which can adaptively execute PIM operations at any level of the memory hierarchy and provides a fully automated compiler toolchain that transforms existing applications to use PIM operations without programmer intervention.Chapter 1 Introduction 1 1.1 Inefficiencies in the Current Memory Systems 2 1.1.1 On-Chip Caches 2 1.1.2 Main Memory 2 1.2 New Memory Technologies: Opportunities and Challenges 3 1.2.1 Energy-Efficient On-Chip Caches based on STT-RAM 3 1.2.2 Intelligent Main Memory based on Logic-Enabled DRAM 6 1.3 Dissertation Overview 9 Chapter 2 Previous Work 11 2.1 Energy-Efficient On-Chip Caches based on STT-RAM 11 2.1.1 Hybrid Caches 11 2.1.2 Volatile STT-RAM 13 2.1.3 Redundant Write Elimination 14 2.2 Intelligent Main Memory based on Logic-Enabled DRAM 15 2.2.1 PIM Architectures in the 1990s 15 2.2.2 Modern PIM Architectures based on 3D Stacking 15 2.2.3 Modern PIM Architectures on Memory Dies 17 Chapter 3 Loop-Aware Sleepy Instruction Cache 19 3.1 Architecture 20 3.1.1 Loop Cache 21 3.1.2 Loop-Aware Sleep Controller 22 3.2 Evaluation and Discussion 24 3.2.1 Simulation Environment 24 3.2.2 Energy 25 3.2.3 Performance 27 3.2.4 Sensitivity Analysis 27 3.3 Summary 28 Chapter 4 Lower-Bits Cache 29 4.1 Architecture 29 4.2 Experiments 32 4.2.1 Simulator and Cache Model 32 4.2.2 Results 33 4.3 Summary 34 Chapter 5 Prediction Hybrid Cache 35 5.1 Problem and Motivation 37 5.1.1 Problem Definition 37 5.1.2 Motivation 37 5.2 Write Intensity Predictor 38 5.2.1 Keeping Track of Trigger Instructions 39 5.2.2 Identifying Hot Trigger Instructions 40 5.2.3 Dynamic Set Sampling 41 5.2.4 Summary 42 5.3 Prediction Hybrid Cache 43 5.3.1 Need for Write Intensity Prediction 43 5.3.2 Organization 43 5.3.3 Operations 44 5.3.4 Dynamic Threshold Adjustment 45 5.4 Evaluation Methodology 48 5.4.1 Simulator Configuration 48 5.4.2 Workloads 50 5.5 Single-Core Evaluations 51 5.5.1 Energy Consumption and Speedup 51 5.5.2 Energy Breakdown 53 5.5.3 Coverage and Accuracy 54 5.5.4 Sensitivity to Write Intensity Threshold 55 5.5.5 Impact of Dynamic Set Sampling 55 5.5.6 Results for Non-Write-Intensive Workloads 56 5.6 Multicore Evaluations 57 5.7 Summary 59 Chapter 6 Dead Write Prediction Assisted STT-RAM Cache 61 6.1 Motivation 62 6.1.1 Energy Impact of Inefficient Write Operations 62 6.1.2 Limitations of Existing Approaches 63 6.1.3 Potential of Dead Writes 64 6.2 Dead Write Classification 65 6.2.1 Dead-on-Arrival Fills 65 6.2.2 Dead-Value Fills 66 6.2.3 Closing Writes 66 6.2.4 Decomposition 67 6.3 Dead Write Prediction Assisted STT-RAM Cache Architecture 68 6.3.1 Dead Write Prediction 68 6.3.2 Bidirectional Bypass 71 6.4 Evaluation Methodology 72 6.4.1 Simulation Configuration 72 6.4.2 Workloads 74 6.5 Evaluation for Single-Core Systems 75 6.5.1 Energy Consumption and Speedup 75 6.5.2 Coverage and Accuracy 78 6.5.3 Sensitivity to Signature 78 6.5.4 Sensitivity to Update Policy 80 6.5.5 Implications of Device-/Circuit-Level Techniques for Write Energy Reduction 80 6.5.6 Impact of Prefetching 80 6.6 Evaluation for Multi-Core Systems 81 6.6.1 Energy Consumption and Speedup 81 6.6.2 Application to Inclusive Caches 83 6.6.3 Application to Three-Level Cache Hierarchy 84 6.7 Summary 85 Chapter 7 Link Power Management for Hybrid Memory Cubes 87 7.1 Background and Motivation 88 7.1.1 Hybrid Memory Cube 88 7.1.2 Motivation 89 7.2 HMC Link Power Management 91 7.2.1 Link Delay Monitor 91 7.2.2 Power State Transition 94 7.2.3 Overhead 95 7.3 Two-Level Prefetching 95 7.4 Application to Multi-HMC Systems 97 7.5 Experiments 98 7.5.1 Methodology 98 7.5.2 Link Energy Consumption and Speedup 100 7.5.3 HMC Energy Consumption 102 7.5.4 Runtime Behavior of LPM 102 7.5.5 Sensitivity to Slowdown Threshold 104 7.5.6 LPM without Prefetching 104 7.5.7 Impact of Prefetching on Link Traffic 105 7.5.8 On-Chip Prefetcher Aggressiveness in 2LP 107 7.5.9 Tighter Off-Chip Bandwidth Margin 107 7.5.10 Multithreaded Workloads 108 7.5.11 Multi-HMC Systems 109 7.6 Summary 111 Chapter 8 Tesseract PIM System for Parallel Graph Processing 113 8.1 Background and Motivation 115 8.1.1 Large-Scale Graph Processing 115 8.1.2 Graph Processing on Conventional Systems 117 8.1.3 Processing-in-Memory 118 8.2 Tesseract Architecture 119 8.2.1 Overview 119 8.2.2 Remote Function Call via Message Passing 122 8.2.3 Prefetching 124 8.2.4 Programming Interface 126 8.2.5 Application Mapping 127 8.3 Evaluation Methodology 128 8.3.1 Simulation Configuration 128 8.3.2 Workloads 129 8.4 Evaluation Results 130 8.4.1 Performance 130 8.4.2 Iso-Bandwidth Comparison 133 8.4.3 Execution Time Breakdown 134 8.4.4 Prefetch Efficiency 134 8.4.5 Scalability 135 8.4.6 Effect of Higher Off-Chip Network Bandwidth 136 8.4.7 Effect of Better Graph Distribution 137 8.4.8 Energy/Power Consumption and Thermal Analysis 138 8.5 Summary 139 Chapter 9 PIM-Enabled Instructions 141 9.1 Potential of ISA Extensions as the PIM Interface 143 9.2 PIM Abstraction 145 9.2.1 Operations 145 9.2.2 Memory Model 147 9.2.3 Software Modification 148 9.3 Architecture 148 9.3.1 Overview 148 9.3.2 PEI Computation Unit (PCU) 149 9.3.3 PEI Management Unit (PMU) 150 9.3.4 Virtual Memory Support 153 9.3.5 PEI Execution 153 9.3.6 Comparison with Active Memory Operations 154 9.4 Target Applications for Case Study 155 9.4.1 Large-Scale Graph Processing 155 9.4.2 In-Memory Data Analytics 156 9.4.3 Machine Learning and Data Mining 157 9.4.4 Operation Summary 157 9.5 Evaluation Methodology 158 9.5.1 Simulation Configuration 158 9.5.2 Workloads 159 9.6 Evaluation Results 159 9.6.1 Performance 160 9.6.2 Sensitivity to Input Size 163 9.6.3 Multiprogrammed Workloads 164 9.6.4 Balanced Dispatch: Idea and Evaluation 165 9.6.5 Design Space Exploration for PCUs 165 9.6.6 Performance Overhead of the PMU 167 9.6.7 Energy, Area, and Thermal Issues 167 9.7 Summary 168 Chapter 10 Aggregation-in-Memory 171 10.1 Motivation 173 10.1.1 Rethinking PIM for Energy Efficiency 173 10.1.2 Aggregation as PIM Operations 174 10.2 Architecture 176 10.2.1 Overview 176 10.2.2 Programming Model 177 10.2.3 On-Chip Caches 177 10.2.4 Coherence and Consistency 181 10.2.5 Main Memory 181 10.2.6 Potential Generalization Opportunities 183 10.3 Compiler Support 184 10.4 Contributions over Prior Art 185 10.4.1 PIM-Enabled Instructions 185 10.4.2 Parallel Reduction in Caches 187 10.4.3 Row Buffer Locality of DRAM Writes 188 10.5 Target Applications 188 10.6 Evaluation Methodology 190 10.6.1 Simulation Configuration 190 10.6.2 Hardware Overhead 191 10.6.3 Workloads 192 10.7 Evaluation Results 192 10.7.1 Energy Consumption and Performance 192 10.7.2 Dynamic Energy Breakdown 196 10.7.3 Comparison with Aggressive Writeback 197 10.7.4 Multiprogrammed Workloads 198 10.7.5 Comparison with Intrinsic-based Code 198 10.8 Summary 199 Chapter 11 Conclusion 201 11.1 Energy-Efficient On-Chip Caches based on STT-RAM 202 11.2 Intelligent Main Memory based on Logic-Enabled DRAM 203 Bibliography 205 ์š”์•ฝ 227Docto

    A Study of Multi-disciplined Crowd-sourced Future Life Value Creating Platforms - Focusing on the Methodology of Collective Intelligence to Enhance SMEs Design R&D Capabilities -

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋””์ž์ธํ•™๋ถ€(๊ณต์—…๋””์ž์ธ์ „๊ณต), 2015. 8. ์ด์ˆœ์ข….IT ๋ฐ ์‚ฌํšŒ๊ด€๊ณ„๋ง ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ ์ •๋ณด์˜ ๋ฐœ์ƒ๊ณผ ๊ณต์œ , ์†Œ๋น„์˜ ์‚ฌ์ดํด์ด ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ๋นจ๋ผ์ง€๋ฉด์„œ ๋Œ€์ค‘๋“ค์€ ๊ณผ๊ฑฐ๋ณด๋‹ค ๋˜‘๋˜‘ํ•ด์ง€๊ณ  ์ง„ํ™”๋ฅผ ๊ฑฐ๋“ญํ•˜๊ณ  ์žˆ๋‹ค. ๋ฏธ๋ž˜ ๊ฒฝ์Ÿ๋ ฅ๊ณผ ์ƒ์กด์„ ์ขŒ์šฐํ•  ๊ถŒ๋ ฅ์˜ ์ถ”๊ฐ€ ๊ฐœ์ธ์œผ๋กœ, ์ด๋Ÿฌํ•œ ๊ฐœ์ธ๋“ค์ด ๋ชจ์ธ ์ง‘๋‹จ์œผ๋กœ ๊ธ‰์†ํžˆ ์ด๋™๋˜๋ฉด์„œ ๋ฐ”๋กœ ๋Œ€์ค‘์ด ์ฃผ์ฒด๊ฐ€ ๋˜์–ด ์†Œ๋น„์ž์˜ ์‹œ๊ฐ์œผ๋กœ ๋ฏธ๋ž˜๋ฅผ ๋‚ด๋‹ค๋ณด๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์กŒ๋‹ค. ๋ฐ”๋žŒ์งํ•œ ๋ฏธ๋ž˜ ์˜ˆ์ธก์˜ ๋ฐฉ๋ฒ•์€ ์†Œ์ˆ˜์˜ ์ „๋ฌธ๊ฐ€๊ฐ€ ๊ฐ๊ด€์  ํ†ต๊ณ„์ˆ˜์น˜๋‚˜ ์ฒœ์žฌ์  ํ†ต์ฐฐ๋ ฅ์œผ๋กœ ๋ฏธ๋ž˜๋ฅผ ์ถ”์ •ํ•˜๊ฑฐ๋‚˜ ์กฑ์ง‘๊ฒŒ์ฒ˜๋Ÿผ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์˜ ์ „๋ฌธ๊ฐ€์™€ ์†Œ๋น„์ž๋“ค์ด ๋ฐ”๋žŒ์งํ•œ ๋ฏธ๋ž˜์ƒ์„ ํ•จ๊ป˜ ํƒ์ƒ‰ํ•˜๊ณ  ์ฐฝ์กฐํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋งคํฌ๋กœ ์œ„ํ‚ค๋…ธ๋ฏน์Šค์˜ ์ €์ž ๋ˆ ํƒญ์Šค์ฝง์€ ๋ฏธ๋ž˜๋Š” ๋งŒ๋“ค์–ด๊ฐ€์•ผ ํ•  ๋Œ€์ƒ์ด๋ฉฐ ๊ทธ ๊ณผ์ •์—์„œ ์ง‘๋‹จ์ง€์„ฑ์ด ๋ฐฉํ–ฅํ‚ค๊ฐ€ ๋ผ์•ผ ํ•œ๋‹ค.๊ณ  ๊ฐ•์กฐํ–ˆ๋‹ค. ๋ฏธ๋ž˜ ๋ณ€ํ™”์™€ ํ˜์‹ ์˜ ์ฃผ๊ธฐ๊ฐ€ ์ ์ฐจ ์งง์•„์ง€๊ณ  ์žˆ๋Š” ํ˜„์žฌ, ๊ฐœ๊ฐœ์ธ ๋ฐ ๋‹ค์–‘ํ•œ ์ง‘๋‹จ์˜ ์ข…ํ•ฉ์  ์ง€์‹๊ณผ ๊ฒฝํ—˜, ํ†ต์ฐฐ๋ ฅ์„ ์—ฎ์–ด ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•ด์กŒ๋‹ค. ์ง‘๋‹จ์ง€์„ฑ์˜ ํ™œ์šฉ์€ ๋ฏธ๋ž˜์— ๋Œ€ํ•œ ํญ๋„“๊ณ  ์ƒˆ๋กœ์šด ์‹œ๊ฐ๊ณผ ์•„์ด๋””์–ด๋กœ ๋ณด๋‹ค ์œ ์—ฐํ•˜๊ณ  ์œ ์šฉํ•œ ๋ฏธ๋ž˜์˜ˆ์ธก์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ด์ค€๋‹ค. ์ด์ฒ˜๋Ÿผ ์‹œ์žฅ๊ณผ ๋Œ€์ค‘์˜ ๋‹ˆ์ฆˆ๊ฐ€ ๊ธ‰์†ํžˆ ๋‹ค๋ณ€ํ™”๋˜๋ฉด์„œ ์ธ๊ฐ„์˜ ์ฐฝ์˜์„ฑ๊ณผ ๋…์ฐฝ์„ฑ์— ๊ธฐ๋ฐ˜ํ•œ ์ƒˆ๋กœ์šด ์•„์ด๋””์–ด์˜ ์ฐฝ์ถœ๊ณผ ์‹คํ˜„ ๋Šฅ๋ ฅ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•˜๋Š” ๋””์ž์ธ ์ค‘์‹ฌ์˜ ํ†ตํ•ฉ์  ๋ฏธ๋ž˜์˜ˆ์ธก ์—ญ์‹œ ์ค‘์š”ํ•ด์ง€๊ณ  ์žˆ๋‹ค. ์ด์— ๊ตญ๋‚ด์—์„œ๋„ ๋””์ž์ธ ์ค‘์‹ฌ์˜ ๋ฏธ๋ž˜ ์˜ˆ์ธก์— ๋Œ€ํ•œ ์ค‘์š”์„ฑ์„ ์ธ์‹, ๊ธฐ์—… ์ฐจ์›์—์„œ ๋‹ค์–‘ํ•œ ํ˜•์‹์˜ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋‚˜, ์ฃผ๋กœ ๋Œ€๊ธฐ์—…์„ ์ค‘์‹ฌ์œผ๋กœ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๊ฐ€ ํ์‡„์ ์œผ๋กœ ์šด์˜๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ •๋ถ€์ฐจ์›์—์„œ ์ œ๊ณตํ•˜๊ณ  ์žˆ๋Š” ๊ณต๊ณต์žฌ์„ฑ ๋ฏธ๋ž˜ ์˜ˆ์ธก ์ •๋ณด ์—ญ์‹œ ๋‹จํŽธ์  ํŠธ๋ Œ๋“œ ๋ฆฌํฌํŠธ ํ˜•์‹์˜ ์ •๋ณด๋กœ์„œ ์ค‘์†Œ๊ธฐ์—…๋“ค์ด ํ”„๋กœ์ ํŠธ ํŠน์„ฑ๋ณ„ ๋””์ž์ธ ์ „๋žต ์ˆ˜๋ฆฝ์— ์œ ์—ฐํ•˜๊ฒŒ ํ™œ์šฉ ๊ฐ€๋Šฅํ•œ ๊ตฌ์ฒด์ ์ด๊ณ  ์‹ค์งˆ์ ์ธ ์ •๋ณด ์ง€์›๊ณผ๋Š” ๊ฑฐ๋ฆฌ๊ฐ€ ๋ฉ€๋‹ค๋Š” ๋‹จ์ ์ด ์กด์žฌํ•ด์™”๋‹ค. ์ด์— ์šฐ์ˆ˜ํ•œ ๊ธฐ์ˆ ๋ ฅ์„ ๋ณด์œ ํ•˜๊ณ  ์žˆ์ง€๋งŒ ์—ด์•…ํ•œ R&D ๊ธฐ๋ฐ˜๊ณผ ์ •๋ณด๋ ฅ์œผ๋กœ ํ˜์‹  ๊ธฐ์ˆ  ๋ฐ ์ œํ’ˆ ๊ฐœ๋ฐœ์— ์–ด๋ ค์›€์„ ๊ฒช๋Š” ์ค‘์†Œ๊ธฐ์—…์ด R&D ๊ธฐํš ๋‹จ๊ณ„๋ถ€ํ„ฐ ๋””์ž์ธ์„ ํ™œ์šฉํ•˜์—ฌ ๊ถ๊ทน์ ์œผ๋กœ ๊ธฐ์ˆ ๊ณผ ๋””์ž์ธ, ๋ผ์ดํ”„์Šคํƒ€์ผ์ด ์œตํ•ฉ๋œ ๋ฏธ๋ž˜ ๋น„์ฆˆ๋‹ˆ์Šค๋ฅผ ์ฐฝ์ถœํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•˜๋Š” ๋ฏธ๋ž˜ ๊ฐ€์น˜ ์ฐฝ์กฐ ํ”Œ๋žซํผ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๊ฒƒ์ด ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์ด๋‹ค. ์ •์ฒด๋˜์ง€ ์•Š๊ณ  ์ž์ƒ์ ์ธ ๋””์ž์ธ R&D ์ •๋ณด์˜ ์ƒ์‚ฐ์„ ์œ„ํ•ด ์ง‘๋‹จ์ง€์„ฑ์„ ํ™œ์šฉํ•˜์—ฌ ๋””์ž์ด๋„ˆ์™€ ์—”์ง€๋‹ˆ์–ด, ๋งˆ์ผ€ํ„ฐ์™€ ๊ฐ™์€ ์ „๋ฌธ๊ฐ€๋Š” ๋ฌผ๋ก , ์ผ๋ฐ˜ ๋Œ€์ค‘์ด ๋ชจ์—ฌ ๋‹ค๊ฐ€์˜ฌ ๋ฏธ๋ž˜์— ๋Œ€ํ•œ ํ™œ๋ฐœํ•œ ๋…ผ์˜๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋””์ž์ธ ๋น„์ฆˆ๋‹ˆ์Šค ์•„์ด๋””์–ด๋ฅผ ์ฐฝ์กฐํ•˜๊ณ  ์ด๋ฅผ ๊ตฌ์ฒดํ™” ํ•  ์ˆ˜ ์žˆ๋Š” ํ˜‘์—… ๊ตฌ์กฐ์˜ ๊ฐœ๋ฐฉํ˜• ์œตํ•ฉ ํ”Œ๋žซํผ์„ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๊ฒƒ์ด ๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ง‘๋‹จ์ง€์„ฑ์„ ํ™œ์šฉํ•จ์— ์žˆ์–ด ์—ฌํƒ€ ์ง‘๋‹จ์ง€์„ฑ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•๋ก  ๋ฐ ํ”Œ๋žซํผ๋“ค๊ณผ ์ฐจ๋ณ„ํ™”๋˜๋Š” ์ ์€ ๋‹จ์ˆœํžˆ ์ง‘๋‹จ์ง€์„ฑ์„ ๊ฐœ์ธ์ด ์ฐฝ์ถœํ•ด๋‚ธ ์•„์ด๋””์–ด๋ฅผ ํƒ€์ž(ไป–่€…)์— ์˜ํ•ด ๊ฐœ์„ ํ•˜๊ณ  ๋‹ค์ˆ˜์— ์˜ํ•œ ์ˆ˜์น˜์  ์‹ ๋ขฐ๋„๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ํ‘œํ”ผ์  ํ™œ์šฉ์— ๋ฉˆ์ถ”๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ์ง‘๋‹จ์ด ์ฐฝ์กฐํ•˜๋Š” ์˜๊ฒฌ์„ ์ข…ํ•ฉํ•˜๊ณ  ์‹ฌ์ธต์ ์œผ๋กœ ํ•ด์„ํ•˜์—ฌ ์ง‘๋‹จ์ด ๊ณต์œ ํ•˜๋Š” ๊ธฐ์ € ๋‹ˆ์ฆˆ์™€ ๊ฐ์„ฑ์„ ๋„์ถœ, ์ด๋ฅผ ํ”Œ๋žซํผ์ƒ์˜ ์ž๋™ํ™”๊ธฐ๋Šฅ์„ ํ†ตํ•ด ํšจ์šฉ์„ฑ ์žˆ๋Š” ๋””์ž์ธ R&D ์ •๋ณด๋กœ ์žฌ์ฐฝ์กฐ๋˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ๋ฐœ, ์ ์šฉํ•˜์˜€๋‹ค๋Š” ์ ์— ์žˆ๋‹ค. ๋‚˜์•„๊ฐ€ ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ์ค‘์‹ฌ์œผ๋กœ ์šด์˜๋˜๋Š” ๋ณธ ํ”Œ๋žซํผ์„ ์ค‘์†Œ๊ธฐ์—…์ด ์ฃผ๋„ํ•˜์—ฌ ์ž๊ธฐ์—…์— ๋งž์ถคํ™”๋œ ๋””์ž์ธ R&D ์ „๋žต์œผ๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ๋„ ์ง‘๋‹จ์ง€์„ฑ์„ ํ™œ์šฉํ•˜๋Š” ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•๋ก  ๋ฐ ํ”Œ๋žซํผ๊ณผ ์ฐจ๋ณ„ํ™”๋˜๋Š” ์ ์ด๋‹ค. ์ด์ฒ˜๋Ÿผ ์ง‘๋‹จ์ง€์„ฑ์„ ๋””์ž์ธ R&D ์ •๋ณด๋กœ ์ „ํ™˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ค‘์†Œ๊ธฐ์—…์ด ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์œตํ•ฉํ˜• ๋ฏธ๋ž˜ ๊ฐ€์น˜๋ฅผ ์ฐฝ์กฐํ•˜๋Š” ๋ณธ ํ”Œ๋žซํผ์€, ๊ฑฐ์‹œ์ด์Šˆ์˜ ์ถ•์  ๋ฐ ๋งฅ๋ฝ์  ์กฐ๋ง, ๋ฏธ๋ž˜ ํ™”๋‘ ์ œ์•ˆ, ๋ฏธ๋ž˜์ƒ ์ฐฝ์กฐ ๋ฐ ํ‰๊ฐ€, ์†Œ๋น„์ž ๊ณต์œ ๊ฐ€์น˜/๊ฐ์„ฑ ๋ฐ ์กฐํ˜•์–ธ์–ด ๋„์ถœ์˜ 4๊ฐ€์ง€ ์„ธ๋ถ€ ์‹œ์Šคํ…œ์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์‹œ์Šคํ…œ์ธ ๊ฑฐ์‹œ์ด์Šˆ์˜ ์ถ•์  ๋ฐ ๋งฅ๋ฝ์  ์กฐ๋ง์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ๋ณ„ ๊ฑฐ์‹œ์  ๊ธ€๋กœ๋ฒŒ ๋ฏธ๋ž˜ ์ด์Šˆ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ  ์ด๋ฅผ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šคํ™”ํ•˜์—ฌ ์บ˜๋ฆฐ๋” ๋ฐ ๋…ธ๋“œ ์‹œ์Šคํ…œ ๋“ฑ์„ ํ†ตํ•ด, ์ด์Šˆ๋ณ„ ์ธ๊ณผ๊ด€๊ณ„ ๋ฐ ์˜ํ–ฅ๋ ฅ ๋“ฑ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ์—ด๋žŒ, ํ†ตํ•ฉ์ ์œผ๋กœ ์กฐ๋งํ•  ์ˆ˜ ์žˆ๊ฒŒ ์ง€์›ํ•˜๋Š” ๋‹จ๊ณ„์ด๋‹ค. ๋‘ ๋ฒˆ์งธ ์‹œ์Šคํ…œ์ธ ๋ฏธ๋ž˜ ํ™”๋‘ ์ œ์•ˆ์€ ์ค‘์†Œ๊ธฐ์—…์ด ์ž๊ธฐ์—…์ด ๋ณด์œ ํ•œ ์ „์œ ๊ธฐ์ˆ ์ด ๋‹ค๊ฐ€์˜ฌ ๊ทผ๋ฏธ๋ž˜์— ์–ด๋–ค ๋ผ์ดํ”„์Šคํƒ€์ผ๊ณผ ์ œํ’ˆ/์„œ๋น„์Šค๋กœ ํƒ„์ƒ๋  ์ˆ˜ ์žˆ์„์ง€, ํ™”๋‘ ํ˜•ํƒœ๋กœ ์ •๋ฆฌํ•˜์—ฌ ์ผ๋ฐ˜ ๋Œ€์ค‘๊ณผ ์ „๋ฌธ๊ฐ€ ๋“ฑ ์ง‘๋‹จ์˜ ์˜๊ฒฌ์„ ์ˆ˜๋ ด, ๊ตฌ์ฒด์  ์ธ์‚ฌ์ดํŠธ๋ฅผ ์–ป๋Š” ๋‹จ๊ณ„์ด๋‹ค. ์„ธ ๋ฒˆ์งธ ์‹œ์Šคํ…œ์ธ ๋ฏธ๋ž˜์ƒ ์ฐฝ์กฐ ๋ฐ ํ‰๊ฐ€๋Š” ์ „ ๋‹จ๊ณ„์—์„œ ์ค‘์†Œ๊ธฐ์—…์ด ๋ฐœ์˜ํ•œ ํ™”๋‘์— ๋Œ€ํ•ด ๋Œ€์ค‘๋“ค์ด ๋ฏธ๋ž˜ ์ƒํ™œ์ƒ ๋˜๋Š” ์ œํ’ˆ/์„œ๋น„์Šค์ƒ์˜ ํ˜•ํƒœ๋กœ ์•„์ด๋””์–ด๋ฅผ ์ฐฝ์กฐํ•˜๋Š” ๋‹จ๊ณ„์ด๋‹ค. ๋Œ€์ค‘๋“ค์ด ๊ณ ์•ˆํ•œ ๋ฏธ๋ž˜์ƒ ์•„์ด๋””์–ด๋Š” ๋‹ค๋ฅธ ์‚ฌ์šฉ์ž๋“ค๊ณผ ์ „๋ฌธ๊ฐ€๋“ค์ด ๊ฐ๊ฐ์˜ ๊ด€์ ๊ณผ ๊ธฐ์ค€์œผ๋กœ ํ‰๊ฐ€ํ•˜๊ณ  ๊ฒ€์ฆํ•˜๋Š” ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์น˜๊ฒŒ ๋˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ตœ์ข…์ ์œผ๋กœ ํ•ด๋‹น ํ™”๋‘์˜ ์ตœ์šฐ์ˆ˜ ์•„์ด๋””์–ด๊ฐ€ ์„ ์ •๋œ๋‹ค. ๋งˆ์ง€๋ง‰ ๋„ค ๋ฒˆ์งธ ์‹œ์Šคํ…œ์ธ ์†Œ๋น„์ž ๊ณต์œ ๊ฐ€์น˜/๊ฐ์„ฑ ๋ฐ ์กฐํ˜•์–ธ์–ด ๋„์ถœ์€ ๋Œ€์ค‘๋“ค์ด ๋ฏธ๋ž˜์ƒ์„ ๋“ฑ๋กํ•  ๋•Œ ์ž‘์„ฑํ•œ ์–ดํœ˜, ์ œ์‹œํ•œ ์ด๋ฏธ์ง€๋“ค์„ ์ถ•์ , ๋ถ„์„ํ•˜์—ฌ ์ง‘๋‹จ์ง€์„ฑ ๊ธฐ๋ฐ˜์˜ ๊ณต์œ ๊ฐ€์น˜์™€ ๊ฐ์„ฑ, ์กฐํ˜•์–ธ์–ด๋ฅผ ๋„์ถœํ•˜๋Š” ๋‹จ๊ณ„์ด๋‹ค. ์ƒ๊ธฐ 4๊ฐ€์ง€ ์‹œ์Šคํ…œ์„ ๊ฑฐ์ณ ์ค‘์†Œ๊ธฐ์—…์ด ์ตœ์ข…์ ์œผ๋กœ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๋””์ž์ธ R&D ์ •๋ณด๋“ค์„ ์š”์•ฝ, ์ •๋ฆฌํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ๋จผ์ € ํ•ด๋‹น ์ค‘์†Œ๊ธฐ์—…์˜ ์—…์ข… ๋ฐ ๊ธฐ์ˆ , ์ฃผ๋ ฅ ์ƒํ’ˆ/์„œ๋น„์Šค์™€ ๊ด€๋ จํ•œ ๊ฑฐ์‹œ์  ๋ฏธ๋ž˜ ์ด์Šˆ ์ •๋ณด์ด๋‹ค. ๊ธ€๋กœ๋ฒŒ ๋ฒ”์ฃผ์˜ ๋‹ค์–‘ํ•œ ์ด์Šˆ๋ฅผ, ๋ณธ ๋…ผ๋ฌธ์„ ํ†ตํ•ด ๊ฐœ๋ฐœ๋œ ์บ˜๋ฆฐ๋” ๋ฐ ๋…ธ๋“œ ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ์†์‰ฝ๊ฒŒ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ  ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์˜ ์ด์Šˆ๊ฐ„ ๊ด€๋ จ์„ฑ๊ณผ ์—ฐ๊ณ„์„ฑ์„ ํŒŒ์•…ํ•˜์—ฌ ์ค‘์†Œ๊ธฐ์—…์œผ๋กœ ํ•˜์—ฌ๊ธˆ ๋‹ค๊ฐ€์˜ฌ ๋ฏธ๋ž˜๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ์กฐ๋งํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์˜€๋‹ค. ๋‹ค์Œ์€ ์ค‘์†Œ๊ธฐ์—…์˜ ๋ฏธ๋ž˜ ๋น„์ฆˆ๋‹ˆ์Šค, ์ƒํ’ˆ/์„œ๋น„์Šค ๋””์ž์ธ ์ „๋žต๊ณผ ๊ด€๋ จํ•œ ๋Œ€์ค‘์˜ ์ƒ๊ฐ๊ณผ ์„ ํ˜ธ๋„๋ฅผ ํŒŒ์•…ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ์ค‘์†Œ๊ธฐ์—…์ด ์ž๊ธฐ์—…๊ณผ ๊ด€๋ จ ์žˆ๋Š” ๋ฏธ๋ž˜ ์ด์Šˆ, ํ™˜๊ฒฝ ๋ณ€ํ™”์™€ ๊ฒฐ๋ถ€ํ•˜์—ฌ ํ™”๋‘๋ฅผ ์ง์ ‘ ๊ฐœ์„ค, ๋Œ€์ค‘๋“ค๋กœ ํ•˜์—ฌ๊ธˆ ๋ฏธ๋ž˜์ƒ์˜ ํ˜•ํƒœ๋กœ ์ž๊ธฐ์—…์— ์œ ์ตํ•œ ๋ฏธ๋ž˜ ๋น„์ฆˆ๋‹ˆ์Šค ๋ฐ ๋””์ž์ธ ์ „๋žต์˜ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์ฐฝ์กฐํ•  ์ˆ˜ ์žˆ๋„๋ก ์œ ๋„ํ•˜์—ฌ ์ด๋ฅผ ํ™œ์šฉํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๋Œ€์ค‘์ด ์ง์ ‘ ๋ฏธ๋ž˜์ƒ ํ‰๊ฐ€์— ์ฐธ์—ฌํ•˜๋„๋ก ํ•˜์—ฌ ํ‰๊ฐ€์— ์ฐธ์—ฌํ•œ ๋Œ€์ค‘๋“ค์˜ ๋‚˜์ด, ์„ฑ๋ณ„, ์ง์—…, ๊ฑฐ์ฃผ์ง€์—ญ ๋“ฑ(ํ”Œ๋žซํผ ํšŒ์› ๊ฐ€์ž… ์‹œ ๊ธฐ์ž… ์ •๋ณด)์„ ์ด์šฉํ•˜์—ฌ ๋Œ€์ค‘๋“ค์˜ ๋‹ค์–‘ํ•œ ์ธ์  ๋ฐฐ๊ฒฝ์„ ๊ธฐ์ค€์œผ๋กœ ํ‰๊ฐ€๊ฐ’์„ ์„ธ๋ถ„ํ™”, ์ •๋Ÿ‰์  ๋ถ„์„์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ ‡๊ฒŒ ๋ถ„์„๋œ ์ž๋ฃŒ๋Š” ์ž๋™์œผ๋กœ ๊ทธ๋ž˜ํ”„๋กœ ์‹œ๊ฐํ™”๋˜์–ด ์ค‘์†Œ๊ธฐ์—…์ฐจ์›์—์„œ ์‰ฝ๊ฒŒ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ค‘์†Œ๊ธฐ์—…์ด ๋ฏธ๋ž˜ ๋””์ž์ธ ๋น„์ฆˆ๋‹ˆ์Šค ์ „๋žต์„ ์ˆ˜๋ฆฝํ•˜๋Š” ๋ฐ์— ๊ธฐ์ € Data๋กœ์„œ ํ™œ์šฉ๋œ๋‹ค. ๋˜ํ•œ ์ œ์‹œ๋œ ํ™”๋‘์™€ ๊ด€๋ จํ•˜์—ฌ ๊ฐ€์žฅ ๋งŽ์ด ์—ฐ์ƒ๋œ ๋Œ€์ค‘๋“ค์˜ ๋‹ˆ์ฆˆ๋ฅผ ๋ถ„์„ํ•˜์—ฌ, ์†Œ๋น„์ž๋“ค์ด ๊ณต์œ ํ•˜๋Š” ๊ฐ€์น˜์™€ ๊ฐ์„ฑ์„ ๋„์ถœํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ”Œ๋žซํผ์— ์ฐธ์—ฌ์ž๋“ค์ด ์ž‘์„ฑ, ๋“ฑ๋กํ•˜๋Š” ๋ฏธ๋ž˜ ์ƒํ™œ์ƒ์ด๋‚˜ ์ œํ’ˆ/์„œ๋น„์Šค์ƒ์€ ๊ทธ๋“ค์ด ์ผ์ƒ์ƒํ™œ ์ค‘์— ๋ฌด์˜์‹์ ์œผ๋กœ ๋Š๋ผ๋Š” ์†Œ์œ ์š•๊ณผ ๋ถˆ๋งŒ์‚ฌํ•ญ์—์„œ ๊ธฐ์ธํ•˜๋Š” ๊ฒƒ์ด๋ผ๋Š” ์ ์— ์ฐฉ์•ˆํ•˜์—ฌ ์ฐธ์—ฌ์ž๋“ค์ด ์‚ฌ์šฉํ•˜๋Š” ์–ดํœ˜์™€ ์ด๋ฏธ์ง€์™€์˜ ๊ด€๊ณ„๋ฅผ ๋ฉด๋ฐ€ํžˆ ๊ด€์ฐฐ, ๋Œ€์ค‘์˜ ๊ณต์œ  ๊ฐ€์น˜ ๋ฐ ๊ฐ์„ฑ ํŠน์„ฑ๊ณผ ์ด๋กœ ์ธํ•œ ์ฃผ์š” ์†Œ๋น„๋™์ธ์„ ์œ ์ถ”ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ ์ง‘๋‹จ์ง€์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋„์ถœ๋œ ๊ตฌ์ฒด์  ์กฐํ˜• ๊ฐ€์ด๋“œ์™€ ๋””์ž์ธ ์•„์ด๋””์–ด๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด๋‹ค. ๊ตฌ์ฒด์ ์ด๊ณ  ์„ค๋“๋ ฅ์žˆ๋Š” ๋””์ž์ธ ์ „๋žต์„ ์ˆ˜๋ฆฝํ•˜๊ธฐ ํž˜๋“  ์ค‘์†Œ๊ธฐ์—…์ด ๋””์ž์ธ ๊ฐœ๋ฐœ์— ์ง์ ‘์ ์œผ๋กœ ์‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ปฌ๋Ÿฌ, ์žฌ์งˆ, ํŒจํ„ด ๋“ฑ์˜ ์กฐํ˜•์š”์†Œ๋ฅผ ๋„์ถœ, ์ œ๊ณตํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋ ‡๊ฒŒ ๋„์ถœ๋œ ์กฐํ˜• ์š”์†Œ๋“ค์€ ํ•ด๋‹น ํ™”๋‘์—์„œ ๋†’์€ ํ‰๊ฐ€๋ฅผ ๋ฐ›์€ ๋ฏธ๋ž˜์ƒ ์•„์ด๋””์–ด์™€ ๊ฒฐํ•ฉ, 100% ์ง‘๋‹จ์ง€์„ฑ์— ์˜ํ•ด ๋งŒ๋“ค์–ด์ ธ ์ค‘์†Œ๊ธฐ์—…์ด ์‰ฝ๊ฒŒ ์‘์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์ฒด์  ๋ฏธ๋ž˜ ๋””์ž์ธ ์ „๋žต์œผ๋กœ ํƒ„์ƒ๋œ๋‹ค. ์œ„์™€ ๊ฐ™์€ ๊ณผ์ •์„ ๊ฑฐ์ณ ์ค‘์†Œ๊ธฐ์—…์—๊ฒŒ ์ œ๊ณต๋˜๋Š” ์•„์ด๋””์–ด ๋ฐ ๋น„์ฆˆ๋‹ˆ์Šค ์ „๋žต ๊ฐ€์ด๋“œ๊ฐ€ ๋งค์šฐ ์ €๋ ดํ•œ ๋น„์šฉ์œผ๋กœ ์ฐฝ์กฐ๋œ๋‹ค๋Š” ๊ฒƒ์€ ๋ณธ ํ”Œ๋žซํผ์„ ํ†ตํ•ด ์ค‘์†Œ๊ธฐ์—…์ด ๋ˆ„๋ฆฌ๊ฒŒ ๋˜๋Š” ๊ฐ€์žฅ ํฐ ํ˜œํƒ์ด๋‹ค. ์†Œ๋น„์ž ์กฐ์‚ฌ, ๋””์ž์ธ ์ปจ์„คํŒ… ๋“ฑ ๋ฏธ๋ž˜ ํ˜์‹  ์ œํ’ˆ ๋ฐ ์„œ๋น„์Šค ๊ฐœ๋ฐœ์— ์†Œ์š”๋˜๋Š” ๋””์ž์ธ R&D ๋น„์šฉ์„ ์ง‘๋‹จ์ง€์„ฑ ๊ธฐ๋ฐ˜์˜ ํ”Œ๋žซํผ์„ ํ†ตํ•ด ๋Œ€์ฒด, ํš๊ธฐ์ ์œผ๋กœ ์ค„์ž„์œผ๋กœ์จ ์ค‘์†Œ๊ธฐ์—…์˜ ๊ฐœ๋ฐœ์—ญ๋Ÿ‰ ๊ฒฐ์—ฌ ๋ฐ ๋Œ€๊ธฐ์—… ์ข…์†์˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋‚˜์•„๊ฐ€ ๊ตญ๊ฐ€๊ฒฝ์ œ์˜ ๊ทผ๊ฐ„์ด์ž ํ•ต์‹ฌ์ธ ์ค‘์†Œ๊ธฐ์—…์˜ ๋””์ž์ธ R&D ์—ญ๋Ÿ‰ ๊ฐ•ํ™”๋ฅผ ํ†ตํ•˜์—ฌ ๋ณด์œ ํ•œ ์ „์œ ๊ธฐ์ˆ ์˜ ํ™œ์šฉ๋ถ„์•ผ๋ฅผ ๋‹ค๊ฐํ™”, ๊ธฐ์ˆ  ์˜์—ญ์—๋งŒ ๊ตญํ•œ๋œ ๊ฒƒ์ด ์•„๋‹Œ ๋‹ค์–‘ํ•œ ์˜์—ญ์œผ๋กœ์˜ ์ง„์ถœ์„ ์œ ๋„ํ•˜์—ฌ OEM(original equipment manufacturing)๊ธฐ์—…์—์„œ ODM(origonal development manufacturing), ๊ถ๊ทน์ ์œผ๋กœ OBM(original brand manufacturing)๊ธฐ์—…์œผ๋กœ ๊ธฐ์—… ์ฒด์งˆ์„ ๊ธ์ •์ ์œผ๋กœ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๊ถ๊ทน์ ์œผ๋กœ๋Š” ์„ ์ง„๊ตญ์˜ ๊ธฐ์ˆ ๊ฒฝ์Ÿ๋ ฅ๊ณผ ์ค‘๊ตญ์„ ์œ„์‹œํ•œ ํ›„๋ฐœ๊ตญ์˜ ๊ฐ€๊ฒฉ๊ฒฝ์Ÿ๋ ฅ ํฌ์ง€์…”๋‹ ํŠธ๋žฉ์—์„œ ๋ฒ—์–ด๋‚  ์ˆ˜ ์žˆ๋Š” ๋””์ž์ธ ์œตํ•ฉ์œผ๋กœ ์ค‘์†Œ๊ธฐ์—…์˜ ์ค‘๊ฒฌ๊ธฐ์—… ๋ฐ ๊ฐ•์†Œ๊ธฐ์—…์œผ๋กœ์˜ ์„ฑ์žฅ์„ ์ด๋Œ์–ด๋‚ด ๊ตญ๋‚ด ์‚ฐ์—…์˜ ๊ตฌ์กฐ๋ฅผ ๊ณ ๋„ํ™”ํ•˜๊ณ  ์ฐฝ์กฐ ๊ฒฝ์ œ ์„ ๋„๊ตญ์œผ๋กœ์„œ์˜ ๊ธ€๋กœ๋ฒŒ ๊ฒฝ์Ÿ๋ ฅ์„ ๊ฐ•ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ˆ„๊ตฌ๋‚˜ ์ฐธ์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ์ง‘๋‹จ์ง€์„ฑ ๊ธฐ๋ฐ˜์˜ ๊ณต๊ฐœํ˜• ์˜คํ”ˆ ํ”Œ๋žซํผ์œผ๋กœ ์–‘์งˆ์˜ ๋ฏธ๋ž˜ ์ •๋ณด๋ฅผ ๊ณต๊ณต์žฌํ™”ํ•จ์œผ๋กœ์จ ๋Œ€์ค‘์˜ ์ฐฝ์˜์„ฑ์„ ์ฆ์ง„ํ•˜๊ณ  ๋ฏธ๋ž˜์˜์‹์„ ์„ ๋„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์ด ๋ณธ ํ”Œ๋žซํผ์ด ๊ฐ–๋Š” ๊ฐ€์žฅ ํฐ ๊ธ์ • ์š”์ธ์ด๋ผ ํ•  ์ˆ˜ ์žˆ๊ฒ ๋‹ค.The public is getting smarter day by day as the cycle of development & sharing of new information and consumption turns at phenomenal speed, thanks to the advanced Information Technology and Social Network Services. As the pendulum that will decide the competitiveness and survival in the future has swung to individuals and groups of individuals, it has become crucial to predict the future from consumers perspectives. The ideal way of forecasting is not to predict the future through statistics or great insight of some experts but to search and create the desirable future together between experts in various fields and consumers. The author of Macro Wikinomics, Don Tapscott, emphasized that the future should be created not predicted and the key to this creation is collective intelligence of the public. In the time when the cycle of future change and innovation is getting shorter, incorporating and using knowledge, experience and insight of individuals and various groups has become very important. Tapping into collective intelligence creates wide and innovative ideas and views on the future, and allows more flexible and useful future prediction as a result. With diversified needs of consumers and markets, design ? centered future prediction based on development and application of new ideas founded on peoples creativity and originality is also crucial. Notifying this importance, many companies in Korea are actively researching on design ? centered future prediction. However, the research is operated and managed exclusively within big companies and information provided by the government for the public is just a trend report. Therefore, this closed research and lack of information gives little support for SMEs to develop their design strategies according to the types of projects. These SMEs that have excellent technology but have poor R&D foundation and information source have difficulties in developing new technology and products. Therefore, the purpose of this thesis is to establish a Future ? Prediction Platform that supports these SMEs to create future businesses incorporated with technology, design and lifestyle. The key idea of this Open Platform is that the public work together with experts, such as designers, engineers and producers, to actively discuss, create ideas and actualize them through collective intelligence and to make design R&D information self ? sustainable not stagnant. What separates the methodology of using collective intelligence introduced in this thesis from the existing methodologies or platforms is the fact that it is not a superficial application where individuals ideas can be improved by others and its credibility is built around numerical values. Instead, it is an application of the methodology that creates highly advanced design R&D information through automatized function of the platform that puts together collective intelligence of groups and analyses their shared needs and emotions. Furthermore, small & medium-sized companies are able to access the platform based on this methodology and to utilize it as customized design R&D strategies that suit their businesses. This Platform, that creates collective values in order to enhance SMEs capacity of design R&D, consists of 4 systems: Accumulation of Macro Issue & Contextual Prospect, Future Talk / Suggestion , Creation of Future Life Form & Evaluation and Consumers Share Value / Emotion & Design Style Guides. The first system, Accumulation of Macro Issue & Contextual Prospect, collects global future issues from various fields and builds a database which can be accessed through calendar and nod system. This system provides collective information on Cause & Effect or influence of every issue and helps users to make predictions. The second system, Future Talk / Suggestion , gives SMEs information on their potential future products or service incorporating their exclusive technology through opinions and insights from experts and the public. The third system, Creation of Future Life Form & Evaluation, is a place where the public sees suggestions made by SMEs in the previous step and creates their ideas on future lifestyle and future product or service. The ideas designed by the public are evaluated by experts and other users against their standards. After evaluation and verification, the best idea will be selected. The last system, Consumers Share Value / Emotion & Design Style Guides, collects, analyzes words and images the public used and draws share value, emotion and design style guides. The summary of Design R&D information SMEs get through the Four Systems mentioned above is as follows: Firstly, they provide information on macro future issues related to type of business, technology, main items or service of SMEs. The calendar and nod system introduced in this thesis will allow SMEs to monitor various global issues, identify correlation between them and predict the future. Secondly, they supply information on ideas and preference of the public in terms of future businesses and design strategies for products / service of SMEs. SMEs can open Talk about future issues, and environmental changes in relation to their businesses and tap into the public opinions and insights to create their future businesses or develop their design strategies. The background information users give (when applying for membership to the Platform) to participate in the evaluation of future life form, such as age, sex, occupation, address and etc., can turn into important data for SMEs quantitative analysis. The analyzed data are automatically graphed, which makes it easier for SMEs to identify and use them as base data to establish strategies for their future business. In addition, they are able to draw share values and needs of the public by investigating the most discussed Talks. Words and images participants use to talk about future lifestyle, future products and service reflect their subconscious demands and complaints. Therefore, SMEs can draw the main cause of purchasing needs derived from share values and emotional characteristics of participants. Finally, the four systems provide specific design style guides and design ideas derived from collective intelligence. They supply SMEs that have difficulties in establishing specific and effective design strategies with design style guides such as colors, materials and patterns & finishing. These derived design style factors married up with the best idea from the relevant Talk become specific future design strategies which SMEs can adopt. The biggest benefit SMEs are to enjoy through this Platform is cost because it can provide them with business ideas and strategies for a very reasonable price. The cost of design R&D for innovative products and service, such as consumer survey and design consulting will be reduced with this collective intelligence ? based Platform. This cost efficiency will enhance the capacity of SMEs and minimize their dependency on big companies. Furthermore, the greater R&D capacity of SMEs that are the foundation of the national economy will diversify their specialized technology application fields, induce them into various domains and improve constitution of the companies, from OEM(original equipment manufacturing) to ODM(original development manufacturing) and ultimately to OBM(original brand manufacturing) companies. Design convergence of the Platform will empower SMEs that have been disadvantaged in technology and price competitiveness compared to their counterparts in the developed countries and China. They will grow into mid-sized enterprises or small but strong businesses eventually, which will contribute to upgrading Korean companies industrial structure and enhancing their global competitiveness. The final benefit of the open Platform is to promote creativity of the public and lead their views on the future by making high-quality future information public.โ… . ์„œ๋ก  1 1.1. ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ํ•„์š”์„ฑ 1 1.1.1. 21์„ธ๊ธฐ ์ฐฝ์˜์‹œ๋Œ€์˜ ๋ฏธ๋ž˜ ์˜ˆ์ธก 1 1.1.2. ํ˜„ ๋ฏธ๋ž˜ ์˜ˆ์ธก์˜ ๋ฌธ์ œ์  4 1.1.3. ๊ตญ๋‚ด ์ค‘์†Œ๊ธฐ์—…์˜ ๋‚™ํ›„๋œ ๋””์ž์ธ ๊ฒฝ์Ÿ๋ ฅ 7 1.2. ์—ฐ๊ตฌ๋ชฉ์  8 1.3. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• ๋ฐ ๋ฒ”์œ„ 12 โ…ก. ๋””์ž์ธ๊ณผ ์†Œ๋น„์ž ์ค‘์‹ฌ์˜ ๋ฏธ๋ž˜ ์˜ˆ์ธก ํŒจ๋Ÿฌ๋‹ค์ž„ 16 2.1. ๋ฏธ๋ž˜ ์˜ˆ์ธก์˜ ๋ชฉ์ ๊ณผ ์˜์˜ 16 2.2. ๋ฏธ๋ž˜ ์˜ˆ์ธก ํŒจ๋Ÿฌ๋‹ค์ž„์˜ ๋ณ€ํ™” 17 2.2.1. ๊ณผ๊ฑฐ ๋ฏธ๋ž˜ ์˜ˆ์ธก์˜ ๋™ํ–ฅ 17 2.2.2. ๋””์ž์ธ ์ฃผ๋„ ํ†ตํ•ฉ์  ๋ฏธ๋ž˜ ์˜ˆ์ธก ํŒจ๋Ÿฌ๋‹ค์ž„์œผ๋กœ์˜ ์ „ํ™˜ 20 2.2.3. ์†Œ๋น„์ž ์ค‘์‹ฌ์˜ ์ง‘๋‹จ์ง€์„ฑ ๊ธฐ๋ฐ˜ ๋ฏธ๋ž˜์˜ˆ์ธก์˜ ๋Œ€๋‘ 23 2.3. ๊ตญ๋‚ด์™ธ ๋ฏธ๋ž˜ ์˜ˆ์ธก ์—ฐ๊ตฌ ํ˜„ํ™ฉ ๋น„๊ต 28 2.3.1. ๊ตญ์™ธ ํ˜„ํ™ฉ 28 2.3.2. ๊ตญ๋‚ด ํ˜„ํ™ฉ 40 2.4. ์†Œ๊ฒฐ : ์‹œ์‚ฌ์  ๋ฐ ์ง€ํ–ฅ์  45 โ…ข. ๊ตญ๋‚ด ์ค‘์†Œ๊ธฐ์—…์˜ ๋””์ž์ธ R&D ํ˜„ํ™ฉ๊ณผ ๊ณผ์ œ 47 3.1. ๋””์ž์ธ R&D์˜ ๊ฐœ๋…๊ณผ ํ•„์š”์„ฑ 47 3.1.1. ๋””์ž์ธ R&D์˜ ์ •์˜์™€ ๋Œ€๋‘๋ฐฐ๊ฒฝ 47 3.1.2. ๋””์ž์ธ R&D์˜ ๊ธ์ • ํšจ๊ณผ์™€ ์ค‘์†Œ๊ธฐ์—…์—์˜ ํ•„์š”์„ฑ 51 3.2. ๊ตญ๋‚ด ์ค‘์†Œ๊ธฐ์—… ๋ฐ ๋””์ž์ธ ์‚ฐ์—… ํ˜„ํ™ฉ๊ณผ ๊ณผ์ œ 57 3.2.1. ๊ตญ๋‚ด ์ค‘์†Œ๊ธฐ์—…์˜ ํŠน์„ฑ๊ณผ ์˜์˜ 57 3.2.2. ๊ตญ๋‚ด ์ค‘์†Œ๊ธฐ์—…์˜ ์—ด์•…ํ•œ ๋””์ž์ธ R&D ํ˜„ํ™ฉ 59 3.2.3. ๊ตญ๋‚ด ์ค‘์†Œ๊ธฐ์—… ๋””์ž์ธ R&D ์ง€์› ์ •์ฑ…์˜ ํ•œ๊ณ„ 64 3.3. ์†Œ๊ฒฐ : ๊ตญ๋‚ด ์ค‘์†Œ๊ธฐ์—… ๋””์ž์ธ R&D ์ง€์› ์ •์ฑ…๊ณผ์˜ ์ฐจ๋ณ„์  67 โ…ฃ. ํšจ์œจ์  ๋””์ž์ธ R&D๋ฅผ ์œ„ํ•œ ์ง‘๋‹จ์ง€์„ฑ ํ™œ์šฉ ๋ฐฉ๋ฒ•๋ก  72 4.1. ์ง‘๋‹จ์ง€์„ฑ์˜ ์ด๋ก ์  ๊ณ ์ฐฐ 72 4.1.1. ์ •์˜์™€ ๋Œ€๋‘๋ฐฐ๊ฒฝ 72 4.1.2. ๊ตฌํ˜„ ๋ฉ”์นด๋‹ˆ์ฆ˜ 75 4.1.3. ์ง‘๋‹จ์ง€์„ฑ์˜ ์–‘๋ฉด์„ฑ 79 4.2. ์ง‘๋‹จ์ง€์„ฑ ํ”Œ๋žซํผ ์‚ฌ๋ก€ ์œ ํ˜•ํ™” 82 4.2.1. ์œ ํ˜•1. ๋ฏธ๋ž˜ ๋ฌธ์ œ ํ•ด๊ฒฐ์˜ ์ˆ˜๋‹จ 83 4.2.2. ์œ ํ˜•2. ๊ตฌ์ฒด์  ์ˆ˜์น˜ํ™”์— ์˜ํ•œ ์ „๋ง 90 4.2.3. ์œ ํ˜•3. ์•„์ด๋””์–ด์˜ ์ƒํ’ˆํ™” 97 4.3. ์†Œ๊ฒฐ : ํšจ์œจ์  ๋””์ž์ธ R&D๋ฅผ ์œ„ํ•œ ์ง‘๋‹จ์ง€์„ฑ ํ™œ์šฉ ๋ฐฉ๋ฒ•๋ก ์˜ํ”Œ๋žซํผ ์ ์šฉ ๋ฐฉํ–ฅ 106 โ…ค. ์ง‘๋‹จ์ง€์„ฑ ํ™œ์šฉ ๋ฐฉ๋ฒ•๋ก  ๊ธฐ๋ฐ˜ ๋ฏธ๋ž˜ ๊ฐ€์น˜ ์ฐฝ์กฐ ํ”Œ๋žซํผ ํ”„๋กœ์„ธ์Šค 113 5.1. ํ”Œ๋žซํผ ๊ฐœ์š” 113 5.1.1. ํ”Œ๋žซํผ์˜ ๊ฐœ๋…๊ณผ ๋””์ž์ธ ์‚ฐ์—…์—์˜ ํ™œ์šฉ ๊ฐ€์น˜ 113 5.1.2. ํ”Œ๋žซํผ ๊ตฌ์ถ• ์„ฑ๊ณต ์š”๊ฑด 114 5.1.3. ์ฃผ์š” ์†Œ๊ตฌ๋Œ€์ƒ ๋ฐ ์šด์˜์ฃผ์ฒด์˜ ๊ทœ์ • 117 5.1.4. ์ „์ฒด ํ”„๋กœ์„ธ์Šค ๊ฐœ์š” 119 5.2. ์บ˜๋ฆฐ๋” ๋ฐ ๋…ธ๋“œ ์‹œ์Šคํ…œ์„ ํ†ตํ•œ ๊ฑฐ์‹œ ์ด์Šˆ์˜ ๋งฅ๋ฝ์  ์กฐ๋ง124 5.2.1. ๋ฏธ๋ž˜ ์ด์Šˆ์˜ ์ˆ˜์ง‘ 124 5.2.2. ๋ฏธ๋ž˜ ์ด์Šˆ์˜ ํ”Œ๋žซํผ ๋“ฑ๋ก๊ณผ ์ถ•์  133 5.2.3. ์บ˜๋ฆฐ๋” ์‹œ์Šคํ…œ์„ ํ†ตํ•œ ๋ฏธ๋ž˜ ์ด์Šˆ์˜ ์—ด๋žŒ๊ณผ ํƒ์ƒ‰ 138 5.2.4. ๋…ธ๋“œ ์‹œ์Šคํ…œ์„ ํ†ตํ•œ ๋ฏธ๋ž˜ ์ด์Šˆ์˜ ์—ด๋žŒ๊ณผ ํƒ์ƒ‰ 142 5.3. ๊ธฐ์ˆ -๋ผ์ดํ”„์Šคํƒ€์ผ ์œตํ•ฉ ์ค‘์‹ฌ์˜ ๋ฏธ๋ž˜ ํ™”๋‘ ์ฐฝ์กฐ 147 5.3.1. ์ค‘์†Œ๊ธฐ์—…์ด ๋ฐœ์˜ํ•˜๋Š” ๋ฏธ๋ž˜ ํ™”๋‘์˜ ์ฐฝ์กฐ 147 5.3.2. ๋ฏธ๋ž˜ ํ™”๋‘์˜ ํ”Œ๋žซํผ ๋“ฑ๋ก 151 5.4. ๋Œ€์ค‘ ๋ฐ ์ „๋ฌธ๊ฐ€ ์ฐธ์—ฌ์™€ ํ‰๊ฐ€๋ฅผ ํ†ตํ•œ ๊ตฌ์ฒด์  ๋ฏธ๋ž˜์ƒ ์ฐฝ์กฐ156 5.4.1. ๋ฏธ๋ž˜ ์ƒํ™œ์ƒ์˜ ์ฐฝ์กฐ 156 5.4.2. ๋ฏธ๋ž˜ ์ œํ’ˆ/์„œ๋น„์Šค์ƒ์˜ ์ฐฝ์กฐ 164 5.4.3. ๋ฏธ๋ž˜ ์ œํ’ˆ/์„œ๋น„์Šค์ƒ์˜ ํ‰๊ฐ€ 170 5.4.4. ๋ฏธ๋ž˜ ์ œํ’ˆ/์„œ๋น„์Šค์ƒ ํ‰๊ฐ€ ๊ฒฐ๊ณผ์˜ ํ™œ์šฉ 172 5.5. ๋Œ€์ค‘ ์˜๊ฒฌ ๊ธฐ๋ฐ˜ ์†Œ๋น„์ž ๊ณต์œ ๊ฐ€์น˜/๊ฐ์„ฑ ๋ฐ ์กฐํ˜•์–ธ์–ด ๋„์ถœ175 5.5.1. ์†Œ๋น„์ž ๊ณต์œ ๊ฐ€์น˜ ๋ฐ ๊ณต์œ ๊ฐ์„ฑ ๋„์ถœ ํ”„๋กœ์„ธ์Šค 175 5.5.2. ์‚ฌ์šฉ ์–ดํœ˜ ๊ธฐ๋ฐ˜ ๊ฐ€์น˜์–ด ์‚ฌ์ „๊ณผ ๊ฐ€์น˜์–ด ๋งคํŠธ๋ฆญ์Šค 176 5.5.3. ์‚ฌ์šฉ ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜ ๊ณต์œ ๊ฐ์„ฑ๋„์™€ ์ฝœ๋ผ์ฅฌ 183 5.5.4. ์กฐํ˜•์–ธ์–ด(CMPF) ๋„์ถœ 185 5.6. ๊ธฐ์—…๋ณ„ ๋””์ž์ธ ์—ญ๋Ÿ‰์— ๋”ฐ๋ฅธ ํ”Œ๋žซํผ ํ™œ์šฉ ๊ธฐ์ค€ 188 5.7. ์†Œ๊ฒฐ 192 โ…ฅ. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ๊ฒ€์ฆ 195 6.1. ๊ฐœ์š” 195 6.1.1. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ๊ฒ€์ฆ ๋ชฉ์ ๊ณผ ๋ฐฉ๋ฒ• 195 6.1.2. ๋Œ€์ƒ ์ค‘์†Œ๊ธฐ์—… ์„ ์ • ๊ฒฐ๊ณผ ๋ฐ ๊ธฐ์—…๋ณ„ ๊ฒ€์ฆ ๋ฒ”์œ„ 197 6.2. ์‚ฌ์ „ ์—ฐ๊ตฌ ์ง„ํ–‰ 199 6.2.1. ๊ทผ๋ฏธ๋ž˜ ์‚ฐ์—…๋ณ„ ์ด์Šˆ ์ถ•์  199 6.2.2. ๊ทผ๋ฏธ๋ž˜ ํ•ต์‹ฌ ํ…Œ๋งˆ ๋„์ถœ 199 6.3. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ๊ฒ€์ฆ1 : ํƒœ์„ฑENG 208 6.3.1. ํƒœ์„ฑENG ๊ฐœ์š” ๋ฐ ๋ฐœ์˜ ํ™”๋‘ 208 6.3.2. ๋ฏธ๋ž˜์ƒ ์ฐฝ์กฐ ๊ฒฐ๊ณผ 213 6.3.3. ์†Œ๋น„์ž ๊ณต์œ ๊ฐ€์น˜ ๋„์ถœ ๊ฒฐ๊ณผ 217 6.3.4. ๊ฒฐ๊ณผ ์ข…ํ•ฉ ๋ฐ ๋ฏธ๋ž˜ ์ „๋žต ๋ฐฉํ–ฅ ๋„์ถœ 218 6.4. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ๊ฒ€์ฆ2 : ๊ตญ๋‚ด ๊น€์น˜๋ƒ‰์žฅ๊ณ  ์ œ์กฐ ์ค‘์†Œ๊ธฐ์—… 222 6.4.1. ๊ฐœ์š” ๋ฐ ํ™”๋‘ ์„ค์ • 222 6.4.2. ๋ฏธ๋ž˜์ƒ ์ฐฝ์กฐ ๊ฒฐ๊ณผ 224 6.4.3. ์†Œ๋น„์ž ๊ณต์œ ๊ฐ€์น˜ ๋„์ถœ ๊ฒฐ๊ณผ 234 6.4.4. ์†Œ๋น„์ž ๊ณต์œ ๊ฐ์„ฑ ๋ฐ ์กฐํ˜•์–ธ์–ด ๋„์ถœ ๊ฒฐ๊ณผ 236 6.4.5. ๊ฒฐ๊ณผ ์ข…ํ•ฉ ๋ฐ ๋””์ž์ธ ์ „๋žต ๋ฐฉํ–ฅ ๋„์ถœ 239 6.5. ์†Œ๊ฒฐ (์‹œ์‚ฌ์  ๋ฐ ๋ณด์™„์ ) 241 โ…ฆ. ๊ฒฐ ๋ก  244 ์ฐธ๊ณ ๋ฌธํ—Œ 251 Appendix 255 Abstract 266Docto

    Immunological reactions induced by recombinant mycobacterial antigens in experimental animals

    No full text
    ์ž„์ƒ๋ณ‘๋ฆฌํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€] ๊ฒฐํ•ต๊ท ์˜ ํ•ญ์›์„ฑ์„ ๊ทœ๋ช…ํ•˜๊ณ ์ž ํ•˜๋Š” ์—ฐ๊ตฌ์˜ ์ผํ™˜์œผ๋กœ์„œ ์œ ์ „์ž ์žฌ์กฐํ•ฉ ๊ธฐ๋ฒ•์œผ๋กœ ์ œ์กฐํ•œ 4์ข…์˜ ๊ฒฐํ•ต๊ท  ์œ ์ „์ž ์žฌ์กฐํ•ฉ ํ•ญ์›์˜ ๋Œ€์žฅ๊ท ์—์„œ ํ‘œํ˜„์—ฌ๋ถ€์™€ ๋Œ€์žฅ๊ท ์—์„œ ํ‘œํ˜„๋œ ๊ฒฐํ•ต๊ท  fusion protein์˜ ๊ฒฐํ•ต๊ท ์— ๋Œ€ํ•œ ํ•ญ์›์„ฑ์„ ์กฐ์‚ฌํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‹คํ—˜๋™๋ฌผ์— fusion protein์„ ์ด์šฉํ•˜์—ฌ ๋ฉด์—ญ์‹œํ‚จ ํ›„ ๊ด€์ฐฐ๋˜๋Š” ๋ฉด์—ญ๋ฐ˜์‘ ์—ฌ๋ถ€๋ฅผ ๊ด€์ฐฐํ•˜์˜€๋‹ค. 4์ข…์˜ recombinant ฮปgtll strain์„ ๋Œ€์žฅ๊ท ์— ๊ฐ์—ผ์‹œ์ผœ ๋Œ€์žฅ๊ท ์—์„œ ํ‘œํ˜„๋œ ๊ฒฐํ•ต๊ท  ํ•ญ์› ๊ฐ๊ฐ์˜ ์œ ์ „์ž ์žฌ์กฐํ•ฉ ํ•ญ์›์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ฒฐํ•ต๊ท ์— ๋Œ€ํ•œ ๊ฐ€ํ†  ํ•ญํ˜ˆ์ฒญ์„ ์ค€๋น„ํ•˜์—ฌ ๋Œ€์žฅ๊ท ์—์„œ ํ‘œํ˜„๋œ ๊ฒฐํ•ต๊ท  ํ•ญ์›์„ ํ™•์ฆํ•˜์˜€์œผ๋ฉฐ, ๋‹จ์„ธํฌ๊ตฐ ํ•ญ์ฒด์„ ์ด์šฉํ•œ ๋Œ€์žฅ๊ท ์—์„œ ํ‘œํ˜„๋œ ๊ฒฐํ•ต๊ท  ํ•ญ์›์˜ ๋ฐ˜์‘์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๋Œ€์žฅ๊ท ์—์„œ ํ‘œํ˜„๋œ ๊ฒฐํ•ต๊ท ์˜ 14KD ํ•ญ์›์€ ๊ฒฐํ•ต๊ท ์— ๋Œ€ํ•œ ๋‹จ์„ธํฌ๊ตฐ ํ•ญ์ฒด ADl4-โ…ก์—, ๊ฒฐํ•ต๊ท ์˜ 19KD ํ•ญ์›์€ ๋‹จ์„ธํฌ๊ตฐ ํ•ญ์ฒด ADl6-โ… ์— ๊ทธ๋ฆฌ๊ณ  ๊ฒฐํ•ต๊ท ์˜ 65KD ํ•ญ์›์€ ๋‹จ์„ธํฌ๊ตฐ ํ•ญ์ฒด ADB-โ…ง์— ๊ฐ๊ฐ ์ธ์ง€๋˜๋Š” ํ•ญ์›์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. 4์ข…์˜ recombinant lysogen์ค‘์—์„œ Y3143 recombinant lysogen์„ ํƒํ•˜์—ฌ mouse์— ๋ฉด์—ญ์‹œํ‚จ ํ›„ ๊ฒฐํ•ต๊ท ์— ๋Œ€ํ•œ ํ•ญ์ฒด ์ƒ์„ฑ ์—ฌ๋ถ€๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋ฉด์—ญ๋ณด๊ฐ•์ œ๋กœ alum์„ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ์—๋Š” Y3143 recombinant lysogen๋‚ด์— ํ‘œํ˜„๋˜์–ด ์žˆ๋Š” ๊ฒฐํ•ต๊ท  ํ•ญ์›์— ๋Œ€ํ•œ ํ•ญ์ฒด๊ฐ€ ์ƒ์„ฑ๋จ์„ ํ™•์ธํ•˜์˜€์œผ๋‚˜ ๋ฉด์—ญ๋ณด๊ฐ•์ œ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ฑฐ๋‚˜ ๋ฉด์—ญ๋ณด๊ฐ•์ œ๋กœ Freund's incomplete adjuvant์„ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ๋Š” ๊ฒฐํ•ต๊ท  ํ•ญ์›์— ๋Œ€ํ•œ ํ•ญ์ฒด์ƒ์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์—†์—ˆ๋‹ค. ๋˜ํ•œ Y3143 recombinant lysogen์œผ๋กœ mouse์—์„œ ์ƒ์„ฑ๋œ ํ•ญํ˜ˆ์ฒญ์€ ๊ฒฐํ•ต๊ท  ํ•ญ์›์— ๋ฐ˜์‘ํ•จ์œผ๋กœ์จ Y3143 recombinant lysogen๋‚ด์—์„œ ํ‘œํ˜„๋œ ๊ฒฐํ•ต๊ท  ํ•ญ์›์„ ํ™•์ธํ•˜์˜€๋‹ค. [์˜๋ฌธ] Since the advent of recombinant DNA technology, there have been great changes in the possibility for the development of more sensitive and more specific immuno-diagnostic and sero-epidemiological tests of tuberculosis. This paper aims to analyze the antigenicity of recombinant antigen of M. tuberculosis. Four recombinant bacteriophage strains of ฮปgt11 were infected into the host E. coli Y1089. And the expression of recombinant fusion protein was identified with SDS-PAGE and immunoblotting analysis with rabbit anti-M. tuberculosis antiserum, respectively. ln an attempt to identify talc antigenic epitomes of recombinant mycobacterial antigens expressed in E. coli Y1089, the reactivity patterns of recombinant antigens against monoclonal antibodies of M. tuberculosis were analyzed. Mycobacterial 14KD antigen expressed in E. coli was recognized by monoclonal antibody ADl4-โ…ก, 19KD antigen was recognized by monoclonal antibody ADl6-โ…  and 65KD antigen was recognized by monoclonal antibody ADB-โ…ง. Of 4 recombinant lysogens, Y3143 recombinant lysogen was selected as immunogen and was determined the antibody production in laboratory animals against mycobacterial antigens expressed in E. coli. Antibody production in laboratory animals was marked in the groups of animals immunized with alum-emulsified Y3143 recombinant lysogen as an adjuvant. These antisera were reacted with the whole cell lysate antigen of M. tuberculosis, and this results might indicate the successful expression of mycobacterial antigens in E. coli lysogenized with recombinant bacteriophage Y3143.restrictio
    corecore