1 research outputs found

    μ†Œλ‡Œ 퍼킨지 세포 λ‚΄μž¬μ  ν₯λΆ„μ„±μ˜ ν™œλ™-의쑴적 쑰절

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μ˜κ³ΌλŒ€ν•™ μ˜κ³Όν•™κ³Ό, 2019. 2. 김상정.Learning rule has been thought to be implemented by activity-dependent modifications of synaptic function and neuronal excitability which contributing to maximization the information flow in the neural network. Since the sensory information is conveyed by forms of action potential (AP) firing, the plasticity of the intrinsic excitability (intrinsic plasticity) has been highlighted the computational feature of the brain. Given the cerebellar Purkinje cells (PCs) is the sole output neurons in the cerebellar cortex, coordination of the synaptic plasticity at the parallel fiber (PF) to PC synapses including long-term depression (LTD) and long-term potentiation (LTP) but also the intrinsic plasticity may play a essential role in information processing in the cerebellum. In this Dissertation, I have investigated several features of intrinsic plasticity in the cerebellar PCs in an activity-dependent manner and their cellular mechanism. Furthermore, the functional implications of the intrinsic plasticity in the cerebellum-dependent behavioral output are discussed. Firstly, I first cover the ion channels regulating the spiking activity of the cerebellar PCs and the cellular mechanisms of the plastic changes in excitability. Various ion channels indeed harmonize the cellular activity and shaping the optimal ranges of the neuronal excitability. Among the ion channels expressed in the cerebellar PCs, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contribute to the non-Hebbian homeostatic intrinsic plasticity in the cerebellar PCs. Chronic activity-deprivation of PC activity caused the upregulation of agonist-independent activity of type 1 metabotropic glutamate receptor (mGluR1). The increased mGluR1 activity consequently enhanced the HCN channel current density through protein kinase A (PKA) pathway thereby downregulation of intrinsic excitability in PCs. In addition, the intrinsic excitability of PCs is found to be modulated by synaptic activity. Of interest, I investigated that the PF-PC LTD is accompanied by LTD of intrinsic excitability (LTD-IE). The LTD-IE indeed shared intracellular signal cascade for governing the synaptic LTD such as large amount of Ca2+ influx, mGluR1, protein kinase C (PKC) and Ca2+-calmodulin-dependent protein kinase II (CaMKII) activation. Interestingly, the LTD-IE reduced PC spike output without changes in patterns of synaptic integration and spike generation, suggesting that the intrinsic plasticity alters the quantity of information rather than the quality of information processing. In consistent, the LTD-IE was shown in the floccular PCs when the PF-PC LTD occurs. Notably, not only the synaptic LTD but also LTD-IE was found to be formed at the conditioned dendritic branch. Thus, synaptic plasticity could significantly affect to the neuronal net output through the synergistic coordination of synaptic and intrinsic plasticity in the dendrosomatic axis of the cerebellar PCs. In conclusion, the activity-dependent modulation of intrinsic excitability may contribute to dynamic tuning of the cerebellar PC output for appropriate signal transduction into the downstream neurons of the cerebellar PCs.생λͺ…μ²΄λŠ” λŠμž„μ—†μ΄ μ£Όλ³€ν™˜κ²½μ— λ°˜μ‘ν•˜μ—¬ 행동을 μˆ˜μ •ν•˜λ©° μ΄λŸ¬ν•œ 적응은 λ³€ν™”ν•˜λŠ” ν™˜κ²½μ—μ„œ 생쑴에 ν•„μˆ˜μ μ΄λ‹€. μ†Œλ‡Œ-μš΄λ™ ν•™μŠ΅μ€ λŒ€ν‘œμ μΈ 적응 ν–‰λ™μ˜ μ˜ˆμ΄λ‹€. λ‹€μ–‘ν•œ 감각 μ‹ ν˜Έλ“€μ΄ μ†Œλ‡Œλ‘œ μ „λ‹¬λ˜μ–΄ 처리된 ν›„ μ†Œλ‡Œ 좜λ ₯을 톡해 μš΄λ™ ν˜‘μ‘μ΄ 이루어진닀. μ΄λŸ¬ν•œ μ†Œλ‡Œ-μš΄λ™ ν•™μŠ΅ 및 μ†Œλ‡Œ κΈ°λŠ₯ 쑰절의 세포 생리학적 κΈ°μ „μœΌλ‘œ μ†Œλ‡Œ 퍼킨지 μ„Έν¬μ˜ μ‹œλƒ…μŠ€ μž₯κΈ°μ €ν•˜κ°€ μ˜€λž«λ™μ•ˆ μ£Όλͺ©λ°›μ•˜λ‹€. 퍼킨지 μ„Έν¬μ˜ μ‹œλƒ…μŠ€ μž₯κΈ°μ €ν•˜κ°€ λ‚˜νƒ€λ‚˜μ§€ μ•ŠλŠ” μœ μ „μž λ³€ν˜• 동물 λͺ¨λΈλ“€μ—μ„œ μ†Œλ‡Œ-μš΄λ™ ν•™μŠ΅μ΄ μ •μƒμ μœΌλ‘œ μΌμ–΄λ‚˜μ§€ μ•ŠλŠ” ν˜„μƒμ΄ κ΄€μ°°λ˜μ—ˆκΈ° λ•Œλ¬Έμ— μ‹œλƒ…μŠ€ μž₯κΈ°μ €ν•˜ 이둠은 였랜 μ‹œκ°„ μ†Œλ‡Œ-μš΄λ™ ν•™μŠ΅μ˜ κΈ°μ „μœΌλ‘œ 지지 λ°›μ•˜λ‹€. ν•˜μ§€λ§Œ 졜근 10λ…„ λ™μ•ˆμ˜ μ—°κ΅¬κ²°κ³ΌλŠ” μ‹œλƒ…μŠ€ μž₯κΈ°μ €ν•˜λ§ŒμœΌλ‘œ μ†Œλ‡Œ-μš΄λ™ ν•™μŠ΅ 및 κΈ°λŠ₯ μ‘°μ ˆμ„ μ„€λͺ…ν•  수 μ—†λ‹€κ³  λ°˜λ°•ν•œλ‹€. 특히 μ†Œλ‡Œ 퍼킨지 μ„Έν¬λŠ” μ†Œλ‡Œ ν”Όμ§ˆλ‘œ μ „λ‹¬λœ κ°κ°μ‹ ν˜Έλ₯Ό μ²˜λ¦¬ν•˜μ—¬ 좜λ ₯을 λ‹΄λ‹Ήν•˜λŠ” μœ μΌν•œ μ‹ κ²½μ„Έν¬μ΄λ―€λ‘œ μš΄λ™ ν•™μŠ΅ μƒν™©μ—μ„œ μ†Œλ‡Œμ˜ 좜λ ₯이 μ–΄λ–»κ²Œ μ‘°μ ˆλ˜λŠ”μ§€λ₯Ό μ΄ν•΄ν•˜λŠ” 것이 μ€‘μš”ν•˜κ²Œ μΈμ‹λ˜μ—ˆλ‹€. 감각 μ‹ ν˜Έκ°€ μ‹ κ²½ 회둜 λ‚΄μ—μ„œ 전달될 λ•Œ ν™œλ™ μ „μ••μ˜ ν˜•νƒœλ‘œ μ „λ‹¬λ˜κΈ° λ•Œλ¬Έμ— ν™œλ™ μ „μ••μ˜ λ°œμƒ λΉˆλ„ 및 νŒ¨ν„΄ 쑰절 양상에 λŒ€ν•œ μ΄ν•΄λŠ” μ†Œλ‡Œ μš΄λ™ ν•™μŠ΅μ˜ 기전을 λ°νžˆλŠ” 데에 μ€‘μš”ν•˜λ‹€. λ³Έ λ°•μ‚¬ν•™μœ„ λ…Όλ¬Έμ—μ„œλŠ” λ¨Όμ € μ†Œλ‡Œ 퍼킨지 μ„Έν¬μ˜ λ‚΄μž¬μ  ν₯뢄성을 μ‘°μ ˆν•˜λŠ” μ—¬λŸ¬κ°€μ§€ 이온 ν†΅λ‘œλ“€μ˜ νŠΉμ„±μ— λŒ€ν•΄ μ •λ¦¬ν•˜κ³  더 λ‚˜μ•„κ°€ λ‚΄μž¬μ  ν₯λΆ„μ„± κ°€μ†Œμ„±μ˜ κΈ°μ „ 및 생리학적 의의λ₯Ό μ œμ‹œν•˜μ˜€λ‹€. μ†Œλ‡Œ 퍼킨지 μ„Έν¬μ˜ ν₯뢄성은 ν™œλ™-의쑴적 κ°€μ†Œμ„±μ„ λ³΄μ΄λŠ”λ°, μ‹œλƒ…μŠ€μ˜ ν™œλ™μ΄ μ•„λ‹Œ μ†Œλ‡Œ 회둜 ν™œλ™μ„±μ˜ μž₯기적인 변화에 λŒ€μ‘ν•˜μ—¬ λ‚˜νƒ€λ‚  수 μžˆλ‹€. μ†Œλ‡Œ 회둜의 ν™œλ™μ„ 2일 κ°„μ˜ tetrodotoxin (TTX, 1Β΅M) 처리λ₯Ό 톡해 μ €ν•΄ν•˜μ˜€μ„ λ•Œ 과뢄극에 μ˜ν•΄ λ°œμƒν•˜λŠ” λ‚΄ν–₯μ „λ₯˜ (Ih) 증가λ₯Ό ν†΅ν•œ μ†Œλ‡Œ 퍼킨지 μ„Έν¬μ˜ ν₯뢄성이 κ°μ†Œλ˜λŠ” 것을 전기생리학적 기둝을 톡해 κ΄€μ°°ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ μž₯기적인 μ†Œλ‡Œ 회둜의 ν™œλ™μ„± 변화에 μ˜ν•œ 퍼킨지 μ„Έν¬μ˜ λ‚΄μž¬μ  ν₯λΆ„μ„± κ°μ†Œμ˜ 세포생리학적 κΈ°μ „μœΌλ‘œμ„œ λŒ€μ‚¬μ„± κΈ€λ£¨νƒ€λ©”μ΄νŠΈ 수용체의 κΈΈν•­μ œ-λΉ„μ˜μ‘΄μ μΈ ν™œλ™μ„± 증가 및 그둜 μΈν•œ PKA의 증가에 μ˜ν•΄ λ°œμƒν•¨μ„ 생화학 및 전기생리학적 방법을 톡해 규λͺ…ν•˜μ˜€λ‹€. 이처럼 μ†Œλ‡Œ 퍼킨지 μ„Έν¬μ˜ λ‚΄μž¬μ  ν₯뢄성은 μ†Œλ‡Œ 회둜 λ‚΄μ—μ„œ μ—­λ™μ μœΌλ‘œ μ‘°μ ˆλ˜μ–΄ μ†Œλ‡Œ κΈ°λŠ₯을 μ‘°μ ˆν•œλ‹€. 더 λ‚˜μ•„κ°€ 퍼킨지 μ„Έν¬μ˜ ν₯λΆ„μ„± 쑰절과 μ†Œλ‡Œ-κΈ°μ–΅ν˜•μ„±κ³Όμ˜ 관계성을 κ²€μ¦ν•˜κΈ° μœ„ν•΄ μ†Œλ‡Œ-ν•™μŠ΅μ˜ 세포생리학적 κΈ°μ „μœΌλ‘œ μ•Œλ €μ ΈμžˆλŠ” 퍼킨지 세포 μ‹œλƒ…μŠ€ μž₯κΈ°μ €ν•˜ μœ λ„ ν›„ ν₯λΆ„μ„±μ˜ λ³€ν™”λ₯Ό κ΄€μ°°ν•˜μ˜€λ‹€. ν₯λ―Έλ‘­κ²Œλ„ 퍼킨지 μ„Έν¬μ˜ λ‚΄μž¬μ  ν₯λΆ„μ„± μ—­μ‹œ μ‹œλƒ…μŠ€ κ°€μ†Œμ„±κ³Ό λ§ˆμ°¬κ°€μ§€λ‘œ ν‰ν–‰μ„¬μœ μ™€ λ“±λ°˜μ„¬μœ μ˜ ν™œμ„±μ„ 톡해 κ°€μ†Œμ„±μ„ λ³΄μ΄λŠ”λ° 이 ν₯λΆ„μ„±μ˜ κ°€μ†Œμ„±μ€ λŒ€μ‚¬μ„± κΈ€λ£¨νƒ€λ©”μ΄νŠΈ 수용체, PKC 그리고 CaMKII와 같은 μ‹œλƒ…μŠ€ μž₯κΈ° μ €ν•˜λ₯Ό μ•ΌκΈ°ν•˜λŠ” 세포 λ‚΄ μ‹ ν˜Έμ „λ‹¬κΈ°μ „μ„ ν•„μš”λ‘œ ν•œλ‹€. μ΄λŸ¬ν•œ μ‹€ν—˜κ²°κ³Όλ₯Ό 톡해 μ‹œλƒ…μŠ€ μž₯κΈ°μ €ν•˜κ°€ λ°œμƒν•  λ•Œ μ†Œλ‡Œ 퍼킨지 μ„Έν¬μ˜ λ‚΄μž¬μ  ν₯λΆ„μ„± μ—­μ‹œ 같이 κ°μ†Œν•˜μ—¬ μ†Œλ‡Œ μš΄λ™ μ‹œ μ†Œλ‡Œ ν”Όμ§ˆμ˜ 좜λ ₯이 크게 κ°μ†Œν•¨μ„ μ˜ˆμƒν•  수 μžˆλ‹€. μ‹€μ œλ‘œ μ†Œλ‡Œ 퍼킨지 μ„Έν¬μ˜ μ‹ κ²½κ°€μ†Œμ„±μ„ μœ λ„ν•œ ν›„ ν‰ν–‰μ„¬μœ λ₯Ό μžκ·Ήν•˜μ—¬ λ‚˜νƒ€λ‚˜λŠ” 퍼킨지 μ„Έν¬μ˜ ν™œλ™ μ „μ•• λ°œμƒ λΉˆλ„λ₯Ό μΈ‘μ •ν•΄ λ³Έ κ²°κ³Ό, μ‹œλƒ…μŠ€ μž₯κΈ°μ €ν•˜μ™€ ν₯λΆ„μ„±μ˜ μž₯κΈ°μ €ν•˜κ°€ ν•¨κ»˜ λ°œμƒν–ˆμ„ λ•Œμ—λ§Œ μ†Œλ‡Œ 퍼킨지 μ„Έν¬μ˜ 좜λ ₯이 μœ μ˜λ―Έν•˜κ²Œ κ°μ†Œν•˜λŠ” 것을 κ΄€μ°°ν•˜μ˜€λ‹€. 특히 퍼킨지 μ„Έν¬μ˜ ν™œλ™-의쑴적 ν₯λΆ„μ„±μ˜ κ°€μ†Œμ„±μ€ μ‹œλƒ…μŠ€ κ°€μ†Œμ„±κ³Ό λ§ˆμ°¬κ°€μ§€λ‘œ νŠΉμ • μˆ˜μƒλŒκΈ° 가지 특이적으둜 λ°œμƒν•¨μ„ κ΄€μ°°ν•˜μ˜€λ‹€. 이λ₯Ό 톡해 퍼킨지 μ„Έν¬μ˜ μ‹œλƒ…μŠ€ κ°€μ†Œμ„±κ³Ό ν₯λΆ„μ„± κ°€μ†Œμ„±μ˜ 유기적인 연합을 톡해 μ†Œλ‡Œ 퍼킨지 μ„Έν¬μ˜ 좜λ ₯μ‹ ν˜Έκ°€ μ‘°μ ˆλ˜μ–΄ μ†Œλ‡Œ-μš΄λ™ν•™μŠ΅μ„ μ‘°μ ˆν•¨μ„ μ•Œ 수 μžˆλ‹€. 결둠적으둜 λ³Έ λ°•μ‚¬ν•™μœ„ λ…Όλ¬Έμ˜ 연ꡬ결과듀은 μ†Œλ‡Œ 퍼킨지 μ„Έν¬μ˜ 좜λ ₯은 퍼킨지 μ„Έν¬μ˜ μ‹œλƒ…μŠ€ κ°€μ†Œμ„± ν˜Ήμ€ ν₯λΆ„μ„±μ˜ 쑰절과 λΉ„μ„ ν˜•κ΄€κ³„λ₯Ό 보이며 μ΄λŸ¬ν•œ μ‹œλƒ…μŠ€ κ°€μ†Œμ„±κ³Ό λ‚΄μž¬μ  κ°€μ†Œμ„±μ˜ μ‹œλ„ˆμ§€λŠ” μ†Œλ‡Œ 정보 μ €μž₯ λŠ₯λ ₯을 κ·ΉλŒ€ν™”ν•˜μ—¬ μ†Œλ‡Œ κΈ°λŠ₯ 쑰절 및 정보저μž₯에 μ€‘μš”ν•œ 역할을 λ‹΄λ‹Ήν•˜κ³  μžˆμŒμ„ μ œμ‹œν•œλ‹€.Preface Abstract General introduction Chapter 1. Summary of the previous literatures and further implication for physiological significance of the intrinsic plasticity in the cerebellar Purkinje cells Summary. 1.1 Ion channels and spiking activity of the cerebellar Purkinje cells 1.1.1 Voltage-gated Na+ channels 1.1.2 Voltage-gated K+ channels and Ca2+-activated K+ channels 1.2 Activity-dependent plasticity of intrinsic excitability through ion channel modulation 1.2.1 Activity-dependent plasticity of intrinsic. excitability through ion channel 1.2.2 Possible mechanisms for LTD-IE. 1.2.3 Upside down: to what extent does bidirectional intrinsic plasticity in. the cerebellar dependent-motor learning do? 1.3 The further implication of intrinsic plasticity in the memory circuits. Chapter 2. Type 1 metabotropic glutamate receptor mediates homeostatic control of intrinsic excitability through hyperpolarization-activated current in cerebellar Purkinje cells Introduction Material and Method Results 2.1 Chronic activity-deprivation reduces intrinsic excitability of the cerebellar. Purkinje cells 35 2.2 Homeostatic intrinsic plasticity of the cerebellar Purkinje cells is mediated activity-dependent modulation of Ih 2.3 Homeostatic intrinsic plasticity of the cerebellar Purkinje cells requires agonist-independent action of mGluR1 2.4 Homeostatic intrinsic plasticity of the cerebellar Purkinje cells is mediated. PKA activity Discussion Chapter 3. Long-Term Depression of Intrinsic Excitability Accompanied by Synaptic Depression in Cerebellar Purkinje Cells Introduction Material and Method Results 3.1 LTD of intrinsic excitability of PC accompanied by PF-PC LTD 3.2 LTD-IE has different developing kinetics from synaptic LTD 3.3 LTD-IE was not reversed by subsequent LTP-IE induction 3.4 The number of recruited synapses were not correlated to the magnitude of the neuronal 3.5 Information processing after LTD induction LTD-IE was not. reversed by subsequent LTP-IE induction 3.6 LTD-IE required the Ca2+-signal but not depended on the Ca2+-activated K+ channels Discussion Chapter 4. Synergies between synaptic depression and intrinsic plasticity of the cerebellar Purkinje cells determining the Purkinje cell output Introduction Material and Method Restuls 4.1 Timing rules of intrinsic plasticity of floccular PCs 87 4.2 Intrinsic plasticity shares intracellular signaling for PF-PC LTD 4.3 Conditioned PF branches contributing to robust reduction of spike output of the PCs 4.4 Sufficient changes in spiking output require both of plasticity, synaptic and. intrinsic plasticity 4.5 Supralinearity of spiking output coordination after induction of PC plasticity Discussion Bibliography Abstract in Korean AcknowledgementDocto
    corecore