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Preface

This Ph.D dissertation of biomedical science written by Hyun Geun Shim contains 

four chapters. Each chapters are modified from previously published papers in 

peer-reviewed journal. Chapter 1 is adopted from Experimental Neurobiology

(Shim, H.G., Lee, Y.S., & Kim, S.J. (2018) The Emerging Concept of Intrinsic 

Plasticity: Activity-dependent Modulation of Intrinsic Excitability in Cerebellar 

Purkinje Cells and Motor Learning. Experimental Neurobiology, 27(3), 139-154). 

Chapter 2 is published in the Journal of Neurophysiology (Shim, H. G., Jang, S.S., 

Jang, D.C., Jin,Y., Chang,W., Park, J.M., & Kim, S.J. (2016) mGlu1 receptor 

mediates homeostatic control of intrinsic excitability through Ih in cerebellar 

Purkinje cells. Journal of neurophysiology, 115(5), 2446-2455). Chapter 3 is 

adopted from Journal of Neuroscience (Shim, H.G., Jang, D.C., Lee, J., Chung, 

G., Lee, S., Kim, Y.G., Jeon, D.E. and Kim, S.J. (2017) Long-term depression of 

intrinsic excitability accompanied by the synaptic depression in the cerebellar 

Purkinje cells: Journal of Neuroscience, pp.3464-16; selected in featured article). 
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Abstract

Activity-dependent modulation of intrinsic excitability in

the cerebellar Purkinje cells

Hyun Geun Shim

Department of Biomedical Science (Physiology major)

The Graduate School

Seoul National University College of Medicine

Learning rule has been thought to be implemented by activity-dependent 

modifications of synaptic function and neuronal excitability which contributing to 

maximization the information flow in the neural network. Since the sensory 

information is conveyed by forms of action potential (AP) firing, the plasticity of 

the intrinsic excitability (intrinsic plasticity) has been highlighted the 

computational feature of the brain. Given the cerebellar Purkinje cells (PCs) is the 

sole output neurons in the cerebellar cortex, coordination of the synaptic plasticity 

at the parallel fiber (PF) to PC synapses including long-term depression (LTD) and 

long-term potentiation (LTP) but also the intrinsic plasticity may play a essential 

role in information processing in the cerebellum. In this Dissertation, I have 

investigated several features of intrinsic plasticity in the cerebellar PCs in an 

activity-dependent manner and their cellular mechanism. Furthermore, the 

functional implications of the intrinsic plasticity in the cerebellum-dependent 

behavioral output are discussed. Firstly, I first cover the ion channels regulating the 

spiking activity of the cerebellar PCs and the cellular mechanisms of the plastic 

changes in excitability. Various ion channels indeed harmonize the cellular activity 



iii

and shaping the optimal ranges of the neuronal excitability. Among the ion 

channels expressed in the cerebellar PCs, hyperpolarization-activated cyclic 

nucleotide-gated (HCN) channels contribute to the non-Hebbian homeostatic 

intrinsic plasticity in the cerebellar PCs. Chronic activity-deprivation of PC activity 

caused the upregulation of agonist-independent activity of type 1 metabotropic 

glutamate receptor (mGluR1). The increased mGluR1 activity consequently 

enhanced the HCN channel current density through protein kinase A (PKA)

pathway thereby downregulation of intrinsic excitability in PCs. In addition, the 

intrinsic excitability of PCs is found to be modulated by synaptic activity. Of 

interest, I investigated that the PF-PC LTD is accompanied by LTD of intrinsic 

excitability (LTD-IE). The LTD-IE indeed shared intracellular signal cascade for 

governing the synaptic LTD such as large amount of Ca2+ influx, mGluR1, protein 

kinase C (PKC) and Ca2+-calmodulin-dependent protein kinase II (CaMKII)

activation. Interestingly, the LTD-IE reduced PC spike output without changes in 

patterns of synaptic integration and spike generation, suggesting that the intrinsic 

plasticity alters the quantity of information rather than the quality of information 

processing. In consistent, the LTD-IE was shown in the floccular PCs when the 

PF-PC LTD occurs. Notably, not only the synaptic LTD but also LTD-IE was 

found to be formed at the conditioned dendritic branch. Thus, synaptic plasticity 

could significantly affect to the neuronal net output through the synergistic 

coordination of synaptic and intrinsic plasticity in the dendrosomatic axis of the 

cerebellar PCs. In conclusion, the activity-dependent modulation of intrinsic 

excitability may contribute to dynamic tuning of the cerebellar PC output for 

appropriate signal transduction into the downstream neurons of the cerebellar PCs. 

Keyword : Synaptic plasticity, PF-PC LTD, intrinsic plasticity, cerebellar 
motor learning
Student Number : 2012-23669
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General Introduction

The brain is one of the most complex system in the nature. It contains over a 

billion of neurons which form up to a hundred thousand of synaptic connection. 

The remarkable feature of this universe is that the system is endowed with a high 

degree of plastic changes in an activity-dependent manner rather than hardwired. 

Hence, the organisms are able to appropriately adjust environment around them 

and survive. Since Donald O. Hebb proposed Hebb’s rule that neurons that fire 

together wire together, (Daoudal and Debanne, 2003; Debanne et al., 2018; Shim et 

al., 2018) activity-dependent synaptic plasticity has been considered as the cellular 

and molecular mechanism of learning and memory (Hebb, 1949). When neurons 

give repetitive and significant stimuli, alterations of synaptic transmitter release 

properties at the presynaptic neurons and receptor expression at the postsynaptic 

neurons occur. These changes in synaptic activity is appeared within few seconds,

called short-term plasticity (Chang et al., 2012). The short-term plasticity has been 

implicated in dynamic and rapid regulation of synaptic activity (Atluri and Regehr, 

1996; Mahon and Charpier, 2012; Turecek et al., 2016; Zhang and Linden, 2003). 

For instance, strong depolarization induces transient reduction of excitation and/or 

inhibition inputs, known as depolarization-induced suppression of excitation (DSE) 

and depolarization-induced suppression of inhibition (DSI), respectively (Kreitzer 

and Regehr, 2001; Satoh et al., 2013; Wang et al., 2012). When the neuronal 

activity occurs repeatedly, the weight of synaptic transmission occasionally

prolonged over hours, referred as long-term plasticity (Atluri and Regehr, 1996; 

Mahon and Charpier, 2012; Shim et al., 2018; 2017). Bliss and Lomo (1973) firstly 

described this cellular phenomenon, especially long-term potentiation (LTP), long-

lasting augmentation of the postsynaptic response in the hippocampus. Until 

recently, short-term and long-term plasticity has long been investigated in order to 

elucidate how the brain learns and stores information. 

  Persistent and experience-dependent alterations in synaptic function such as LTP 
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and long-term depression (LTD) have been largely regarded as memory storage in 

the modern neuroscience field (Mittmann and Häusser, 2007). However, other side 

of the memory engram has been postulated because the information processed 

within synapses is ultimately conveyed though the intrinsic excitability, neuronal 

ability to generate action potential (Kim and Linden, 2007; Zhang and Linden, 

2003). There is accumulating evidence supporting the idea that information storage 

may require not only the synaptic plasticity but also the activity-dependent 

modulation of neuronal intrinsic excitability (intrinsic plasticity) (Gao et al., 2012). 

The intrinsic plasticity is not confined to the single synapse but accompanies non-

synaptic and global changes (Belmeguenai et al., 2010; Shim et al., 2017). 

Therefore, the incongruity between synaptic and intrinsic plasticity may give rise 

to a controversy that the global changes of neuronal excitability would presumably

distort the experience-dependent synaptic plasticity. Notably, synapse-specific and 

non-specific modifications synergistically contribute to the information processing 

and memory storage in the defined circuitry (Belmeguenai et al., 2010; Mittmann 

and Häusser, 2007; Rancz and Häusser, 2010; Shim et al., 2017). The intrinsic 

plasticity shapes the net output of neurons by integrating the synaptic inputs and 

consecutively translating them into the action potential (AP) firing. Therefore, 

synergies between synaptic and intrinsic plasticity would play a role in maximizing 

information processing such as encoding, transfer and storage. 

The cerebellar Purkinje cells (PCs) is the inhibitory principal neurons in the 

cerebellar cortex, integrating excitatory and inhibitory inputs from widely spread 

dendrite branches. Abundant branches of dendritic tree in the cerebellar PCs 

receive two major excitatory synaptic inputs from parallel fiber (PF), the axon fiber 

of the granule cells, and climbing fiber (CF), the axon fiber of the inferior olivary 

(IO) neurons in the brainstem. Various sensory information from the pre-cerebellar 

region and spinal cord project into the cerebellum through the mossy fiber (MF) 

which forms synapses with the cerebellar granule cells. The cerebellar PCs 

integrate the sensory information from the PF and then provide inhibitory 
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instructive signals to the neurons in the vestibular nuclei (VN) and/or the deep 

cerebellar nuclei (DCN) in order to generate motor output. In addition to PF inputs, 

CF inputs into the cerebellar PCs encodes the feedback error signal corresponding 

to performances (Guo et al., 2014; Ke et al., 2009; Kimpo et al., 2014; Streng et al., 

2017). In order to control goal-directed movement, this sensory feedback of error 

signals dynamically regulates the cerebellar output (Bloedel and Bracha, 1995; 

Yamazaki and Nagao, 2012). Indeed, the CF inputs onto the cerebellar PCs are 

regarded as the instructive signals in the cerebellar plasticity as the PF-PC synaptic 

plasticity is guided by timing rules between PF and CF activation (Safo and Regehr, 

2008; Suvrathan et al., 2016). The synaptic plasticity between PF-PC synapses 

guided by instructive CF activation has long been regarded as the cellular basis of 

cerebellum-dependent motor learning (Suvrathan et al., 2016) in fact, is the 

heterosynaptic plasticity guided depending on the timing rules between PF and CF 

activation. The performance error signals are conveyed by CF to re-compute the 

motor signal from PCs, enabling finely tuned motor coordination through 

determining the cerebellar cortical activity. Many implications in cerebellar motor 

learning have suggested that the bidirectional plasticity of PF-PC synapses may be 

selectively engaged in specific behavioral paradigms (Boyden et al., 2006; Jörntell 

and Hansel, 2006). In spite of abundant studies of the PF-PC synaptic plasticity

associated with cerebellum dependent behaviors, it has been less elucidated how 

the net output of the cerebellar PCs is regulated in an activity-dependent manner. 

Since the cerebellar PCs are the sole output of the cerebellar cortex, the plasticity 

of the intrinsic excitability in the neurons might play a pivotal role in the 

modulation of cerebellar motor behavior and learning. In this dissertation, I

highlight the cellular and molecular mechanisms of activity-dependent intrinsic 

plasticity in the cerebellar PCs. Furthermore, I discuss the physiological 

significances of the PC intrinsic plasticity on the cerebellar dependent motor 

learning circuitry. 
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Chapter 1

Summary of the previous literatures and further 

implication for physiological significance of the 

intrinsic plasticity in the cerebellar Purkinje 

cells
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Summary

What is memory? How does the brain process the sensory information and modify 

an organism’s behavior? Many neuroscientists have focused on the activity- and 

experience-dependent modifications of synaptic functions in order to solve these 

fundamental questions in neuroscience. Recently, the plasticity of intrinsic 

excitability (called intrinsic plasticity) has emerged as an important element for 

information processing and storage in the brain. As the cerebellar Purkinje cells are 

the sole output neurons in the cerebellar cortex and the information is conveyed 

from a neuron to its relay neurons by forms of action potential firing, the 

modulation of the intrinsic firing activity may play a critical role in the cerebellar 

learning. Many voltage-gated and/or Ca2+-activated ion channels are involved in 

shaping the spiking output as well as integrating synaptic inputs to finely tune the 

cerebellar output. Recent studies suggested that the modulation of the intrinsic 

excitability and its plasticity in the cerebellar Purkinje cells might function as an 

integrator for information processing and memory formation. Moreover, the 

intrinsic plasticity might also determine the strength of connectivity to the sub-

cortical areas such as deep cerebellar nuclei and vestibular nuclei to trigger the 

consolidation of the cerebellar-dependent memory by transferring the information. 
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1.1 Ion channels and spiking activity of the cerebellar 

Purkinje cells

The intrinsic excitability is influenced by the conductance of voltage-gated ion 

channels generating ionic current carried by Na+ and K+ ions (INA and IK, 

respectively), which affects the passive and active membrane properties (Hodgkin 

and Huxley, 1945; 1952a; 1952b; Hodgkin et al., 1952). The ion channels are 

expressed in somatic and dendritic (or both) regions and modulate the temporal 

summation of the synaptic inputs and ability to generate AP firing in axon hillock 

(Clark et al., 2005; Stuart and Häusser, 1994). A balance of ion channel 

conductance and expressional composition determines the characteristics of 

spiking activity as well as the neuronal excitability. The cerebellar PCs show a 

distinct spiking activity which fires spontaneously at high frequency. Many studies 

illustrated that the changes in ion channel conductance alter the neuronal spiking 

activity and behavioral outcomes (fig. 1). 



7

Figure 1. Schematic illustration for ion channels shaping intrinsic excitability of the cerebellar 

PCs. Among various ion channels, this review focused on the resurgent Na+ channel (NaV1.6), 

subthreshold-activated K+ channels (KV1.1, 1.2 and 1.6; KV1.4 and KV4, D-type and A-type K+ 

channel, respectively), suprathreshold-activated K+ channels (KV3 subfamily) and Ca2+-activated K+

channels (SK and BK channel). Action potential is initiated at the action potential initial segment 

(AIS) near the axon hillock and then passively propagated into the dendritic area. Somatic SK and 

BK channels determine the AP spike waveform such as the amplitude of afterhyperpolarization (AHP) 

and KV3 subfamily regulates repolarization of AP. Because the cerebellar PCs, in particular, are fast-

spiking neurons, mechanisms of rapid recovery from NaV inactivation is required to stably maintain 

PC spiking behavior. NaV1.6 activity enables to rapidly fire the AP spikes via shortening refractory 

period. Various ion channels synergistically and dynamically modulate the dendrosomatic activity of 

the cerebellar PCs.
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1.1.1 Voltage-gated Na+ channels 

Voltage-gated Na+ channels (NaV) are involved in determining active properties of 

neurons including voltage threshold for generating AP at the axon hillock and 

amplitude of AP spike (Hodgkin and Huxley, 1952a; 1952b; Hodgkin et al., 1952). 

In the cerebellar PCs, various subtypes of voltage-gated Na+ channels are 

expressed, for instance, NaV1.1, NaV1.2 and NaV1.6 have been described in rodent 

PCs (Brysch et al., 1991; Callaway and Ross, 1997; de Ruiter et al., 2006; Schaller 

and Caldwell, 2003; Vega-Saenz de Miera et al., 1997). Observation of [Na+]i

changes and electrophysiological recordings via outside-out patch clamp 

configuration have revealed that Na+ spikes are generated within the somatic area 

of PC and then passively spread into the dendrites (Callaway and Ross, 1997). 

Despite some subtypes of NaV and changes in [Na+]i in the PC dendrites were 

observed, backpropagation of AP into the dendrite from soma is absent, suggesting 

that the [Na+]i influx and subtypes of Na+ channels expressed in dendrites are not 

sufficient to generate AP in PC dendrites. In addition, electrophysiological 

recordings of INa in the cerebellar PCs have revealed a fast inactivating and/or a 

persistent conductance of Na+ (Kay et al., 1998; Schaller and Caldwell, 2003). 

Among subtypes of NaV, NaV1.6 shows a distinct feature, which contributes to 

transient and resurgent components, but not to persistent components (Table 1). 

NaV1.6 was remarkably observed in the dendritic area in the cerebellar PCs 

(Caldwell et al., 2000). The resurgent INa facilitates reopen NaV when the 

membrane potential is repolarized to approximately -40 mV following the long 

period of depolarization exceeds +30 mV enough to produce maximal inactivation 

of NaV (Afshari et al., 2004; Khaliq et al., 2003; Raman and Bean, 1997; 2001; 

Raman et al., 1997). This distinctive current flow contributes to ensuring the fast-

spiking activity of the cerebellar PCs via the rapid open-channel block and unblock 

mechanism because the PCs, in particular, spontaneously fire AP spikes at high 

frequency. Resurgent current, carried by NaV1.6, has been found to be a 

mechanism by which the refractory period between AP firing is shortened by rapid 
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recovery from inactivation of INa (Khaliq et al., 2003; Raman and Bean, 2001). 

Transgenic mice which resurgent Na+ current is disrupted showed an abnormality 

in the spiking activity of PCs and manifestation of cerebellar ataxia and failure of 

motor coordination (Khaliq et al., 2003; Valkova et al., 2017). Recent studies have 

shown that NaV channel auxiliary subunit FGF14’b’ isoform is involved in 

controlling the resurgent current and excitability of PCs (Yan et al., 2014). In 

parallel with previous observations, ablation of this auxiliary subunit manifests the 

abnormality of the firing activity in PCs and motor behavior (Bosch et al., 2015; 

Yan et al., 2014). Interestingly, inactivation of NaV1.6 affects not only the motor 

performance but also associative classical conditioning and spatial memory 

formation. Purkinje cell-specific deletion of Scn8a, encoding NaV1.6, impaired the 

performance in the delayed eyeblink conditioning and the Morris water maze 

(Woodruff-Pak et al., 2006). 

1.1.2 Voltage-gated K+ channels and Ca2+-activated K+ channels

K+ channels are another major players in determining the excitability of the 

neurons. As molecular techniques have been advanced, various subtypes of K+

channels and their gating properties have been characterized (Coetzee et al., 1999). 

Like Na+ channels, many K+ channels have shown quite distinct and divergent 

gating properties depending on the types of auxiliary proteins. K+ channels are 

classified into several types, including voltage-gated channels (KV), Ca2+-activated 

K+ channels (KCa), inwardly rectifying channels (inward rectifier) and Na+-

activated K+ channels. In this summary, I focused on the roles of several KV

subfamilies (Table 2) and Ca2+-activated K+ channels (Table 2) in intrinsic firing 

properties of the cerebellar PCs. 

Considering the Hodgkin-Huxley model, ionic flow carried by Na+ and K+

determines the active and passive properties of neurons. Of interest, K+

conductance controls the resting membrane potential, membrane resistance, 

neuronal excitability, duration of AP and delay time to fire AP spike. 
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Electrophysiological observations and immunohistochemistry data have shown that 

various types of K+ channels are expressed in cerebellar PC soma and dendrites 

(Etzion and Grossman, 1998; 2001; Gähwiler and Llano, 1989; Gruol et al., 1989; 

1991; Martina et al., 2003; McKay and Turner, 2004; Raman and Bean, 1999). 

(Gähwiler and Llano, 1989) observed that outward IK is found to be elicited by 

membrane depolarization above -30 mV from excised somatic membrane. This 

suprathreshold-activated IK shows sensitivity for general K+ current inhibitors, 

tetraethylammonium (TEA) and 4-aminopyrimidine (4-AP), indicating that the IK

is governed by Kv3 subfamily of K+ channel (Raman and Bean, 1999; Southan and 

Robertson, 2000). This class of K+ channels (especially KV3.3 and 3.4) repolarizes 

the Na+ spike discharge to maintain repetitive AP firing in both soma and dendritic 

area (Lien and Jonas, 2003; McKay and Turner, 2004; Rudy and McBain, 2001; 

Sekirnjak et al., 1997). Therefore, dysfunction of this subfamily results in the 

impairment of repetitive AP spike discharge with a high frequency and an 

abnormal behavior (Matsukawa et al., 2003). In addition, the pharmacological 

inhibition with 1- 10 mM of 4-AP or 2-5 mM TEA affects the dendritic Ca2+ spike 

discharge, indicating that the dendritic KV3 channels contribute to shaping 

membrane excitability of PC dendrites as well as soma (Midtgaard et al., 1993). In 

spite of lacking backpropagation of Na+ spikes into PC dendrites, membrane 

depolarization passively propagates into proximal and distal dendrites thereby 

generating regenerative Na+ spikes and plateau potential which promotes bursting 

Na+ spikes (de Ruiter et al., 2006; Llinás and Sugimori, 1980). In addition, strong 

depolarization induced by CF activation leads to Ca2+ influx into the dendrite, 

resulting in the Na+ – Ca2+ complex spike responses. The mixed Na+ – Ca2+ spike 

discharge activates dendritic KV3.1/3.3 channels, enabling PC spiking activity to be 

stably maintained with high frequency though preventing Na+ channel inactivation. 

When [Ca2+]i is increased by CF activation, large conductance Ca2+-activated K+

(BK) channels are also activated. Interestingly, co-activation of KV3 and BK 

channels promotes coupling between Na+ and Ca2+ spike discharge via reducing 
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Na+ channel inactivation, resulting in burst output of the cerebellar PCs (McKay 

and Turner, 2004). 

Differently from KV3 family, some other types of K+ channels show distinct 

gating properties, for instance, KV1 and 4 subtypes are activated at subthreshold 

voltage whereas KV3 family shows high voltage-activating and fast deactivating 

voltage dependency (Coetzee et al., 1999). Storm (Storm, 1988) categorized the 

subthreshold-activated K+ channels into 2 types depending on their sensitivity for 

4-AP concentration and on the gating properties, A-type and D-type KV channels, 

governed by KV1.4, KV4.X and KV1.1, 1.2, 1.6, respectively. D-type K+ channels, 

sensitive to dendrotoxin (DTX) and low concentration of 4-AP, are well known for 

determining spike output timing, latency and threshold for AP firing onset and 

firing frequency (Cudmore et al., 2010; Dodson and Forsythe, 2004; Harvey, 2001; 

Hyun et al., 2013; Ovsepian et al., 2013; Storm, 1988). In the cerebellar PCs, large 

depolarization can induce Na+ – Ca2+ coupling in dendritic area leading to slowly 

depolarized potential (SDP), facilitating Na+ burst spike generation. 

Pharmacological inhibition of the D-type currents shortens the SDP and reduces 

latency to Ca2+ spikes (Etzion and Grossman, 2001), suggesting that the D-type 

channels are involved in the regulation of dendritic excitability. Application of 

DTX in cerebellar slices also increases spontaneous rhythmic activity through the 

enhancement of rebound firing, indicating that D-type IK plays a modulatory role in 

defining spiking pattern in PCs (Haghdoust et al., 2007). In addition, KV1.2-

containing K+ channels have been shown to inhibit the spontaneous and non-

specific Ca2+ activity in the PC dendrites to encode motor timing signals. 

Furthermore, these ion channels contribute to the synaptic integration of PF inputs

(Khavandgar et al., 2005). Taken together, low-threshold activated and non-

inactivating D-type K+ channels take a part in the integration and generation of 

finely tuned signals in PCs, thereby signal tuning within physiological appropriate 

ranges. 

Previous studies have shown that A-type K+ channel and D-type K+ channels 
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play similar physiological roles. For example, the A-type IK contributes to spike 

acceleration and determines the firing patterns in the cerebellar PCs (Hounsgaard 

and Midtgaard, 1988; Sacco and Tempia, 2002). Strikingly, this subfamily of K+

channels is absent in PC somata or dissociated PC, suggesting an exclusive 

dendritic expression (and axon fiber). In PC dendrites, KV3 family is also 

expressed and regulates dendritic active properties. Given the distinct gating 

properties of A-type K+ channels from KV3 family, this subfamily of K+ channels is 

implicated in regulating the subthreshold variations of the membrane potential and 

processing the synaptic inputs (Hoffman et al., 1997; Johnston et al., 2000) .

Instead of dendritic Na+ channels, cerebellar PC dendrites express Ca2+ channels 

with high density. Therefore, strong depolarization causes synchronization of the 

passively conducted Na+ spike and Ca2+ spike in dendrites to shape the appropriate 

spiking activity of PCs. The influx of dendritic Ca2+ can activate an ionic flow 

carried by K+, Ca2+-activated K+ channels. These types of channels are classified 

into two; small conductance and large conductance Ca2+-activated K+ channel (SK 

and BK channel, respectively) (Table 3). Both SK and BK channels are also 

implicated in controlling the spiking activity in PCs (Ryu et al., 2017). When the 

dendritic membrane is depolarized by synaptic inputs, local [Ca2+]i is elevated 

through P/Q type Ca2+ channels, leading to the activation of the SK channels 

(Womack et al., 2004). The SK channels are expressed in PC somata as well as in 

dendrites. Interestingly, dendrosomatic electrical coupling is governed by SK2 

channels in PC soma and dendrite (Womack and Khodakhah, 2003). In addition, 

somatic and dendritic SK channels show distinct roles in regulating PC activity. SK 

channels in soma set the maximal level of PC firing frequency, and on the other 

hand, dendritic SK channels determine the extent of dendritic regions contributing 

to the firing rates of PCs. The other types of Ca2+-activated K+ channel, BK 

channels are also involved in the spiking activity in PCs. As I described above, co-

activity of KV3 and BK channels modulates dendritic Na+ – Ca2+ coupling burst 

elicited by CF inputs through suppression of Na+ channel inactivation (McKay and 
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Turner, 2004). Both SK and BK channels are activated by Ca2+ entering through 

P/Q type Ca2+ channels and regulate PC firing patterns. However, these channels 

differently contribute to firing behavior in PCs. SK channels have an impact on the 

setting intrinsic firing frequency (Womack and Khodakhah, 2003) whereas BK 

channels are involved in the regulation of AP waveform and presumably climbing 

fiber responses (Edgerton and Reinhart, 2003; McKay and Turner, 2004). Recent 

studies have shown that CF-evoked pause of spontaneous firing and generation of 

burst firing in PCs require BK channels coupled to Ca2+ channels (Irie and Trussell, 

2017; Jin et al., 2017). Because SK and BK channels in PCs play a critical role in 

the regulation of firing behavior, dysfunction of these channels has been implicated 

in cerebellar disease such as ataxia. Mutations in P/Q type Ca2+ channels resulted 

in the decrease in the precision of PC pacemaking activity and perfusion of 1-

ethyl-2-benzimidazolinone (EBIO), KCa activator improves the regularity of 

spontaneous firing and motor performance (Walter et al., 2006). In addition, 

dysregulation of SK and/or BK channels has been reported in various genetic 

ataxia animal models (Dell'Orco et al., 2015; Egorova et al., 2016; Sausbier et al., 

2004; Walter et al., 2006), suggesting that modulation of SK and BK channels may 

be therapeutic targets for cerebella disease and motor dysfunction. 
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NaV1.6 (Resurgent Na+ channel)
Expression Dendrite, Node of ranvier
Gating 
properties

· Sensitivity for tetrodotoxin
· Evoked by a step repolarization to -30 mV 
· Maximum current at Vm = -30 – -40 mV
· V1/2 activation = -40 mV, rising time = 5 – 6 ms 
· V1/2 inactivation = -62 mV (low Na+), -53 mV (high Na+), tdecay = 20 

– 30 ms
Impact on 
excitability

· Reopening NaV when the membrane potential is repolarized to 
approximately -40 mV 

· Shortens the refractory period between action potentials, high-
frequency firing appears to be facilitated

Ablation · Reduced spontaneous firing rates
· Increased spike adaptation
· Cerebellar ataxia & Dysfunction of motor coordination
· Impairment of water maze and delayed eyeblink conditioning

Table 1. Active properties of resurgent Na+ channels in the cerebellar PCs and their physiological 

and pathological roles
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KV1.4 & KV4 (A-type K+ channel)
Expression Dendrite
Gating 
properties

· Sensitivity for high concentration of 4-AP about 1-10 mM 
(insensitive for DTX)

· Fast-activating and inactivating channel
· Activated at subthreshold voltage around -60 mV
· V1/2 activation = -24.9 mV; V1/2 inactivation = -69.2 mV
· tdeactivation at -70 mV : 3- 4 ms

Impact on 
excitability

· Acceleration of AP spike
· Firing frequency firing pattern (rhythmic Na-Ca spike burst)
· Subthreshold variation of membrane properties

Impact on 
plasticity 
and 
learning

· Eyeblink conditioning derives dendritic excitability underlying 
downregulation of A-type K+ channel

KV1.1, KV1.2, KV1.6 (D-type K+ channel)
Expression Dendrite
Gating 
properties

· Sensitivity for low concentration of 4-AP about 0.2 - 1 mM and 
DTX (2.8 - 25 nM)

· Low-threshold and non-inactivating channel
· activated at -40 – -50 mV
· V1/2 activation = -20 – -30 mV (KV1.2: -5 – 5 mV)
· tdeactivation = 14 – 23 ms

Impact on 
excitability

· Spike frequency and adaption, dendritic excitability
· Amplitude and duration of rebound depolarization
· Spontaneous bursts

KV3.3 & KV3.4
Expression Soma and Dendrite
Gating 
properties

· Sensitivity for TEA
· Rapid activating at suprathreshold and rapidly inactivating channel
· Peak amplitude at 30 mV from -70 mV
· V1/2 activation = -23.0 mV, tdecay = 0.66 ms

Impact on 
excitability

· Repolarize the membrane potential and maintain repetitive firing
· Dendritic burst firing through Ca2+- Na+ coupling

Impact on 
plasticity 
and 
learning

· Deletion of KV3.1/3.3 causes ataxic behavior

Table 2. Active properties of voltage-gated K+ channels in the cerebellar PCs and their physiological 

and pathological roles
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SK channel (SK2 subfamily)
Expression Soma and Dendrite
Gating 
properties

· Voltage-independent and Ca2+dependent channel
· Activated by Ca2+ influx through P/Q type Ca2+ channel
· Sensitivity for apamin (63 pM)

Impact on 
excitability

· Regulation of firing frequency
· Shaping fast afterhyperpolarization (AHP) amplitude 
· Climbing fiber-induced spike pause duration
· Activity-dependent modulation of climbing fiber-evoked EPSP 

amplitude and dendritic local Ca2+ transient
Impact on 
plasticity and 
learning

· Activity-dependent downregulation of SK channel by eyeblink 
conditioning

· Inhibition of SK channel prevents LTP-IE induction
BK channel
Expression Soma and Dendrite
Gating 
properties

· Voltage- and Ca2+-dependent
· V1/2 activation = 50 mV at 4µM [Ca2+] to -30 mV at 100µM  [Ca2+]

Impact on 
excitability

· Generation of burst firing through cooperating with KV3 channels in 
dendrite

· Climbing fiber-evoked spike pause and burst firing coupled to Ca2+

channel
· Shaping medium or slow component of AHP

Impact on 
plasticity and 
learning

· Dysfunction of SK and BK channels is related to cerebellar ataxia

Table 3. Active properties of Ca2+-activated K+ channels in the cerebellar PCs and their physiological 

and pathological roles.
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1.2 Activity-dependent plasticity of intrinsic. 

excitability through ion channel modulation

1.2.1 Activity- and experience-dependent intrinsic plasticity and ion channels

Many theories have implicated that the potentiation or depression of the synaptic 

transmission at the PF-PC synapses and non-synaptic intrinsic plasticity are 

required for cerebellar-dependent learning and memory. Intriguingly, the intrinsic 

plasticity requires an activity-dependent modulation of ion channels (figure 2) 

(Belmeguenai et al., 2010; Hyun et al., 2013; 2015; Ohtsuki et al., 2012; Shim et 

al., 2017; 2016). The ion channels in the cerebellar PCs are regulated by various 

factors such as an activation of metabotropic receptor or synaptic plasticity-related 

intracellular signaling (Belmeguenai et al., 2010; Shim et al., 2016; 2017; Smith 

and Otis, 2003). When the chronic changes in network activity occur, the neuronal 

activity is homeostatically regulated in order to maintain the stability of network 

activity (Cudmore and Turrigiano, 2004; Nataraj et al., 2010; Rutherford et al., 

1997; Turrigiano et al., 1994). Prolonged application of tetrodotoxin (TTX) to 

organotypic cultures of cerebellar slices exhibits downregulation of the intrinsic 

excitability (Shim et al., 2016). This homeostatic intrinsic plasticity is derived from 

an augmentation of hyperpolarization-activated cyclic nucleotide-gated (HCN) 

channel current (Ih) in the cerebellar PCs. Interestingly, the activity-dependent 

upregulation of Ih in PCs requires an agonist-independent activity of metabotropic 

glutamate receptor 1 (mGluR1) and its GS-coupled downstream of PKA signaling. 

Ablation of HCN channels in PCs exclusively disrupts the integration of inhibitory 

synaptic inputs and bi-stability of PC firing behavior (Nolan et al., 2003). 

Furthermore, HCN channels regulate a balance between excitation and inhibition 

through the integration of glutamatergic and GABAergic transmission and firing 

stability, thereby promoting memory formation at the late stages of cerebellar 

learning (Rinaldi et al., 2013). 
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Recently, plasticity of the intrinsic excitability of the cerebellar PCs has been 

found to be accompanied by the synaptic plasticity (Belmeguenai et al., 2010; 

Shim et al., 2017; Yang and Santamaria, 2016). In fact, PF-PC synaptic LTP 

derives the long-term potentiation of intrinsic excitability (LTP-IE). LTP-IE 

requires the downregulation of SK2 channels in dendritic area. The SK channel-

dependent intrinsic plasticity may play a role in shaping the cerebellar PC output to 

adjust the impact of synaptic inputs within optimal ranges. The LTP-IE dampens 

the impact of PF inputs on the firing behavior of PCs, enabling effects of non-

potentiated, weaker synaptic inputs on cellular output signal to minimize 

(Belmeguenai et al., 2010). Interestingly, although local dendritic Ca2+ signaling is 

enhanced after formation of LTP-IE, prior induction of intrinsic plasticity prevents 

subsequent induction of synaptic LTP in PCs. Therefore, the role of intrinsic 

excitability in signal processing in the PCs is quite distinct from other types of 

neurons such as hippocampal pyramidal neurons or cortical neurons because 

enhanced Ca2+ signaling has been regarded as enlargements of synaptic inputs and 

increases in possibility of subsequent plasticity induction (Ramakers and Storm, 

2002; Watanabe et al., 2002). Considering that one important role of SK channels 

is setting the firing frequency in physiological limits, SK channel-mediated LTP-IE 

may ensure that excitatory drive stays within the physiological limits and prevent 

non-specific subsequent synaptic plasticity induction thereby stabilizing and 

maximizing the information processing after learning. 

In addition to the intrinsic plasticity followed by induction of LTP, the activity-

dependent downregulation of PF-PC synaptic function accompanies the intrinsic 

plasticity. Yang et al. (Yang and Santamaria, 2016)  described that the potentiation 

of excitability in PCs is found following an induction of PF-PC LTD through 

downregulation of HCN channel conductance. Many observations have shown that 

the associative eyeblink conditioning training exerts modification of synaptic 

strength (PF-PC LTD) as well as intrinsic properties of the cerebellar PCs 

(potentiation of excitability) (Fiala et al., 1996; Hauge et al., 1998). Those 
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described that the activity-dependent plasticity of intrinsic excitability may be 

homeostatically regulated which is similar to hippocampal intrinsic plasticity 

(Brager and Johnston, 2007; Fan et al., 2005). Alternatively, Shim et al. (Shim et 

al., 2017) demonstrated that the intrinsic excitability is found to be decreased 

following induction of synaptic LTD. This result is parallel with the previous 

observation in which population spiking activity is attenuated by synaptic LTD 

induction (Lev-Ram et al., 2003). Those contradictory results may be derived from 

different experimental conditions: Yang et al. (Yang and Santamaria, 2016)

delivered PF stimuli with somatic depolarization instead of CF activation whereas 

Shim et al. (Shim et al., 2017) synaptically induced synaptic plasticity by 

delivering simultaneous and conjunctive stimulation of PF and CF within specific 

time-window. Behavioral training could induce neural plasticity through divergent 

pathways. Thus, the intrinsic plasticity following synaptic depression may be 

presumably modulated in various aspects including potentiation or depression of 

firing rates, responsiveness of synaptic inputs or patterns of spiking activity to 

achieve maximizing the information storage in the cerebellar circuits. 

Several observations have shown that associative eyeblink conditioning 

accompanies the experience- and use-dependent plasticity in the cerebellar cortex 

(Halverson et al., 2015; Jirenhed et al., 2017; Johansson et al., 2014; Schreurs et al., 

1998; 1997). The experience-dependent plasticity of dendritic membrane 

excitability can be maintained 1 month after conditioning. Recently, it was shown 

that the delayed eyeblink conditioning increases intrinsic excitability and changes 

in AP waveforms, presumably derived from SK channel down-regulation (Titley et 

al., 2018). There are several evidence supporting that the memory trace in PCs is 

not just an increase or a decrease in firing rates. In fact, PC activity reflects 

adaptively timed activity pattern with intrinsic cellular mechanisms rather than a 

temporal pattern of excitatory or inhibitory synaptic inputs (Halverson et al., 2015; 

Jirenhed et al., 2017; Johansson et al., 2014). Taken together, experience-dependent 

modulation of PC intrinsic excitability is another form of memory engram for the 



20

cerebellar-dependent motor learning. 

1.2.2 Possible mechanisms for LTD-IE

Since Ito hypothesized that synaptic LTD between PF-PC synapses is the principal 

elements for the cerebellar-dependent motor learning (Ito, 1982), much of 

investigation has been extensively focused on the cellular mechanism of the 

modification of synaptic function to account memory storage in the cerebellum and 

motor control. Unlikely to synaptic plasticity or LTP-IE, the underlying mechanism 

for LTD-IE has less been elucidated. Previous reports described that the intrinsic 

plasticity and synaptic plasticity indeed share intracellular signaling including 

protein phosphatase and/or protein kinases (figure 2). Several signaling molecules 

are required to induce PF-PC LTD such as protein kinase C (PKC) and CaMKII. In 

the hippocampus, HCN channel activity is mediated by PKC signaling during 

mGluR-dependent plasticity induction, which results in intrinsic plasticity. 

However, mGluR-PKC signaling suppresses Ih, insisting that the LTD-IE in the 

cerebellar PCs may not be reflected by this signaling cascade. CaMKII is also 

known for a crucial element of synaptic and intrinsic plasticity. In the VN neurons, 

the activity-dependent plasticity of excitability requires bidirectional modulation of 

BK channels mediated by the balance between PKC and CaMKII activity 

(McElvain et al., 2010; Nelson et al., 2005; Smith et al., 2002; van Welie and Lac, 

2011). The cerebellar PF-PC synaptic LTD recruits CaMKII signaling which 

increases open probability of BK channels, thus this type of KCa may be one 

possible candidate for the activity-dependent intrinsic plasticity in the cerebellar 

PCs. Since the cellular and molecular basis for LTD-IE of the cerebellar PCs 

remain unclear, the detailed mechanisms for the intrinsic plasticity should be 

further investigated.  

Intrinsic plasticity plays a complementary role in integrating synaptic inputs and 

generating cellular output signal (Brager and Johnston, 2007; Fan et al., 2005; 

Grasselli et al., 2016; Mahon and Charpier, 2012; Nataraj et al., 2010; Shim et al., 
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2017). Synaptic-driven potentiation or depression of excitability show the same

polarity with the corresponding direction of synaptic plasticity (Belmeguenai et al., 

2010; Shim et al., 2017), indicating that the modifications in synaptic strength are 

synergistically reflected into the final net output of PCs following plasticity. When 

the synaptic weight is strengthened, the PC output signal is more potentiated, not 

compensated by intrinsic properties. In addition, cerebellar PC intrinsic plasticity 

occurs in the branch-dependent manner (Ohtsuki et al., 2012), indicating that 

synaptic inputs from specific-branches are potentiated by increased membrane 

excitability limited in conditioned dendritic branches. Otherwise, the plastic 

changes in synaptic transmission might be contaminated by global changes of 

excitability and less reflected into the neuronal firing output signal.  

1.2.3 Upside down: to what extent does bidirectional intrinsic plasticity in the 

cerebellar dependent-motor learning do?

What is the physiological consequence of the bidirectional modulation of intrinsic 

excitability following plasticity induction or behavioral training? Vestibulo-ocular 

reflex (VOR) and optokinetic response (OKR) is a representative behavioral 

paradigm of cerebellar-dependent motor learning. The VOR gain, the ratio of 

vestibular stimuli to adaptive eye-movement, can be increased or decreased 

depending on the learning paradigm. Boyden and Raymond  (Boyden et al., 2006)

reported that the VOR gain-up and -down learning are selectively engaged by the 

aspects of synaptic plasticity. There was a supporting evidence of this view in 

which injection of mGluR1 antagonist into the cerebellar flocculus, the core area 

for VOR learning in the cerebellum, suppresses gain-up learning whereas gain-

down learning is not affected by either agonist and antagonist of mGluR1 (Titley et 

al., 2010). In addition, an ultrastructural observation shows a reduction of surface 

AMPA receptor following the adaptive eye-movement learning, suggesting that the 

cerebellar LTD would occur during the motor learning (Wang et al., 2014). Most 

recently, it was revealed that the adaptive eye-movement training is associated with 
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modifications of synaptic transmission at the PF-PC synapses (Inoshita and Hirano, 

2018), indicating the prominent roles of bidirectional synaptic plasticity at PF-PC 

synapses in the motor learning. 

In contrast to Ito’s cerebellar LTD theory, many studies have shown that the PF-

PC LTD may not be a sufficient cellular mechanism underlying motor learnings in 

spite of abundant studies describing the critical roles of PF-PC LTD in VOR 

learning (Ito, 2013; Jörntell and Hansel, 2006; Ke et al., 2009; Schonewille et al., 

2010; 2011; Wulff et al., 2009). (Miles and Lisberger, 1981b; 1981a) proposed an 

alternative mechanism for motor learning, which suggests principal roles of VN 

neurons in the motor memory storage. There is, however, accumulating evidence 

showing that motor memory storage requires neuronal plasticity at multiple sites 

including neurons in the cerebellar cortex and VN (Boyden et al., 2004; Gao et al., 

2012). Recently, a computational model for motor memory storage provided 

insights into the mechanism by which motor memory traces are seemingly 

transferred from cortical neurons (PC) to sub-cortical region (VN) (Clopath et al., 

2014; Yamazaki and Nagao, 2012)Cumulative experimental data has shown that 

encoding the adaptive motor memory in the cerebellar cortex occurs within a few 

hours  and the critical time window for memory transfer is approximately 2.5 – 4 

hours after training (Kassardjian et al., 2005; Okamoto et al., 2011a). Interestingly, 

(Ito, 2013) recently suggested that an early adaption is dependent on the cerebellar 

cortical activity and the late phase of adaptation is accompanied by plasticity in the 

VN neurons. In parallel, the changes in the population spiking activity in VN 

neurons are manifested a day after training whereas there is no significant 

alteration of VN activity within an hour after training (Shutoh et al., 2006). Until 

recently, this prediction for memory consolidation mechanism has not been 

investigated in a cellular and circuit level. Recent papers suggested that the 

intrinsic plasticity of the PCs might be the mechanism of the memory transfer from 

cerebellar cortex to sub-cortical areas (Ryu et al., 2017; Shim et al., 2017). 

Collectively, computational implications and experimental observations have both 
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agreed to Ito’s recent suggestion in which PF-PC synaptic plasticity may take part 

in the memory acquisition and plasticity in MF-VN synapses may be involved in 

long-term memory storage beyond two long-lasting conflicts for VOR memory: 

Marr-Albus-Ito’s cerebellar LTD hypothesis vs. Miles and Lisberger’ MF-VN 

synaptic plasticity theory. 

(Belmeguenai et al., 2010) and (Shim et al., 2017) insisted that the intrinsic 

plasticity is modulated by synaptic activity pattern-dependent manner and this 

bidirectionality may function as an amplifier of the synaptic modification, enabling 

to transduce the finely tuned signal into the relay neurons such as neurons in DCN 

or VN. Given that the neural plasticity in the neurons in the cerebellar cortex and 

VN shows bidirectionality, the intrinsic plasticity would be also selectively 

engaged by certain forms of learning paradigm and the synergies with synaptic 

modulation may complete the scenario for the memory storage in the motor 

circuitry including cerebellum and VN.  
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Figure 2. Schematic illustration for molecular signal cascade for synaptic and intrinsic plasticity 

in the cerebellar PCs. Intrinsic plasticity indeed shares intracellular signal cascade for synaptic 

plasticity, in which LTP-IE requires activation of phosphatases such as PP1 and PP2B whereas LTD-

IE is dependent on PKC activation. In contrast to abundant studies describing the cellular 

mechanisms and behavioral outcomes of LTP-IE, detailed mechanisms of LTD-IE and its behavioral 

impact are still elusive although synaptic LTD has long been considered as cellular basis for 

cerebellar motor learning. In this review, BK channels are proposed for one plausible ion channels 

involved in LTD-IE. CaMKII activation is found to be involved in upregulation of BK channel 

activity (green dot line) in the VN neurons.  
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1.3 The further implication of intrinsic plasticity in 

the. memory circuits

There are many unanswered questions to be solved in terms of the intrinsic 

plasticity and behavior. In the classical view of the intrinsic plasticity, changes in 

excitability have been considered to play pivotal roles in promoting subsequent 

induction of synaptic plasticity through the up- or downregulation of dendritic ion 

channels. Thus, the intrinsic plasticity of neurons has been thought as simply a 

supportive mechanism for activity-dependent modification of synaptic function 

although the information is conveyed by the AP spikes between neurons. However, 

some of the suggestions have described that activity-dependent modifications of 

ion channels can also undergo experience-dependent long-term plasticity beyond 

changes in synaptic weight (Crestani et al., 2018; Gao et al., 2012; Kim and Linden, 

2007; Lisman et al., 2018; Park et al., 2016; Zhang and Linden, 2003; Zhou et al., 

2009). Furthermore, cumulative evidence has shown that memory trace should 

move from one brain region to another brain region to consolidate the long-term 

memory (Frankland and Bontempi, 2005; Nagao et al., 2013; Okamoto et al., 

2011a; Preston and Eichenbaum, 2013; Restivo et al., 2009; Squire and Wixted, 

2011; Wang et al., 2014)Intrinsic plasticity may be one plausible mechanism of 

memory transfer via modulating the strength of connectivity between memory 

circuits. 

  Since the majority of researches have been performed to elucidate the 

mechanisms of cerebellar memory formation by using in-vitro cell lines or brain 

slices, the memory circuits should be assumed by using mathematical models that 

are made from biochemical observations, physiological recordings and behavioral 

assessments. Nevertheless, there has been an incongruity between theoretical 

models and actual experimental data which has to be reconciled. Recently, 

technical advances have enabled neuroscientists to overcome the experimental 



26

limitations and expand the research scope from modifications in individual neurons 

to macroscopic alteration involved in shaping the memory in vivo. Observations of 

neuronal ensemble activity from freely moving animals provide insights into how 

the information is processed within given local circuits. In learning period, neurons 

that show ensemble activity may encode the similar information and these neurons 

will be wired to fire together so that the connectivity between them will be 

strengthened. Indeed, engram cells who store memory show higher excitability 

than others, indicating that forming stable ensemble may reflect the induction of 

intrinsic plasticity in the neurons (Lisman et al., 2018). Collectively, experience-

dependent modulation of neuronal excitability determines the net out signals in 

neurons and generates synchronized population activity to project the information 

into another brain area. 

In the neural circuitry for the cerebellar-dependent motor learning, it is unclear 

how the information is transferred to the sub-cortical area including DCN and VN 

neurons from cerebellar PCs is unclear. In the hippocampus, electrophysiological 

recording and optogenetic manipulation of neural circuits have revealed that the 

specific frequency of an oscillatory neural activity, called sharp wave ripple (SWR), 

involves in memory transfer from the hippocampus to cortex (BuzsÁk, 1998; Carr 

et al., 2011; Poo et al., 2016; Tang and Jadhav, 2018). During learning, an 

interplay between synaptic and intrinsic plasticity increases the number of SWR 

replay events and thereby consolidating the long-term memory. Although the 

oscillatory activity of the cerebellum has been reported, detailed mechanisms and 

its physiological roles in formation of memory engram in the motor learning 

circuits have yet to be investigated. During VOR learning, spike discharge in the 

cerebellar PCs shows a sinusoidal pattern in response to vestibular head movement 

(Fukushima et al., 1993; 1996; Mizukoshi et al., 1983). Interestingly, the phase of 

the oscillatory pattern of PC firing activity is altered after the training session, 

indicating that the response timing to sensory stimuli may be endowed with plastic 

changes. Therefore, the intrinsic plasticity of PCs may modify the patterns to 
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integrate the synaptic inputs and to generate the spike discharge in response to 

sensory information. 

Since memory is stored throughout the brain region, synergistic modulation of 

circuit dynamics might play critical roles. Various cutting-edge technologies enable 

to monitor the activity of large neuronal population and to manipulate the strength 

of neural circuits and corresponding behavioral outcomes. For example, recent 

studies using wide-field and high resolution in-vivo two-photon Ca2+ imaging 

approaches from behaving animals revealed the groundbreaking finding of the how 

the cerebellar granule cells process the sensory information (Giovannucci et al., 

2017; Wagner et al., 2017). These results from in vivo experiments lead us to re-

evaluate the previously established hypothesis of the intrinsic excitability based on 

the results largely obtained from in vitro experiments. Many studies suggest that 

the PC modulates the membrane potential of the VN neurons by providing a tonic 

inhibition or strong hyperpolarization to induce rebound burst firing of neurons in 

DCN or VN. Although plasticity in both cerebellar cortex and VN play roles in the 

VOR memory storage, the neural plasticity occurs at the distinct time window 

(Kassardjian et al., 2005; Okamoto et al., 2011a; Shutoh et al., 2006; Yamazaki et 

al., 2015). These observations have suggested the serial relationship of neural 

plasticity between the cerebellar cortex and VN, it is, however, still elusive how the 

memory is transferred from cerebellar cortex to sub-cortical area. Cell type- and 

engram cell-specific tagging and manipulation with a high temporal and spatial 

resolution may help elucidating the role of PC output modulation during VOR 

training and memory transfer period. The modular structure of the cerebellar cortex 

has been considered as an unit for an information processing, thus ensemble 

activity of the cerebellar PCs may provide strong instructive signals to VN neurons 

(Gao et al., 2016). Investigation from freely moving awake animals may give us 

the insight into the circuit mechanisms for sensory information processing and 

memory storage in the cerebellar motor learning circuits.  
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Chapter 2

Type 1 metabotropic glutamate receptor 

mediates homeostatic control of intrinsic 

excitability through hyperpolarization-activated 

current in cerebellar Purkinje cells
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Introduction

Central nervous system is highly endowed with plasticity in an activity-dependent 

fashion. Long-lasting alteration of the neural activity causes plastic changes in 

neuronal activity in the given circuits to keep the optimal ranges of network 

activity, this change is called as homeostatic plasticity. Of interest, the homeostatic 

intrinsic plasticity maintains the stability of neuronal network activity against 

environmental or pathological destabilization, which includes the modulation of 

post-synaptic neurotransmitter receptors and the differential expression of ion 

channel genes (Desai et al., 1999; Naudé et al., 2013). It therefore serves as a basis 

for the neural network to achieve an optimal activity range. Intrinsic cellular 

excitability, in particular, determines the total output of a neuron by integrating 

synaptic inputs and consecutively translating them into the firing of an action 

potential (AP). Thus, homeostatic intrinsic excitability plays a pivotal role in 

maintaining the network balance and maximizing information storage by tuning the 

average firing rate through the modulation of multiple neurotransmitter receptors 

and voltage-dependent channels (Stemmler and Koch, 1999). Homeostatic intrinsic 

plasticity is a fascinating model on the plastic changes in neural circuits in both 

physiological and pathological conditions (Beraneck and Idoux, 2012; Lambo and 

Turrigiano, 2013; O'Leary et al., 2014). However, much of the detailed cellular and 

molecular basis for these regulatory mechanisms are largely unknown. 

Type 1 metabotropic glutamate receptor (mGluR1) is involved in short-term and 

long-term plasticity of the neurons. Interestingly, the mGluR1 has been found to be 

required either Hebbian or homeostatic synaptic plasticity using similar 

intracellular signaling cascades including calcium influx as well as induction of the 

immediate early gene Homer1a, Arc and eukaryotic elongation factor2 (eEF2) (Hu 

et al., 2010; Shepherd et al., 2006; Sutton et al., 2007). In addition, mGluR-

dependent synaptic plasticity also can lead to change the intrinsic excitability 
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(Brager and Johnston, 2007). Moreover, mGluR was found to be involved in 

homeostatic intrinsic plasticity among 873 novel chronic activity-regulated 

transcripts (Lee et al., 2015). Given the note that there are mutual intracellular 

signalings for hebbian and homeostatic scaling, homeostatic regulation of intrinsic 

excitability could share a signal cascade with intrinsic plasticity following the 

Hebbian rule. Therefore, I investigated whether mGluR1s contribute to 

homeostatic intrinsic plasticity. To test this, I prepared organotypic slice cultures of 

rat cerebellum to mimic the physiological neuronal connection in the cerebellar 

cortex and electrophysiological properties were observed by whole-cell patch 

clamp technique. The intrinsic excitability of the cerebellar PCs was decreased 

through the upregulation of hyperpolarization-activated current (Ih) after 2-days of 

chronic activity deprivation by applying 1 µM of tetrodotoxin (TTX), Na+ channel 

blocker. Interestingly, homeostatic suppression of the PC excitability was 

prevented by co-application of mGluR1 inverse agonist, suggesting that agonist-

independent constitutive activity of the mGluR1 may be required for homeostatic 

regulation of intrinsic excitability. The homeostatic upregulation of Ih was also 

abolished by co-application of mGluR1 inverse agonist with activity-deprivation. 

These observations indicate that homeostatic intrinsic excitability in cerebellar PCs 

is mediated by the agonist-independent activity of the mGluR1 through activity-

dependent regulation of Ih.
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Material and Method

1. Animals

All animals and experimental procedure described in this dissertation were 

approved by the Institution’s Animal Care and Use Committee of Seoul National 

University College of Medicine and were in accordance with the ethical standards 

of the institutional research committee.

2. Slice preparation

Brain slices were obtained from postnatal days 10 male Sprague Dawley rats. After 

brain dissection, 250 μm cerebellar sagittal slices were made with a vibrating tissue 

slicer (Microm HM 650V) in ice-cold standard artificial cerebrospinal fluid 

solution (aCSF): (in mM) 124 NaCl, 2.5 KCl, 1 NaH2PO4, 1.3 MgCl2, 2.5 CaCl2, 

26.2 NaHCO3 and 20 D-glucose, bubbled with 95% O2, 5% CO2, pH 7.4). Sagittal 

planes of cerebellar slices were transferred onto membrane of culture insert (pore 

size 0.4 µm) in 6-well-plastic plates. Culture medium (1 ml), composed of 50% 

basal medium with Earle’s salts, 25% HBSS, 25% Heat-inactivated horse serum, 1% 

L-glutaMaxTM-1 and 5 mg/ml glucose, was added into each well below the 

culture inserts. Cultured slices were incubated at 35°C in an atmosphere of 

humidified 5% CO2, and half of medium was replaced every 2-3 days.

3. Western blot analysis

For western blot, cultured slices were homogenized with homogenizing buffer (1% 

Triton X100, 0.1% SDS, 50 mM Tris-HCl, 0.3 M sucrose, 5 mM EDTA with 

protease inhibitor cocktail and pH 7.5) on ice. Lysates were boiled for 2 min at 

60°C and loaded by 4-12% gradient SDS-PAGE gel. Separated proteins were 

transferred to PVDF membrane. The membrane blocked with 5% skim milk in 

TBS-T (24.7 mM Tris, 137 mM NaCl, 2.7 mM KCl and 1% Tween 20, pH 7.4) for 

1 h and incubated with Anti-mGlu1 receptor α (anti-mouse, 1:2000, BD 

Bioscience), Anti-β-actin (anti-mouse, 1:3000, Sigma) for additional 1 h. After 

washing with TBS-T, the membrane was incubated overnight at 4°C with 
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horseradish-peroxidase-conjugated appropriate goat IgG (1:2000, Stressgen). The 

immunoblots were developed with enhanced chemiluminescence (ECL) solution 

(Invitrogen). For quantifying the band, Quantity One (Bio-Rad) was used.

4. Electrophysiology

Whole-cell patch clamp configurations were made from 10-12 days in vitro (DIV) 

slices. Slices were put onto a submerged recording chamber on the stage of 

Olympus microscope (BX50WI, Japan) and perfused with aCSF at 32°C, and kept 

in place with a nylon-strung platinum anchor. All recordings were performed using 

multiclamp 700B patch-clamp amplifier (Axon Instruments) with a sampling 

frequency of 20 kHz and signals were filtered at 2 kHz. For current clamp 

experiments, standard aCSF was used as extracellular solution described above; for 

voltage clamp experiments to isolate Ih, slices were incubated with extracellular 

solution composed of (in mM) 115 NaCl, 1.2 NaH2PO4, 5 KCl, 2 CaCl2, 1 MgCl2, 

25 NaHCO3, 20 glucose, 1 BaCl2, 5 tetraethyl ammonium (TEA), 1 4-

aminopyrimidine (4-AP), 1 NiCl2, 0.1 CdCl2, 0.01 NBQX, 0.1 Picrotoxin and 

0.0005 TTX, bubbled with 90% O2, 5% CO2, pH 7.4 (Nolan et al. 2003). Both 

excitatory and inhibitory synaptic inputs were all blocked by 10 μM 2,3-

dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) and 100 

μM picrotoxin, respectively. Patch pipettes (3-4 MΩ) were borosilicate glass and 

filled with internal solution containing (in mM), 9 KCl, 10 KOH, 120 K-gluconate, 

3.48 MgCl2, 10 HEPES, 4 NaCl, 4 Na2ATP, 0.4 Na3GTP, and 17.5 sucrose, pH 

adjusted to 7.25. Electrophysiological recordings were started 5 min after obtaining 

the whole-cell configuration to let the internal solution diffuse enough into the 

cytosol.

5. Data acquisition and analysis

  All data were acquired by Clampex software (Molecular Devices) and analyzed 

by IgorPro 8.1 (Wavemetrics). Otherwise I note, a cell was clamped at -70 mV 
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with current injection and neurons with the injection current below -500 pA were 

discarded from this analysis. To evaluate the PC excitability, a series of current 

steps of 1s duration ranging from +100 pA to +500 pA in 100 pA increments with a 

step interval of 4.5 s was applied to the cell from the membrane potential of -70 

mV. Input resistance (Rin) was measured by injecting brief current (-200 pA or 

+100 pA; 100 ms) and was determined from the negative peak voltage deflection 

during current injection. Voltage threshold (Vthreshold) of AP was defined as the 

voltage where the dV/dt first exceeds 30-60 mV/ms. Membrane capacitance (Cm) 

was calculated by Cm = τ/R, at which the time constant (τ) and series resistance (RS) 

were calculated fitting a single exponentials to the voltage responses of the test 

pulse (-5 mV). Resting membrane potential (Vm) was measured when injected 

current was absent in current clamp mode with 1 µM TTX to prevent spontaneous 

AP firing. The AP waveform, including AP amplitude, half-width, 10-90% rise 

time and first spike latency was analyzed from the first evoked AP of the firing 

train when +400 pA of the depolarizing current was injected. AP amplitude was 

determined as difference between peak amplitude and the voltage threshold of the 

AP. Half-width and 10-90% rise time were the time duration at the half-maximal 

voltage, elevation time from 10% to 90% of the maximal AP voltage, respectively. 

The first spike latency was defined as the delay from beginning point of 

depolarizing current injection to the voltage threshold where the upstroke phase of 

the first spike was initiated. Fast afterhyperpolarization (fAHP) and medium 

afterhyperpolarization (mAHP) were measured by calculating the difference 

between voltage threshold and hyperpolarized negative peak voltage after the first 

AP or depolarizing square current injection, respectively.  

The amount of voltage sag determined as difference between the maximum and 

steady state voltage during the hyperpolarizing current injection from -100 pA to -

600 pA with increment of -100 pA for 1 s with a step interval of 5 s. This sag 

amplitude was converted to sag percent, representing percentage change between 

two states. [(VMax - VSteady state)/VMax] X 100. For Ih current isolation in voltage 
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clamp, membrane potential was held at – 45 mV and step voltage was applied from 

-50 mV to -120 mV with increments of -5 mV of 2.5 s. 

Data are presented as mean ± SEM and statistical evaluations were performed 

using two sample t-test, two-way repetitive measured ANOVA with post hoc

Tukey’s test and Mann-Whitney U test by Origin 8.5 and SigmaPlot 12.0 software, 

and the normal distribution was verified.
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Results

2.1 Chronic activity-deprivation reduces intrinsic excitability of the cerebellar

Purkinje cells

To set up the chronic activity-deprivation model in the cerebellar cortex, I made 

organotypic cerebellar cultures rather than primary culture neurons to better 

preserve in vivo circuits. Cerebellar network activity was deprived by applying 1 

µM of TTX for 2 days in order to investigate homeostatic intrinsic plasticity in 

cerebellar PCs (fig. 3A). Cultured slices were used at least a week after preparation. 

To measure the PC excitability, square-wised brief current step was injected into 

the PC soma from the membrane potential of about -70 mV under the presence of 

excitatory and inhibitory synaptic blockers (1 s, from +100 pA to +500 pA with an 

increment of 100 pA, step interval 4.5 s, see Materials and Methods). Depolarized-

evoked AP firing rates of control and TTX-treated (deprived) PCs were compared. 

Activity-deprivation reduced the intrinsic excitability of the PCs over most ranges 

of the current injection (fig. 3B, firing frequency (Hz): control = 31.2 ± 1.7 at 400 

pA injection, n = 24; deprived = 20.4 ± 1.9, n = 20; control vs. deprived: p<0.001, 

two way RM ANOVA). The active properties of the neurons were analyzed from 

the first spike of the evoked spike train when +400 pA current was injected (fig. 3C

and D, Table 4). Deprived PCs showed higher current threshold (Ithreshold) for 

evoking spikes whereas Vthreshold did not change (fig. 3C and D, Ithreshold (pA): 

control = 200.6 ± 10.7; deprived = 235 ± 8.2; control vs. deprived: p<0.05; Vthreshold

(mV): control = -40.2 ± 1.0; deprived = -40.3 ± 1.0; control vs. deprived: p = 0.95). 

The passive membrane properties Cm and Vm were not altered by activity-

deprivation [Table 4, Cm (pF): control = 242.6 ± 17.2; deprived = 259.1 ± 10.4; 

control vs. deprived: p = 0.4, Vm (mV): control = -52.9 ± 1.2; deprived = -50.6 ± 

1.4; control vs. deprived: p = 0.2]. To measure input resistance, voltage response 

was measured when brief hyperpolarizing and subthreshold depolarizing current (-

200 pA and +100 pA) were injected in the current clamp mode (fig. 3E). Input 
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resistance was significantly reduced in deprived neurons resulting in less response 

to a current inputs of voltage deflection (control = 85.8 ± 5.4 MΩ; deprived = 59.2 

± 4.5 MΩ; control vs. deprived: p < 0.001). The AP waveform including the AP 

amplitude (control = 55.3 ± 1.0 mV; deprived = 57.8 ± 1.0 mV), the half-width 

(control = 0.39 ± 0.01 ms; deprived = 0.39 ± 0.01 ms) and AP rise time (control = 

0.25 ± 0.01 ms; deprived = 0.22 ± 0.01), first spike latency (control = 24.6 ± 1.7 

ms; deprived = 28.8 ± 2.1 ms) and fAHP (control = 10.3 ± 0.8; deprived = 9.3 ± 

1.0) was not changed in the activity-deprived condition (Table 4). mAHP was 

increased in the deprived neuron (Table 4, control = 9.8 ± 0.7; deprived = 12.7 ± 

0.9; control vs. deprived: p<0.05, statistical evaluation of all active and passive 

properties were done by two sample t-test).

2.2 Homeostatic intrinsic plasticity of the cerebellar Purkinje cells is mediated

activity-dependent modulation of Ih

Among the parameters of the AP waveform (Table 4), the input resistance was 

found to be reduced after prolonged inhibition of the network activity (fig. 3E). 

This result led me to hypothesize that hyperpolarization-activated cyclic nucleotide 

gated (HCN) channel is involved in homeostatic regulation of PC excitability 

based on the previous observations reporting that the Ih modulates the cellular 

excitability via regulating input resistance (Brager and Johnston, 2007). To answer 

this, sag potential and rebound depolarization were measured by hyperpolarizing 

step current injection (from -100 pA to -600 pA with an increment of -100 pA for 1 

s with a step interval of 5 s) in the current clamp mode (fig. 3F – H). Considering 

the differences of peak voltage corresponding to the hyperpolarizing currents 

between neurons, the sag potential was normalized by the maximal negative 

voltage then recalculated as a percentage (fig. 3G). In deprived neurons, all Ih

components were elevated (voltage sag (mV): control = 6.7 ± 0.6 at -400 pA 

injection, n = 12; deprived = 10.2 ± 0.8 at -400 pA injection, n = 14; control vs. 

deprived: p<0.05, two-way RM ANOAVA ; sag % (%): control = 24.0 ± 1.8; 
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deprived = 40.3 ± 2.2 at -400 pA injection; p<0.001, two sample t-test; rebound 

depolarization: control = 4.0 ± 0.3; deprived = 7.3 ± 0.6 at -400 pA injection; 

p<0.001, two sample t-test). Furthermore, I measured Ih from the control and 

deprived neurons in voltage clamp mode. To isolate and compare Ih, 

hyperpolarizing voltage steps ranging from -45 mV to -120 mV for 1 s with 

increment of -5 mV were injected in the presence of Na+, K+ and Ca2+ channel 

inhibitors (see the Material and method). The hyperpolarization-induced current 

was recalculated into current density. In parallel with sag potential, Ih density was 

augmented in deprived neurons compared to the control (fig. 3I, control Ih density 

= -1.0 ± 0.1 pA/pF at Vm = -100 mV, n = 15; deprived Ih density = -1.5 ± 0.1 

pA/pF, n = 14; control vs. deprived: p<0.05, Two-way RM ANOVA). The tail 

current was normalized to the maximal amplitude, and then, the resulting data were 

fitted with a Boltzmann function (fig. 3J). The half-maximal voltage (V50%) was 

not shifted (control = 84.9 ± 0.5 mV; deprived = -85.9 ± 0.8 mV), suggesting that 

voltage-dependency was not affected by activity-deprivation.

To test whether the downregulation of intrinsic excitability was mediated by 

elevation of Ih, the firing rates from the control and deprived neurons were 

compared before and after applying 4-Ethylphenylamino-1,2-dimethyl-6-

methylaminopyrimidinium chloride (ZD 7288), a selective inhibitor of HCN 

channels (fig. 3L and M). When the HCN channels was blocked, firing rates were 

robustly increased in both groups. However, there were no significant differences 

of firing rates after application of ZD7288 between control and deprived neurons 

(fig. 3L, control: pre firing frequency (Hz) = 26.7 ± 4.3, ZD 7288 = 45.4 ± 3.5; 

deprived: before firing frequency (Hz) = 11.7 ± 2.5, after = 46.7 ± 2.1). In addition, 

the input resistance was also increased following application of the ZD 7288; the 

difference between the control and deprived neurons was also indisputably 

abolished by ZD 7288 (fig. 3M, control: pre ZD 7288 input resistance (MΩ) = 89.3 

± 6.7, post ZD 7288 = 224.2 ± 23.5, n = 6; deprived: pre ZD 7288 input resistance

= 60.6 ± 6.0, post ZD 7288 = 178.2 ± 9.7, n = 5; pre ZD 7288 p<0.05, post ZD 
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7288 p = 0.12, two sample t-test). Therefore, I conclude that the activity-dependent 

modulation of Ih underlies the homeostatic intrinsic plasticity in the cerebellar PCs.
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Figure 3. Chronic activity-deprivation reduces intrinsic excitability of the cerebellar Purkinje 

cells through upregulation of Ih. (A) Experimental scheme. Network activity totally deprived by 

treatment of 1 µM tetrodotoxin (TTX) for 2 days in organotypic cerebellar slice culture. 

Electrophysiological recording was performed at anterior lobule (lobule III–V). (B) Representative 

traces (left), plots (middle) and bar graphs at + 400 pA injection (right) showing that chronic activity-

deprivation decreased intrinsic excitability of PCs. (C - D) Bar graph showing that chronic activity 

deprivation increased current threshold (Ithreshold), but voltage threshold (Vthreshold). (E) Representative 

traces (left) and summarizing graph (right) showing the input resistance  was decreased after chronic 

activity deprivation. Grey, control; black, deprived. (F) Representative traces (left) and plots (right) 

showing that voltage sag was significantly increased in deprived neurons (black) vs. control (grey). 

(G) Bar graph of normalized sag voltage by maximal potential showing the increased voltage sag in 
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deprived neurons. (H) Representative traces (inset), plot (bottom), and bar graph (right) showing 

relationship between rebound depolarization and steady-state voltage and calculated rebound slope 

from control and deprived. (I) Representative traces (left) and plots (right) showing that Ih
density was 

increased in deprived neurons vs. control. (J - K) Tail current was normalized by maximal tail current 

amplitude and fitted by Boltzmann function from control (J) and deprived neurons (K). (L) 

Representative traces (left) and summarizing plot (right) showing that decrease in the intrinsic 

excitability of the deprived (gray) neurons was restored to control (green) in ZD 7288. (M) Bar graph 

showing the decrease in input resistance in deprived neurons was abolished by ZD 7288. Asterisks in 

B marked by post hoc Tukey’s test, pairwise comparison followed by Two-way RM ANOVA, D, E, 

G, L and M marked by t-test and F and I marked by Two-way RM ANOVA; *P < 0.05, ***P < 0.001; 

n.s., no significance.
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Parameter Control Deprived

V threshold (mV) -40.2 ± 1.0 -40.3 ± 1.0

I threshold (pA) 200.6 ± 10.7 235.0 ± 8.2

AP amplitude (mV) 55.3 ± 1.0 57.8 ± 1.0

Harf-width (ms) 0.4 ± 0.01 0.4 ± 0.01

Rist time (ms) 0.25 ± 0.05 0.22 ± 0.01

First-spike latency (ms) 24.6 ± 1.6 28.8 ± 2.1

fAHP (mV) 10.3 ± 0.8 9.3 ± 1.0

mAHP (mV) * 9.8 ± 0.7 12.7 ± 0.9

Rin (MΩ) *** 85.8 ± 5.4 59.2 ± 4.5

Vm (mV) -52.9 ± 1.2 -50.6 ± 1.4

Cm (pF) 241.6 ± 17.2 259.2 ± 10.4

Table. 4. Parameters of AP properties and waveform. Among active membrane properties, Ithreshold, 
was increased under deprived condition whereas Vthreshold were not changed (see also figure 1). AP 
waveform including AP amplitude, half-width, 10-90% rise time and first spike latency, was 
monitored. The parameters were not affected by activity-deprivation. mAHP was increased in 
deprived neurons, whereas fAHP was not altered. Among the passive membrane properties (Cm, Vm

and Rin), the only Rin was changed by activity-deprivation. For comparison of the active and passive 
membrane properties, changes were described here to those shown in figure 1C and D; *p<0.05, 
***p<0.001. 
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2.3 Homeostatic intrinsic plasticity of the cerebellar Purkinje cells requires
agonist-independent action of mGluR1

The activation of mGluR1 induces plasticity of the intrinsic excitability by 

initiating a signal cascade resulting in the regulation of ion channels such as Ih, 

Ca2+ channels, and K+ channels (Brager and Johnston, 2007; Kammermeier et al., 

2000). In addition, I observed that the homeostatic intrinsic plasticity requires 

upregulation of Ih following activity-deprivation. Interestingly, agonist-independent 

(constitutive) activity of mGluR has been found to be required for interplay 

between the Hebbian and homeostatic synaptic plasticity (Hu et al., 2010). It is, 

however, unclear whether homeostatic intrinsic plasticity also underlies agonist-

independent activation of mGluR1 for a homeostatic perspective. Given the note 

that amount of mGluR1 is regulated in an activity-dependent manner (Ehlers, 

2003), I hypothesized that the constitutive activity of the mGluR1 is required for 

homeostatic control of intrinsic excitability in the cerebellar PCs. To answer this, 

the amount of mGluR1 in the cerebellar cortex was compared with control and 

deprived slices. In parallel with the previous observation, mGluR1 expression level 

was increased after 2-days of inactivation of network activity in the cerebellar 

slices (fig 4A, control vs. deprived: p < 0.05, Mann-Whitey U test). This result 

suggests that mGluR1 may contribute to homeostatic intrinsic plasticity because 

the facilitated agonist-independent activity of GPCRs corresponds with increased 

protein level (Smit et al., 1996). To further examine the mGluR hypothesis, I 

treated inverse agonist of mGluR1, (3aS,6aS)-Hexahydro-5-methylene-6a-(2-

naphthalenylmethyl)-1H-cyclopenta[c]furan-1-one (BAY 36-7620) (10 μM), or 

neutral antagonist, 7-(Hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl 

ester (CPCCOEt) (100 μM) for 2 days to control and TTX-treated slices (fig. 4B). 

The inverse-agonist, BAY 36-7620, binds within the transmembrane domain of 

mGluR1 and stabilizes the receptor in the inactive form (Nakashima et al., 2013). 

On the other hand, CPCCOEt is classified as a neutral, non-competitive antagonist 

which inhibits agonist binding in the N-terminus and suppression of agonist-
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induced signaling (Ango et al., 2001; Litschig et al., 1999). When the neutral 

antagonist was treated with activity-deprivation for 2 days, downregulation of 

excitability was shown like as the preceding data presented in fig. 3B [fig. 4C and 

D, control + CPCCOEt: firing frequency (Hz) = 31.4 ± 2.2 at 400 pA injection, 

∆firing frequency (% of change from control presented in fig. 3B) = -0.62 ± 7.03%, 

n = 11; deprived + CPCCOEt: firing frequency = 23.0 ± 3.1, ∆firing frequency = -

26.20 ± 9.95%, n = 10; control vs. control + CPCCOEt: p = 0.69; deprived vs. 

deprived + CPCCOEt: p = 0.58, Two way RM ANOVA (firing frequency); 

deprived vs. control + CPCCOEt: p = 0.004; deprived vs. deprived + CPCCOEt: p 

> 0.71, One way ANOVA post-hoc tukey test (∆firing frequency)]. Interestingly, 

application of the BAY 36-7620 prevented homeostatic intrinsic plasticity [fig. 4F 

and G; control + BAY 36-7620: firing frequency = 34.3 ± 2.9 at 400 pA injection,

∆firing frequency = 10.26 ± 10.21%, n = 11; deprived + BAY 36-7620: firing 

frequency = 33.9 ± 1.8, ∆firing frequency = 8.60 ± 5.60%, n = 13; control vs. 

control + BAY 36-7620: p = 0.31; deprived vs. deprived + BAY 36-7620: p < 0.05, 

Two way RM ANOVA (firing frequency); deprived vs. control + BAY 36-7620: p 

< 0.001; deprived vs. deprived + BAY 36-7620: p < 0.001, One way ANOVA post-

hoc tukey test (∆firing frequency)]. The changes in the input resistance were in 

parallel with the aspects of excitability change following co-treatment of TTX and 

mGluR1 inhibitors for 2 days. Inverse agonist of mGluR1 prevented homeostatic 

downregulation of the input resistance whereas CPCCOEt showed no significant 

effects (fig. 4E and H, control + CPCCOEt = 90.6 ± 5.8 MΩ; deprived + 

CPCCOEt = 74.9 ± 2.8 MΩ; p = 0.03; BAY 36-7620: control + BAY 36-7620 = 

86.1 ± 6.1 MΩ; deprived + BAY 36-7620 = 83.8 ± 5.7 MΩ; p > 0.79, two sample t-

test). In line with excitability changes, co-treatment of BAY 26-7620 prevented 

homeostatic upregulation of Ih whereas CPCCOEt was ineffective to the channel 

modulation (fig. 4 I and J). As the data presented in fig 3, the inhibitors showed no 

significant effect to gating properties of HCN channels (fig. 4K – M). Taken 

together, these observations suggest that the homeostatic intrinsic plasticity of PCs 
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requires the agonist-independent action of the mGluR1. 
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Figure 4. Homeostatic intrinsic plasticity of cerebellar PCs was required to agonist-independent 

activity of mGluR1. (A) immunoblotting of mGluR1a from control and deprived neuron (left) and 

summarizing bar graphs (right) showing that chronic activity deprivation increased the protein level 

of mGluR1. (B) Experimental scheme mGluR1 inhibitors, CPCCOEt (CP) or BAY 36–7620 (BAY) 

were treated for 2 days in presence or absence of TTX. (C) Representative traces (left), summarizing 

bar graphs (middle; at +400 pA injection), and plots (right) showing that there were no effects of 

antagonizing mGluR1 by CP on homeostatic intrinsic plasticity (grey open: control; black closed: 

deprived, described in fig. 3; yellow open: CP only; orange closed: CP + deprived). (G) Box and 
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whisker plots showing the % value of changes compared to the value of excitability and input 

resistance (E) in control neurons. (F) Representative traces (left), summarizing bar graphs (middle; at 

+400 pA injection), and plots (right) showing that inverse agonist inhibited homeostatic intrinsic 

plasticity (grey open: control; black closed: deprived, described in fig. 3; light blue open: BAY only; 

dark blue closed: BAY + deprived). (G) Box and whisker plots showing the % value of changes 

compared to the value of excitability and input resistance (H) in control neurons. (I – J) Inverse 

agonist prevented homeostatic upregulation of Ih of PCs. (K – L) Tail current was normalized by 

maximal tail current amplitude and fitted by Boltzmann function from CPCCOEt-treated (K) and 

BAY-treated neurons (L). (M) Box and whisker plots showing the decay time of the h-current 

throughout the group. There were no significant differences between groups. All asterisks marked by 

t-test. *P < 0.05, **P < 0.01, ***P < 0.001; n.s., no significance. 
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2.4 Homeostatic intrinsic plasticity of the cerebellar Purkinje cells is mediated
PKA activity

I asked if homeostatic upregulation of Ih was dependent on the agonist-independent 

activity of the mGluR1. The Ih density in the control and deprived neurons was 

measured after treatment with CPCCOEt or BAY 36-7620 (fig. 4I and J). The 

homeostatic regulation of Ih was restrained by treatment with the BAY 36-7620 (fig.

4J, control + BAY 36-7620 Ih density = -1.1 ± 0.1 pF, n = 13; deprived + BAY 36-

7620 Ih density = -1.0 ± 0.2 pF, n = 13, at Vm = -100 mV; control + BAY 36-7620

vs. deprived + BAY 36-7620: p = 0.6; deprived vs. deprived + BAY 36-7620: p <

0.001, Two-way RM ANOVA). On the other hand, the neutral antagonist of 

mGluR1 did not prevent the homeostatic changes of Ih (fig. 4I, control + CPCCOEt

Ih density = -0.9 ± 0.1 pF at Vm = -100 mV, n = 13; deprived + CPCCOEt Ih

density = -1.5 ± 0.1 pF, n = 13; control + CPCCOEt vs. deprived + CPCCOEt: p <

0.001; deprived vs. deprived + CPCCOEt: p = 0.5, Two-way RM ANOVA). These 

findings suggest that the agonist-independent activity of the mGluR1 plays a 

pivotal role in homeostatic intrinsic plasticity through Ih.  

Upstream regulators of Ih have been identified, including protein kinase A (PKA)

(Narayanan et al., 2010), Ca2+-calmodulin dependent protein kinase (CaMKII) (Fan 

et al., 2005) and auxiliary subunit TRIP8B (Santoro et al., 2004). Although the Gq-

type of G protein is primarily involved in the excitatory responses of cerebellar 

PCs, coupling of the mGluR1 to GS protein activates adenylyl cyclase, and thus, 

cAMP accumulates resulting in the activation of PKA (Aramori and Nakanishi, 

1992; Sugiyama et al., 2008; Tateyama and Kubo, 2006). Therefore, I asked 

whether PKA activation is required for the homeostatic control of firing rates in 

cerebellar PCs. To answer this, a PKA inhibitor (500 nM), (5R,6S,8S)-Hexyl 6-

hydroxy-5-methyl-13-oxo-6,7,8,13,14,15-hexahydro-5H-16-oxa-4b,8a,14-triaza-

5,8-methanodibenzo[b,h]cycloocta[jkl]cyclopenta[e]-as-indacene-6-carboxylate 

(KT 5720), was applied to organotypic slices with TTX for 2 days. Interestingly, 

the application of KT 5720 prevented the homeostatic intrinsic plasticity (fig. 5A,
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firing frequency (Hz): control + KT 5720 = 29 ± 3.6, n = 7; deprived + KT 5720 = 

31.9 ± 3.6, n = 7 at + 400 pA injection; control + KT 5720 vs. deprived + KT 5720, 

p = 0.9; deprived vs. deprived + KT 5720, p < 0.05, Two-way RM ANOVA). In 

addition, KT 5720 also abolished the reduction of input resistance in the TTX-

treated neurons (fig. 5B, control + KT 5720 = 90.6 ± 2.5 MΩ, n = 7; deprived + KT 

5720 = 83.6 ± 4.8 MΩ, n = 7; control + KT 5720 vs. deprived + KT 5720, p = 0.2, 

deprived vs. deprived + KT 5720, p < 0.005, two sample t-test). This observation 

indicates that PKA activation mediates homeostatic intrinsic plasticity in cerebellar 

PCs.
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Figure 5. Homeostatic intrinsic plasticity was dependent on PKA pathway. (A) Representative 

traces (left) and bar graph (middle; at +400 pA injection) and plots (right) showing that treatment of 

PKA inhibitor KT 5720 (KT) prevented homeostatic intrinsic plasticity in cerebellar PCs. (B) Bar 

graph showing the reduced input resistance was recovered by KT (500 nM). open purple circle: KT 

only; closed purple circle: deprived + KT; open grey circle: control; closed black circle: deprived. 

Control and deprived values are as described in Fig. 3. Asterisks marked by t-test; *P < 0.05, *P <

0.05, ***P < 0.001; n.s., no significance. 
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Discussion

The present study described a novel mechanism by which homeostatic regulation 

of intrinsic excitability in the cerebellar PCs requires the agonist-independent 

activity of mGluR1 in response to the long-lasting changes in cerebellar network 

activity. Interestingly, homeostatic changes in PC excitability were prevented by 

the mGluR1 inverse agonist but not the neutral antagonist, indicating that the 

homeostatic control of intrinsic excitability might underlie agonist-independent 

action of the mGluR1 signaling (Ango et al., 2001; Hu et al., 2010). In addition, 

this work presented the evidence showing the downstream pathway for constitutive 

activity of mGluR1 involved in homeostatic control of PC activity. Application of 

KT 5720 under the activity-deprived condition exerted inhibition of homeostatic 

intrinsic plasticity in the cerebellar PCs. PKA activity has been found to be 

downstream of mGluR1 activation (Aramori and Nakanishi, 1992; Sugiyama et al., 

2008; Tateyama and Kubo, 2006), therefore, agonist-independent action of 

mGluR1 presumably links to PKA signaling. Taken together, homeostatic control 

of intrinsic excitability in the cerebellar PCs may require the mGluR1-PKA-Ih

pathway. 

  I presented here the reduction of the PC excitability following chronic activity-

deprivation. At first glance, this result may show contradictory to the conventional 

concept of homeostatic regulation in which prolonged inactivation of the network 

activity induces boosting the neuronal excitability and/or excitatory synaptic drive 

(Desai et al., 1999; Galante et al., 2000). However, in the GABAergic neurons, it 

has been observed that synaptic strength (Chang et al., 2010) and firing rates (Sun, 

2009) decrease in response to days-long inhibition of network activity. The data I 

presented here is in agreement with previous studies in that cerebellar PCs are 

GABAergic neurons. This reduced excitability observed in the cerebellar PCs after 

chronic activity blockade could induce disinhibition of the silenced cerebellar 
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cortex which efficiently increase the network excitability against chronic activity 

deprivation. There are no simple ways to maintain the stability of the neuronal 

network activity against activity perturbation because neural activity is rather 

dynamically modulated (Hengen et al., 2013; Keck et al., 2013). For this reason, 2 

day-inhibition of network activity by TTX has been widely used to induce 

homeostatic plasticity, however, neural activity can change day-to-day. 

Furthermore, the time course to induce plasticity in vivo far differs from in vitro. 

This is the first observation of homeostatic control in the cerebellar PCs and 

physiological in vivo models have yet to be established. Based on this study, an in 

vivo model of homeostatic control of the cerebellar activity in the physiological or 

pathological circumstances is needed to be developed. Consequently, it could be 

possible to explore dynamically regulated neural activity in an activity-dependent 

manner. 

In the present study, I suggest that the agonist-independent activity of the 

mGluR1 is required for the homeostatic intrinsic plasticity of cerebellar PCs. 

Interestingly, it has been observed that the receptor can be spontaneously activated 

even in the absence of the agonists (Ango et al., 2001; Roosterman, 2014; Scheer 

et al., 1996). A previous study has shown that the intracellular protein Homer 

regulates the agonist-independent constitutive activity of the mGluR1 by 

interacting with partner, such as the SHANK and MAGUK proteins (Tu et al., 

1999). Neuronal excitation during synaptic plasticity or manifestation of 

convulsive seizures results in expression of the immediate early gene Homer1a

(Brakeman et al., 1997), and the interaction between the mGluR1 and long-form 

Homer proteins, subsequently, is disrupted leading to the constitutive activity of 

the receptor (Ango et al., 2001). In the TTX model for the homeostatic plasticity, 

there is minute possibility that Homer 1a is involved in the activity deprivation-

driven reduction of excitability because neuronal depolarization commonly induces 

Homer1a (Minami et al., 2003), but rather is due to the downregulation of the long-

form Homers which induces the agonist-independent activation of mGluR1 in the 
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cerebellar PCs. Indeed, knock-down of Homer3 facilitates the mGluR1 activity by 

shifting equilibrium between its inactive and active conformation (Ango et al., 

2001). The complex receptor-intracellular protein interactions in response to 

chronic changes in network activity is needed to be further investigated in the 

aspects of neural plasticity and/or pathological fashion. 

The level of GPCR activity, a functional readout of the group1 mGluR, has been

found to be determined by the balance between the inactive (R) and active (R*) 

form of the receptor (Chidiac et al., 1994). Conformational changes of the receptor 

from the R to R* are regarded as one of the underlying mechanisms of constitutive 

activity (Scheer et al., 1996). Alternatively, an increased density of GPCRs 

enhances the agonist-independent activity of the receptor through an increase in the 

absolute amount of R* (Smit et al., 1996). I observed that activity-deprivation 

elevates mGluR1α, and this may reflect strengthened GPCR signaling through an 

increased amount of the R* form of the receptor. In addition, when the PKA 

pathway as the downstream of the receptor (Aramori and Nakanishi, 1992; 

Sugiyama et al., 2008; Tateyama and Kubo, 2006) is inhibited under activity-

deprived condition, homeostatic intrinsic plasticity is abolished, suggesting that

chronic activity-deprivation condition activates PKA. Given that the mGluR1 

activates adenylyl cyclase by the coupling of the receptor to the GS protein leading 

to accumulate cAMP (Tateyama and Kubo, 2006), those results implicate that the 

chronic blockade of network activity activates mGluR1 signaling resulting in the 

downregulation of firing rates through the PKA pathway. When mGluR1 is 

activated, various cell responses can be induced through coupling to several types 

of G proteins. Coupling of mGluR1 to Gq11 triggers accumulation of inositol 1,4,5-

trisphosphate (InsP3) resulting in activation of the protein kinase C (PKC) pathway 

(Francesconi and Duvoisin, 2000; Tateyama and Kubo, 2006). Several previous 

studies reported that the PKC activation suppresses Ih (Brager and Johnston, 2007). 

This leads to an increase in intrinsic excitability which contradicts my observation. 

Although GS- and Gq11-coupling can be simultaneously and independently 
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triggered by mGluR1 activation, PKA is a more plausible upstream regulator of the 

elevated Ih. For this reason, the cerebellar PC homeostatic intrinsic plasticity seems 

to require PKA signaling rather than PKC activity. In this study, I observed the 

upregulation of Ih in the deprived PCs without changes in gating properties of the 

channels, implying that the upregulation of current density may underlie the 

increased channel expressional level. Narayanan et al. (2010), on the other hand, 

have describe that Ca2+-store depletion leads to increases in Ih conductance through 

the PKA signaling without protein synthesis. However, they observed the changes 

in HCN channel activity in response to acute effect of Ca2+-depletion by CPA 

treatment. In addition, many implications have shown that the homeostatic 

plasticity is derived from transcription and/or translation (Desai et al., 1999; 

Shepherd et al., 2006; Sutton et al., 2007; Hu et al., 2010; Chang et al., 2010;

Naudé et al., 2013; Lee et al., 2015). Therefore, homeostatic upregulation of Ih

might result from not only transcriptional and/or translational alterations of the ion 

channels or auxiliary units but also the cAMP responsiveness to HCN channel 

activity. 

  Various ion channels determine the active and passive electrical properties of 

neuronal membranes, including membrane potential and AP threshold, and 

contribute to the synaptic integration and firing fidelity. Synaptic stimuli and/or

somatic depolarization form plastic changes in neuronal excitability by changing 

the composition and conductance of ion channels (Belmeguenai et al., 2010; Hyun 

et al., 2013). From a homeostatic viewpoint, ion channels are dynamically 

regulated to achieve the network stability, and accordingly, AP firing rates are 

tuned within physiological ranges (Desai et al., 1999). Given the decreased input 

resistance in the deprived neurons, I focused on Ih among ion channels which 

contribute to neuronal excitability. However, the activity of many other ion 

channels need to be measured. A previous study showed that visual deprivation 

changes Ithreshold and input resistance which is in agreement with this work (Nataraj 

et al., 2010) (fig. 3 and Table 1). Hence TEA-sensitive delayed-rectifier type K+
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channel (KV 2.1) are also possible candidate for homeostatic control of the PC 

excitability. Although Ca2+-activated K+ channels can be involved in homeostatic 

intrinsic plasticity, these are excluded because they have less of an effect on input 

resistance and Ithreshold (Belmeguenai et al., 2010).

  HCN channels are widely expressed in several brain regions (Notomi and 

Shigemoto, 2004), and they contribute to the regulation of neural activity. Because 

Ih generates a tonic inward current at resting state, it is known as a pacemaker to 

initiate neuronal oscillation and rhythmic burst activity (Jahnsen and Llinás, 1984; 

Llinás and Jahnsen, 1982; McCormick and Pape, 1990). A previous study showed 

that the pharmacological blockade of Ih modifies membrane bi-stability, thereby 

inducing the spontaneous quiescence period (Williams et al., 2002). This indicates 

that Ih maintains the membrane potential which enables tonic AP activity even 

when the activity of PCs is disrupted by hyperpolarizing inputs. Given that Ih

stabilizes the cellular membrane potential within an appropriate range by its 

unusual gating properties (Nolan et al., 2007), the activity-dependent regulation of 

Ih may play a role in homeostatic plasticity following a chronic activity-disturbance 

condition. Homeostatically elevated Ih reduces input resistance leading to a 

dampened membrane deflection to given current stimulation, and this will act as a 

cellular stabilizer to preserve the membrane potential. Furthermore, a potentiated 

rebound potential keeps the membrane potential close to the AP threshold and 

consequently leads to ‘history-independent integration’ (Nolan et al., 2003). 

Therefore, I suggest that the activity of cerebellar PCs is fine-tuned by the 

consequences of Ih modulation when the network activity is deprived. 

  Homeostatic plasticity has been regarded as a key mechanism of disease 

initiation (Friedman et al., 2014). Chronic activity-deprivation reduces the firing 

rates of cerebellar PCs, and it could be related to cerebellar disorders including 

Friedreich ataxia and spinocerebellar ataxias because lowered excitability is linked 

to the cellular phenomenon of disease (Hourez et al., 2011). Given that the 

constitutive activity of GPCRs is correlated to various human diseases, this work 



55

provides insight into possible therapeutic targets though modulation of GPCR-

mediated homeostatic intrinsic plasticity. In addition, I also provide insight into the 

cellular basis of homeostatic control of firing rates of cerebellar PCs, and these

findings broaden the understanding of homeostatic intrinsic plasticity of the 

cerebellar cortex.

Chapter 3

Long-Term Depression of Intrinsic Excitability 

Accompanied by Synaptic Depression in 

Cerebellar Purkinje Cells
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Introduction

A long-standing question in the neuroscience field is how the brain stores the 

information from the surroundings and subsequently modifies the weight of input 

and output signals to adjust behavior. To answer this question, activity-dependent 

changes in synaptic function such as long-term potentiation (LTP) and LTD have 

been intensively investigated as the cellular mechanisms of this phenomenon 

(Kandel et al., 2014). Activity- and experience-dependent alteration of neuronal 

intrinsic excitability (intrinsic plasticity) also have been implicated in the other side 

of engram for information processing and memory storage (Straka et al., 2005; 

Zhang and Linden, 2003). In fact, the non-synaptic intrinsic plasticity is found to 

be accompanied by synaptic plasticity in the various type of neurons (Belmeguenai 

et al., 2010; Brager and Johnston, 2007; Fan et al., 2005; Shim et al., 2017). This 

form of neural plasticity indeed complements the synaptic inputs and 

synergistically generates a total net output of the neurons. 

The synaptic plasticity between PF and PC synaptic area, especially PF-PC LTD 

was held as a view of underlying mechanism for the cerebellum-dependent motor 

learning (Ito, 1982; Jörntell and Hansel, 2006). For decade, there are is 

accumulating evidence showing that the synaptic plasticity at the multiple site 

throughout the cerebellar circuitry beyond PF-PC LTD (Boyden et al., 2004; 2006; 

Gao et al., 2012). In addition, several implications have shown that memory trace 

of the cerebellar motor memory should be transferred into the sub-cortical area 

such as vestibular nucleus (VN) for shaping long-term memory storage 

(Kassardjian et al., 2005; Okamoto et al., 2011b). Interestingly, Ito who firstly 

proposed cerebellar LTD hypothesis suggested that the fast adaptation of the VOR 

learning is based on the LTD at PF-PC synapses and slow adaptation is derived 

from mossy fibre (MF) to the vestibular nucleus (VN) neuron synapses (Ito, 2013). 

Indeed, the cerebellar PCs integrate the input from the pre-cortical region and 
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generate an output signal, and thereby transfer the information to the post-cortical 

area. Thus, the activity of cerebellar PCs plays a central role in the acquisition of 

the cerebellar motor memory such as vestibulo-ocular reflex (VOR) learning, 

beyond the synaptic plasticity (Kassardjian et al., 2005; Okamoto et al., 2011b). 

Moreover, the spiking activity of PCs has a large impact on the cerebellar-motor 

memory consolidation (Galliano et al., 2013; Wulff et al., 2009), indicating the 

output of PCs may play a critical role in the memory processing within the motor 

circuitry. Therefore, observation of an activity-dependent modulation of the 

intrinsic excitability will provide insight into understanding the information 

processing and memory storage in cerebellar circuits beyond the synaptic plasticity 

in terms of the motor learning. In spite of the physiological significance of the 

intrinsic plasticity, characteristics of the intrinsic plasticity accompanied by PF-PC 

LTD remain unclear.

Here, I address the question how intrinsic plasticity is modulated following 

synaptic depression of PCs by using whole-cell patch clamp technique from the 

cerebellar slices from 4- 6 weeks old male C57BL/6 mice. I found that the 

conjunctive activation of PF and climbing fibre (CF), the well-known induction 

protocol for PF-PC synaptic LTD, induced long-term depression of intrinsic 

excitability (LTD-IE) as well. Both synaptic and intrinsic plasticity are the Ca2+-

dependent and share the PKC pathway. This learned pattern of the neuronal output, 

notably, functions as the amplifier of the depressed synaptic strength rather than 

modifying the strategy for input integration and output generation.
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Material and Methods

1. Animals and Slice preparation

All animal use was in accordance with protocols approved by the Institution’s 

Animal Care and Use Committee of Seoul National University College of 

Medicine. Cerebellar parasagittal slices were dissected into 250 μm by vibratome 

(Leica, VT1200) from anaesthetized 4- 6 weeks old male C57BL/6 mice in ice-

cold standard artificial cerebrospinal fluid (aCSF) contained with the following (in 

mM): 125 NaCl, 2.5 KCl, 1 MgCl2, 2 CaCl2, 1.25 NaH2PO4, 26 NaHCO3, 10 

glucose bubbled with 95% O2 and 5% CO2. For recovery, slices were incubated at 

32 ˚C for 30 minutes and further 1 hour at room temperature. 

2. Electrophysiology

Slices were put onto a submerged recording chamber on the stage of Olympus 

microscope (BX50WI, Japan) and perfused with aCSF, and kept in place with a 

nylon-strung platinum anchor. All recordings were performed using EPC9 (HEKA 

Elektronik) and multiclamp 700B patch-clamp amplifier (Axon Instruments) with a 

sampling frequency of 20 kHz and signals were filtered at 2 kHz. To isolate 

excitatory synaptic inputs, inhibitory synaptic inputs were totally blocked by 100 

μM picrotoxin. Patch pipettes (3-4 MΩ) were borosilicate glass and filled with 

internal solution. Composition of the internal solution is described in the Material 

and Method of Part 1. The membrane potential was held on -70 mV in voltage-

clamp (VC) and current-clamp mode (CC). Recordings were discarded if the series 

resistance (Rs) varied by > 15% and the injection current for the holding potential 

exceeded 600 pA. PFs in the molecular layer and CF in the granule cell layer were 

stimulated by an ACSF-filled electrode. I used two different protocols to induce the 

PF-PC LTD in CC mode for 5 min: 1) 300 times of repetitive co-activation of PF 

and CF at 1 Hz (LTD-tetanus); 2) 30 times of pairing-stimulation consisted of 7 PF 

stimuli at 100 Hz followed by 1 CF stimulus delayed by 150 ms every 10 sec 

(LTD-burst). To evaluate the PCs excitability, a series of current steps of 500 ms 

duration ranging from +100 pA to +500 pA with increments of 100 pA with a step 
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interval of 4.5 s from a membrane potential of -70 mV was injected in CC mode.

3. Calcium imaging

Ca2+ measurements were performed with a confocal laser-scanning head (FV300 

Olympus, Japan) attached to an upright microscope confocal microscope (BX51WI, 

Olympus, Japan), using a 40× water immersion objective (NA 0.8, LUMPlanFl/IR; 

Olympus, Japan), in parallel to the electrophysiological recording. To measure 

dendritic calcium transients, Oregon Green 488 BAPTA-1 (OGB-1, 0.2mM) was 

added to internal solution in patch pipette. PCs was dialysed for at least 30min 

after introducing intracellular solution prior to imaging. Alexa fluor 594 red 

fluorescence was added to saline in stimulation pipette. Confocal images were 

acquired with Fluoview (Olympus, Japan) software as XYT frame scans for a 

chosen region of interest, and analyzed with NIH ImageJ software. Baseline 

fluorescence frame was subtracted from max fluorescence frame and filtered using 

Gaussian blur 3D. Then I applied the same threshold to different intensity of 

stimulation data and measured the area using ImageJ Analyze particles algorithm.

4. Data acquisition and analysis

All data were acquired by Clampex software (Molecular Devices) and analyzed by 

IgorPro 8.1 (Wavemetrics). I evaluated the LTD by normalizing to the average of 

baseline PF-EPSC, and recording was excluded if the baseline current or the 

number of evoked spikes varied by > 20 %. Electrical properties of the neurons 

were monitored with following parameters: RS was calculated by fitting a single 

exponentials to the voltage responses of the test pulse (-5 mV); Input resistance 

was determined from negative peak voltage deflection in response to brief 

hyperpolarizing current injection (-100 pA; 100 ms); Voltage threshold (Vthreshold) of 

AP was defined as the voltage where the dV/dt first exceeds 30-60 mV/ms); AP 

amplitude was determined as difference between peak amplitude and the voltage 

threshold of the AP; Half-width were the time duration at the half-maximal voltage; 

Fast afterhyperpolarization (fAHP) and medium afterhyperpolarization (mAHP) 

were measured by calculating the difference between voltage threshold and 
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hyperpolarized negative peak voltage after the first AP or depolarizing square 

current injection, respectively. All analysis for electrical properties was performed 

by custom-made Matlab code.

Data were presented as mean ± SEM and statistical evaluations were performed 

using normality test, equal variant test, independent t-test, One-way repetitive 

measured (RM) ANOVA and Two-way RM ANOVA with post hoc tukey test by 

Origin 8.5 and SigmaPlot 12.0 software. Sample size was approved by power 

analysis using the G*power 3.1.9.2.
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Results

3.1 LTD of intrinsic excitability of PC accompanied by PF-PC LTD 

In order to investigate whether excitability changes in PCs are accompanied by 

synaptic LTD, the whole-cell path-clamp recording was performed from cerebellar 

slices of 4 to 6 weeks old mice under the presence of picrotoxin, GABAA receptor 

inhibitor. PF-PC LTD was induced by tetanising PF and CF simultaneously (1 Hz, 

300 times, 5 min; Tetanus; fig. 6A). The amplitude of excitatory postsynaptic 

current (EPSC) was monitored before and after the tetanisation of PF and CF to 

confirm whether PF-PC LTD was formed. In the same recording, intrinsic 

excitability was also measured in current clamp mode by injecting square-wised 

brief current step from the membrane potential of about -70 mV (500 ms, from 

+100 pA to +500 pA with an increment of 100 pA, step interval 4.5 s, see Materials 

and Methods), and determined by counting the number of depolarisation-evoked 

spikes before and after the Tetanus protocol. As a control, co-activation of PF and 

CF was omitted during the induction period in the control neurons but the other 

condition and protocol were the same with LTD-induced neuron. Both the EPSC 

and the excitability were stable in the control group (n = 9, n = 8, respectably; fig.

6B – D). Simultaneous stimulation of PF and CF resulted in the EPSC reduction to 

71.3 ± 6.0 % (n = 7; fig. 6B), which is the well-established PF-PC synaptic LTD 

phenomenon. Concurrently, downregulation of the intrinsic excitability was 

accompanied by the synaptic LTD in comparison with the baseline (n = 7, F = 17.4, 

p < 0.001, two-way RM ANOVA; fig. 6E – F) in all ranges of current injection. 

Intrinsic excitability was shown to be significantly reduced to 76.4 ± 4.7 % of 

baseline when 500 pA of current was injected after tetanization. 
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Figure 6. Synaptic LTD accompanied by LTD of intrinsic excitability. (A) PF–PC LTD induction 

protocol. PF and CF were simultaneously stimulated with 1 Hz for 5 min 300 times. Scale bars, 20 

mV (vertical) and 50 ms (horizontal). (B) Normalized EPSC of both groups. LTD was successfully 

induced in 1 Hz LTD group and there were no changes of EPSCs in control group. Control, open, n = 

9; LTD-Tetanus, filled, n = 7. Scale bars in raw traces, 100 pA (vertical) and 50 ms (horizontal). (C –

D) Intrinsic excitability of control group. Somatic depolarizing current injection-evoked firing 

frequency was not changed during recording. Baseline, 15 min, n = 9; 30 min, n = 8; F = 0.219, p = 

0.806. Scale bars in raw traces, 20 mV (vertical) and 200 ms (horizontal). (E – F) Intrinsic excitability 

of LTD-Tetanus group. Firing frequency was significantly reduced after LTD induction (n = 7, F = 

17.4, p < 0.001). Scale bars in raw traces are the same as in C. (G) Box and whisker plots showing 

the % value of change in firing frequency in control (grey) and Tetanus group (blue). For statistics, 

two-way RM ANOVA was used for C and E. Post hoc Tukey’s test was used for different time group 

comparison. Error bar indicates SEM. **p < 0.01, ***p < 0.001. 
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A previous study revealed that the PF stimulation with 1 Hz failed to induce 

intrinsic plasticity in vivo because 1 Hz PF stimulation was not exceeding the 

background activity (Belmeguenai et al., 2010). To adequately reflect the activity 

pattern of the granule cells in vivo, I introduced the PF burst protocol (7 of 100 Hz 

PF burst followed by single CF stimulation with the stimulus interval of 150 ms, 

30 times, sweep interval 10s, 5 min; Burst; figure 7A). With this protocol, synaptic 

LTD was also reliably elicited (n = 10; fig. 7B) but the synaptic plasticity was 

relatively slowly developed. Because of the different kinetics of decrease in EPSC, 

excitability was measured 20 min and 40 min after the induction. Consistent with 

the results from LTD-Tetanus protocol, the evoked spike count was considerably 

decreased following conjunctive activation of PF and CF (n = 10, F = 21.1, p < 

0.001, two-way RM ANOVA; fig. 7E and F). A previous study described that 

cerebellar LTD required the precisely timed-pairing of PF and CF activation, in 

which inter-stimuli interval was from -50 ms to + 300 ms between PF and CF to 

induce the synaptic plasticity (Safo and Regehr, 2008). To test whether the time 

window of pairing is a pivotal element for LTD-IE induction, I delivered the non-

conjunctive stimulating (Pseudo burst) protocol (fig. 7A). In an Pseudo burst

protocol delivered condition, synaptic depression was not induced (n = 11; fig. 7B). 

Interestingly, intrinsic excitability was decreased 20 min after induction, however, 

the reduction was recovered 40 min after application of LTD-Pseudo (t = 20, p = 

0.002; t = 40, p = 0.092; post-hoc tukey test after Two-way RM ANOVA; fig. 7C –

D). Magnitude of the intrinsic plasticity was significantly obvious in Burst group 

comparing to Pseudo burst group (fig. 7G, Pseudo burst: ∆firing frequency = -6.11 

± 4.70%; Burst: ∆firing frequency = -22.57 ± 3.70%, p = 0.014, unpaired t-test). 

These results indicated that uncoupled-conjunction of the PF and CF was 

insufficient for the maintenance of the intrinsic plasticity.
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Table 5. Active properties of action potential before and after LTD induction.
Among active membrane properties, voltage threshold (Vthreshold) was significantly changed in LTD-
Tetanus group (30min, p = 0.012). Medium afterhyperpolarization (mAHP) was considerably 
decreased in all stimulated groups, including LTD-Tetanus, LTD-Pseudo and LTD-Burst (All groups, 
p < 0.001). Other parameters, such as AP amplitude, fast AHP (fAHP) and full-width-half-maximum 
(FWHM), were not altered
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To further examine changes in the intrinsic properties, I analyzed the properties of 

action potential (AP) (Table 5). I found that the voltage threshold was shifted to 

approximately 3 mV of hyperpolarisation 30 min after the tetanisation [n = 7, -49.3 

± 1.0 (baseline) vs. -52.3 ± 1.8 (t = 30), p = 0.012, post-hoc tukey test after One-

way RM ANOVA], but there were no changes in other groups. The reduction of 

medium after-hyperpolarisation (mAHP) was observed in all groups except control 

group. These reductions were most obvious and significant among the properties of 

AP [Tetanus; 7.4 ± 0.6 mV (baseline) vs. 3.8 ± 0.6 mV (t = 30), F = 28.803, p < 

0.001, Burst; 7.3 ± 0.6 (baseline) vs. 4.5 ± 0.6 (t = 40), F = 24.3, p < 0.001, Pseudo

burst; 6.7 ± 0.6 (baseline) vs. 4.0 ± 0.4 (t = 40), F = 28.4, p < 0.001, One-way RM 

ANOVA]. Robust reduction of input resistance was also observed in LTD-induced 

neurons (Tetanus; 85.7 ± 3.0%, p < 0.001, Burst; 92.2 ± 1.9%, p = 0.023, post-hoc 

tukey test after One-way RM ANOVA; Table 5). The change of input resistance in 

Pseudo burst group showed similar pattern to that of the excitability. It was slightly 

reduced 20 min after induction, but recovered in 40 min (t = 20, 94.6 ± 2.1 %, p = 

0.027; t = 40, 95.7 ± 2.3 %, p = 0.082, post-hoc tukey test after One-way RM 

ANOVA). The changes of the other parameters were less prominent. Given the 

altered AP properties, LTD-IE was derived from altered intrinsic properties, not 

resulting from the decreased synaptic weight.
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Figure 7. Synaptic LTD accompanied by LTD of intrinsic excitability. (A) Induction protocols for 

LTD-Burst and LTD-Pseudo. Thirty times of 7 PF and single CF stimulation with 150 ms interval 

could induce the PF–PC LTD but 600 ms interval could not. (B) Normalized EPSC of both groups. 

LTD was successfully induced in Burst group and there were no changes of EPSCs in Pseudo burst

group. Pseudo burst, open, n = 11; LTD burst, filled purple, n = 10. Scale bars in raw traces, 100 pA 

(vertical) and 50 ms (horizontal). (C – D) Intrinsic excitability of Pseudo burst group. There was 

statistical significance between baseline and the 20 min after induction (n = 11, p = 0.002), but the 

significance disappeared at 40 min (p = 0.092). Scale bars in raw traces, 20 mV (vertical) and 200 ms 

(horizontal). (E – F) LTD-Burst group. Numbers of spikes were significantly reduced after LTD 

induction (F = 21.1, p < 0.001). Scale bars in raw traces are the same as in C. (G) Box and whisker 

plots showing the % value of change in firing frequency in Pseudo burst (grey) and Burst group 

(purple). For statistics, two-way RM ANOVA was used for C and E. Post hoc Tukey’s test was used 

for different time group comparison. Error bar indicates SEM. **p < 0.01, ***p < 0.001.
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3.2 LTD-IE has different developing kinetics from synaptic LTD

Since the excitability change was monitored at two-time points after LTD induction, 

the temporal kinetics of intrinsic plasticity was unclear. To clarify this, the 

depolarizing current eliciting 10-20 spikes (ranging from 100 to 300 pA of current

injection) was injected and the spike count was continuously measured in the 

current clamp mode before and after delivery of induction protocols. The LTD-IE 

was found to be immediately elicited after LTD induction, and magnitude of 

intrinsic plasticity showed slight further development but it did not reach the 

statistical significance (fig. 8A and B). When I applied LTD-Pseudo protocol as a 

control, there were no significant changes in spike count (fig. 8A and B). 
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Figure 8. LTD-IE showed an immediate reduction after induction. (A) Raw traces in several time 

points. Scale bars, 20 mV (vertical) and 200 ms (horizontal). (B) Normalized spike count. LTD-

Pseudo group showed a slight reduction after stimulation, but its spike count gradually rises and was 

fully recovered at 20 min (open, n = 7). Unlike the Pseudo burst group, the Burst group showed an 

immediate reduction after the induction protocol (filled, n = 10). 
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3.3 LTD-IE was not reversed by subsequent LTP-IE induction.

Synaptic LTP and LTD are in complementary. Indeed, reversible changes in 

synaptic efficacy at PF-PC synapses has been shown in in-vitro slice recording and 

behavior test (Boyden and Raymond, 2003; Coesmans et al., 2003) . These 

findings lead to a question whether intrinsic plasticity also shows the reversibility. 

To test this, I developed the LTP-IE protocol modifying from previous studies 

(Belmeguenai et al., 2010; Nataraj et al., 2010). Precisely timed pulse train (5 Hz / 

3 s, pulse duration: 100 ms) was injected every 5 s for 5 min in current clamp mode 

(fig. 9A; upper panel). The amplitude of pulse train was 100 – 150 pA higher than 

injecting current eliciting 5 – 15 spikes. Application of this protocol exhibited the 

potentiation of spike count (n = 9, F = 6.70, p < 0.001, One- way RM ANOVA; fig.

9A). 

After confirmation of the LTP-IE protocol, I delivered two types of serial-

ordered protocol following: 1) LTP-IE – LTP-IE – LTD-burst – LTP-IE (PPDP 

serial); 2) LTD-burst – LTD-burst – LTP-IE – LTD-burst (DDPD serial). In the 

PPDP serial, the first application of LTP-IE significantly potentiated PC 

excitability (135.2 ± 3.3 % of baseline, n = 10, p = 0.043, post-hoc tukey test after 

One-way RM ANOVA compared to the value of prior period; fig. 9B), but there 

were no further changes after following the second induction of LTP-IE (144.5 ± 

8.5 % of baseline, p = 0.939). Application of LTD-burst protocol and the third LTP 

protocol resulted in slight depotentiation (123.1 ± 14.9 % of baseline) and 

repotentiation of excitability (141.9 ± 18.1 % of baseline), respectively, but these 

level of change were not significantly different from that measured before 

induction (p = 0.404 and p = 0.654, respectively). Next, I applied DDPD serial to 

test if LTP-IE protocol reversed LTD-IE. LTD-IE was fully saturated at once after 

application of LTD-inducing protocol (42.5 ± 5.3 % of baseline, n = 4, p < 0.001, 

post-hoc tukey test after One-way RM ANOVA compared to the value of prior 

period; fig. 9C), further reduction of excitability, thereby, was not observed after 

the second induction of LTD (36.5 ± 6.1 % of baseline, p = 0.847). Application of 
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LTP-IE protocol could not result in a significant change of the excitability 

compared to that measured after the first and second induction of LTD (41.0 ± 

10.6 % of baseline, p = 0.940). Finally, the third LTD-burst protocol was delivered, 

and there was no alteration of spike count (38.3 ± 8.8 % of baseline, p = 0.991). 

These data suggested that the intrinsic plasticity of PCs cannot be reversed by the 

opposite direction of plasticity induction. 
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Figure 9. Reverse of intrinsic plasticity. (A) LTP-IE was induced by induction protocol. Raw traces 

in baseline, induction protocol, and 15 min after induction (top, left to right). Excitability was directly 

increased and maintained after induction (bottom, n = 9, p < 0.001). B, Normalized spike count under 

the PPDP serial. The first LTP-IE stably induced potentiation of excitability (n = 10, p < 0.043) and 

there was no further potentiation after the second LTP-IE induction ( p < 0.939, cf. prior period). 

After LTD, the third LTP induction brought slight depotentiation and repotentiation, respectively, but 

this was not significant (LTD induction, p = 0.404; the third LTP induction, p = 0.654, cf. prior 

period). C, Normalized spike count under DDPD serial. Like the PPDP serial, the first LTD induced 

reduction of excitability (n = 4, p < 0.001) and no further changes after the second LTD induction ( p 

= 0.847). LTP-IE induction and the third LTD had no effect on excitability (LTP-IE induction, p = 

940; the third LTD induction, p = 0.991). For statistics, one-way RM ANOVA was used. Post hoc 

Tukey’s test was used for different time group comparisons. Error bar indicates SEM. 
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3.4 The number of recruited synapses were not correlated to the magnitude of

the neuronal plasticity.

LTD-IE is the concomitant of paired stimulation of PF with CF, and incomplete 

paired stimuli could not lead to persistent excitability change. This observation 

indicates that the coincidence of synaptic activation is a prerequisite for the 

intrinsic plasticity. I then inquired whether LTD-IE is dependent on the number of 

activated synapses by synaptic stimulation. Given that a previous study described 

the number of synapses on PC dendrite by its area through electron microscopy 

measurement (Napper and Harvey, 1988), confocal Ca2+ imaging was performed to 

quantify extent activated dendritic area in response to PF stimulation and estimated 

the number of synapses recruited by LTD induction. The stimulation intensity was 

adjusted to elicit from approximately 200 to 600 pA of the evoked EPSC. With this 

intensity, I delivered LTD-Burst protocol without CF stimulation and estimated the 

number of recruited synapses based on the previous report. In this recording, I

confirmed that larger stimuli intensity caused activation of more synapses (p < 

0.001, r = 0.72; fig. 10A and B). Based on this result, I analyzed the correlation 

between stimulation intensity and magnitude of the LTD-IE. The magnitude of the 

excitability change was not in stimulation intensity-dependent manner (p = 0.37, r 

= 0.24; fig. 10C), indicating that there was no correlation between the numbers of 

activated synapses and intrinsic plasticity in my observation. In addition, I found 

that synaptic LTD also did not show significant correlation with stimulation 

intensity (p = 0.75, r = 0.11; fig. 10D). Taken together, temporal coincidence of PF 

and CF activation is the more significant element for induction of the PC plasticity 

than the number of recruited active synapses. 
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Figure 10. Correlation between recruited number of synapses and plasticity. (A) Confocal Ca2+

images (top) and their binary images (bottom) for analysis. The activated dendritic area was increased 

by an increment of stimulation intensity. Scale bars, 10 µm. (B) Linear regression between estimated 

the number of active synapses and stimulation intensity. There was a positive correlation between the 

number of active synapses and stimulation intensity (Pearson’s r = 0.723, p < 0.001). (C) Correlation 

between reduced excitability in LTD-IE and stimulation intensity. There was no correlation between 

reduced excitability and stimulation intensity (Pearson’s r = 0.240, p = 0.370). (D) Correlation 

between the magnitude of synaptic LTD and stimulation intensity. There was no correlation between 

magnitude of synaptic LTD and stimulation intensity (Pearson’s r = 0.115, p = 0.752)
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3.5 Information processing after LTD induction

Given that the cerebellar PCs integrate tremendous input from the sub-cortical 

region and generate the final output signal to its relay neurons, I questioned 

whether the strategy for the information processing would be changed during the 

alteration of intrinsic excitability following synaptic depression. To answer this, 

two types of information processing in PCs were focused: (1) temporally, 

distributed input signal is integrated within a dendrite (fig. 11A). (2) Spike 

frequency adaption (SFA) operates to filter the output signal by attenuating an 

unnecessary firing (Benda and Herz, 2003; Pozzorini et al., 2013) (fig. 11D). 

Temporal summation was evaluated by calculating the ratio of fifth excitatory 

postsynaptic potential (EPSP) to the first elicited by 5 PF stimuli with 10 Hz and 

20 Hz. Reduction of EPSP was observed 40 min after the Burst but not the Pseudo-

burst in comparison to the baseline (t = 40, Pseudo-burst, n = 11, 1.1 ± 1.0; Burst, n 

= 9, 0.7 ± 1.1; p = 0.019, post-hoc tukey test after Two-way RM ANOVA; fig. 11B). 

The EPSP5/EPSP1 ratio, nonetheless, was not changed (t = 40, 0.9 ± 0.06 (Pseudo-

burst) vs. 0.9 ± 0.04 (Burst), p = 0. 804, independent t-test; fig. 11C - F), indicating 

that the PF-LTD resulted in the decrease of the absolute EPSP value without 

changes in the strategy for the temporal summation of the inputs. 

To determine the SFA, all inter-spike-interval (ISI) of the evoked spike train 

elicited by injecting current of 500 pA was calculated and normalized to the first 

ISIs to determine the spike frequency adaptation (SFA; fig. 11E). Despite the 

reduction of the firing rates corresponding to the synaptic LTD, there was no 

significant change in calculated SFA compared to the baseline in all groups 

regardless of what protocol was used (Fig 11. F - I). Taken together, I concluded 

that synaptic LTD might not manifest the changes in the strategy of information 

process, but modify gain responses for generating the AP spike. 
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Figure 11. Information processing strategy was not changed after LTD-IE. (A) Schematic for 

input processing in PCs. (B) Normalized EPSP in Pseudo burst and Burst groups. PF-LTD caused 

reduction of EPSP compared with the Pseudo group (Pseudo, n = 11; Burst; n = 9, F = 4.6, p = 0.048). 

(C) Normalized EPSP summation in LTD-Pseudo and LTD-Burst groups. The normalized summation 

value was not influenced by LTD induction. (Pseudo, n = 11; Burst; n = 9; 20 min, p = 0.167; 40 min, 

p = 0.084). (D) Schematic for output processing in PCs. (E) Counting ISIs. Ten ISIs were measured 

to analyze SFA. (F – I). Normalized instantaneous frequency of all groups. Through time points, the 

power of frequency adaptation was not changed in the control (F), LTD-Tetanus (G), LTD-Burst (H), 

and LTD-Pseudo (I) groups. For statistics, two-way RM ANOVA was used for B and independent t 

test for C. Post hoc Tukey’s test was used for different time group comparisons. Error bar indicates 

SEM. *p < 0.05. 
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3.6 LTD-IE required the Ca2+-signal but depended on the Ca2+-activated K+

channels. 

What is the intracellular signalling involved in the intrinsic plasticity? As I

described above, precisely paired activation of PF and CF is a pivotal factor for 

induction of both synaptic and intrinsic plasticity. It suggests that the LTD-IE may 

share the signalling pathway for PF-LTD. Thus, I firstly asked if the LTD-IE is 

dependent on the Ca2+ signalling, which has been implicated in determining the 

PF-PC LTD (Konnerth et al., 1992). When the intracellular Ca2+ signalling was 

blocked by adding Ca2+ chelator BAPTA (10 mM) to the pipette solution, PF-PC 

LTD was completely abolished (n = 10; fig. 12A). In the same recording, 

prominent change of excitability after LTD induction was not exhibited in presence 

of BAPTA (n = 5, F = 1.262, p = 0.334; fig. 12B), suggesting that the Ca2+ is the 

necessary for the intrinsic plasticity. 

It has widely been described that the intrinsic plasticity is derived from the 

changes in ion channel conductance and/or expression (Belmeguenai et al., 2010; 

Narayanan et al., 2010; Shim et al., 2016; van Welie and Lac, 2011). I observed 

that mAHP was significantly reduced while fAHP was unchanged by application of 

LTD-inducing protocols. It has been widely described that the SK channels 

determine the mAHP rather than fAHP. In addition, SK channels have been 

regarded as the major component for LTP-IE (Belmeguenai et al., 2010; Grasselli 

et al., 2016). Thus, I tested if this type of ion channels were required for the 

excitability change. Bath application of apamin (100 nM), selective antagonist of 

SK-channels, did not affect to the induction of synaptic and intrinsic plasticity 

(synaptic plasticity: n = 7; intrinsic plasticity: n = 7, F = 11.317, p < 0.001, One-

way RM ANOVA; fig. 12E - G). Taken together, I conclude that activity-dependent 

downregulation of intrinsic excitability is not derived from Ca2+-activated K+

channel albeit the Ca2+-dependency of LTD-IE. 

The intracellular Ca2+ derived from synaptic activation governs a variety of 

Ca2+-sensing molecules, such as PKC. To investigate whether LTD-IE requires 
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PKC activation as in synaptic plasticity, LTD-burst protocol was delivered with an 

internal solution including PKC inhibitor peptide, PKC (19-36). Interestingly, 

while both synaptic and intrinsic plasticity were normally induced and maintained 

in the presence of inactive control peptide, [Glu27]-PKC (19-36) [synaptic plasticity: 

n = 7; intrinsic plasticity: n = 8, p = 0.005, F = 8.48, Two-way RM ANOVA; fig.

12C and D), changes of synaptic efficacy and excitability were not induced by 

PKC (19-36) (synaptic plasticity: n = 6; intrinsic plasticity: n = 13, p = 0.288, F = 

1.41, Two-way RM ANOVA). Collectively, the LTD-IE might share a common 

intracellular pathway with PF-LTD, in that PKC activation underlies LTD-IE.
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Figure 12. Synaptic LTD and LTD-IE share the intracellular Ca2+ and PKC pathway as an 

underlying mechanism but SK channels were not related. (A – B) LTD induction under BAPTA-

containing internal solution. PF–PC LTD was completely blocked by 10 mM BAPTA (n = 10) (Α), 

LTD-IE was also abolished under high concentration of BAPTA (n = 5, F = 1.703, p = 0.219) (B). (C 

– D) SK channel blocker treatment. (C) Apamin (100 nM) was not able to block LTD induction (n = 

7). (D) LTD-IE was induced. Excitability of each time point was significantly reduced (after burst, n 

= 5; 20 min, n = 5; 40 min, n = 4; F = 16.255, p = 0.001). (E – F) PKC inhibitor and control peptide 

treatment. (E) PKC inhibitor peptide, PKC (19 –36) (10 µM), blocked LTD induction (filled, n = 6), 

but LTD was successfully induced in control peptide ([Glu 27] PKC(19 –36), 10 µM; open, n = 7). D, 

Excitability of control peptide group showed LTD-IE from immediately after induction protocol to 

end of the recording (after burst, n = 8; 20 min, n = 8; 40 min, n = 6; F = 13.754, p < 0.001), but no 

significant reduction of excitability was observed in PKC inhibitor group (after burst, n = 13; 20 min, 

n = 8; 40 min, n = 6; (F = 1.618, p = 0.211). For statistics, one-way RM ANOVA was used for B, D, 

and F. Post hoc Tukey’s test was used for different time group comparisons. Error bar indicates SEM. 

**p < 0.01, ***p < 0.001, n.s. = not significant. 
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Discussion

In this study, I show that conjunctive activation of PF and CF that induces of PF-

PC LTD down-regulate the intrinsic excitability, resulting in the synergistic 

decrease of neuronal net output. This novel phenomenon shares intracellular Ca2+

signalling and PKC pathway with synaptic LTD but is not regulated by SK 

channels which were known as critical factors for LTP-IE. In the aspect of 

information processing, dendritic temporal summation and SFA power were not 

changed by the LTD-IE, indicating that the strategy for the handling information of 

PCs insensitively reflects the LTD induction.

The bidirectional modulation of the intrinsic excitability in PCs

Intrinsic plasticity complements the synaptic transmission and enables to fulfill 

optimal signal transduction within a local circuit in the region- and cell type-

specific manners (Brager and Johnston, 2007; Mahon and Charpier, 2012; Nataraj 

et al., 2010). In the cerebellum, there are two possible expectations in terms of the 

direction of intrinsic plasticity associated with synaptic LTD: 1) PF-PC LTD may 

induce reduction of the intrinsic excitability of PCs leading to disinhibition on the 

next relay neurons such as neurons in the DCN or the VN. In this case, PC 

excitability is modulated with the same direction of PF-PC synaptic modification, 

resulting in enhanced activity of the DCN and the VN via disinhibition; 2) 

Alternatively, PF-PC LTD may induce LTP-IE of PCs, strengthening the inhibitory 

output of PC on the next relay neurons including the VN. This increased inhibition 

to the VN, however, is also possible to enhance the activity of neural circuit via 

boosting up the rebound activity followed by strong hyperpolarisation in the relay 

neurons (Sekirnjak et al., 2003). This work support the former expectation in which 

the down-regulation of intrinsic excitability occurred with the synaptic LTD in PCs. 

These results are parallel with the prediction of which cerebellum-dependent motor 

learning is associated with the reduced cortical activity (Lev-Ram et al., 2003). 
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Recently, (Yang and Santamaria, 2016) reported that synaptic LTD induction 

potentiates PC excitability showing the opposite to the observation I presented here. 

The authors paired PF stimulation and the somatic depolarisation, instead of CF 

stimulation, with 1 Hz to induce the LTD. This protocol may trigger synaptic and 

intrinsic plasticity via activation of the different intracellular signalling from this

experimental condition. In contrast, I delivered PF and CF stimulation with two 

types of protocol to reflect more physiological circumstance and applied the 

Pseudo-burst induction protocol to exclude bias of long-term recording. 

Conjunctive activation of PF and CF successfully induces not only the synaptic 

LTD but also the LTD-IE. Considering the LTP-IE accompanied with LTP 

induction in PCs (Belmeguenai et al., 2010), this work provides insight into the 

bidirectional modulation of intrinsic excitability in a stimuli-pattern specific 

manner. The same polarity of plasticity between synaptic strength and intrinsic 

excitability may enable to emphasise the decreased or potentiated synaptic current 

by newly tuned membrane excitability, by which total net output of the neurons are 

generated through multiplication of the synaptic current and intrinsic excitability. 

Surprisingly, temporal EPSP summation and SFA are not altered by the induction 

of plasticity, indicating that PCs consistently maintain the strategy to process 

information and filter the output signal after LTD-IE occurs. Taken together, I 

suggest functional roles of the PC intrinsic plasticity as the amplifier within a 

motor learning circuitry.

Underlying mechanism of LTD-IE

Intrinsic plasticity including LTP- and LTD-IE can be triggered by the synaptic 

stimulation inducing LTP and LTD, respectively (Belmeguenai et al., 2010), 

indicating that the synaptic plasticity and intrinsic plasticity share the molecular 

cascades for plasticity induction. Coupled activation by PF and CF is the 

prerequisite for cerebellar LTD induction, which is established through the positive 

feedback loop of PKC-MAPK signalling. By using intracellular Ca2+ chelator and 
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inhibitor peptide of PKC, I confirmed that intracellular Ca2+ signalling plays a 

central role in the LTD-IE induction and synaptic and intrinsic plasticity has a 

common pathway. Besides, LTD is mediated by the more complex interaction 

between kinases and phosphatases. These interactions have also implicated in the 

intrinsic plasticity through the ion channel regulation (Belmeguenai et al., 2010; 

Brager and Johnston, 2007; Cudmore and Turrigiano, 2004; Shim et al., 2016). I

observed the alteration of AP firing properties, such as reduction of input resistance

and mAHP, reflecting the changes in the ion channel conductance and/or 

expression level. Since it has been described that the mAHP correlates to the SK 

channels, I tested the involvement of SK channels in LTD-IE though the bath 

application of apamin (Kato et al., 2006; Pedarzani et al., 2005). This expectation 

is neglected because 1) attenuation of mAHP is also shown without changes in 

excitability when unpaired synaptic stimuli are delivered (Pseudo-burst), and 2) 

application of apamin, SK channel inhibitor, is ineffective to the LTD-IE induction. 

LTD-IE induction also results in the reduction of input resistance. This change is 

derived from the activity-dependent modulation of ion channels, such as voltage-

gated K+ channels, and hyperpolarization-activated cyclic nucleotide gated (HCN) 

channels (Hyun et al., 2013; Shim et al., 2016), rather than the SK channels. Given 

the down-regulation of the intrinsic excitability, even though the voltage threshold 

is shifted to hyperpolarisation after LTD induction, changes of input resistance may 

have a larger impact on the intrinsic excitability via reducing voltage deflection in 

response to the given current. In this study, I observed the aspect of the intrinsic 

plasticity accompanied by synaptic LTD and concluded that synaptic and intrinsic 

plasticity are mediated by the similar signalling cascades. It remains to be 

elucidated what precise mechanism underlies in intrinsic plasticity.

Intrinsic plasticity in motor learning circuitry

What are the physiological consequences of the intrinsic plasticity of cerebellar 

PCs? The neural plasticity occurs in the cerebellar cortex and the VN are important 
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components for VOR learning (Boyden et al., 2004; Ito, 2013). Given the note that 

cerebellar PCs are the only neuron connecting to the VN from the cerebellar cortex, 

the activity-dependent modulation of the PC excitability would have physiological 

significance for motor learning. A mathematical model demonstrated the serial 

process for long-term memory consolidation of eye movement learning (Yamazaki 

et al., 2015). According to the study, depression of synaptic weight between PF-PC 

precedes the changes in synaptic strength between MF-VN in the learning phase. 

Interestingly, the synaptic weight of MF-VN synapses continuously strengthens in 

post-training phase for several hours even though PF-PC LTD is recovered after 

training. This theoretical expectation is parallel with previous studies reporting that 

post-training phase is important for consolidation (Kassardjian et al., 2005; 

Okamoto et al., 2011a; 2011b). The intrinsic plasticity, therefore, may precisely 

instruct the neural plasticity in the VN neurons to consolidate the memory. In 

addition, the data presented here suggests the bidirectional modulation of intrinsic 

excitability in response to synaptic plasticity. This bi-directionality of the intrinsic 

plasticity of PC may have an essential role in cerebellum-dependent motor learning 

circuitry since the polarity of synaptic plasticity are selectively engaged with 

learning paradigms, gain-up and –down (Boyden et al., 2006). Taken together, I

hypothesise that the VN neurons receive the learning pattern via the bidirectional 

modulation of the intrinsic plasticity and synaptic plasticity in the cerebellar cortex. 

In other words, PCs might collect the information through synaptic plasticity and 

transfer the information by modifying their excitability. 

This engaged behavioral evidence leads to the question whether LTD-IE can be 

reversed by application of LTP-inducing protocol because the neural activity is 

dynamically regulated in response to the behavioral modification. However, the 

data I presented here shows that LTD-IE cannot be reversed into LTP-IE, and vice 

versa. These results might be possibly explained by following reasons: 1) Lev-Ram 

et al., (2003) described that synaptic plasticity induced by a higher frequency of PF 

stimulation than 1 Hz cannot be reversed because the stronger stimuli result in 
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more saturation of plasticity (Lev-Ram et al., 2003); 2) Moreover, the total 

duration of recording and stimulation interval may be not enough to elicit the 

reversibility. The mathematical model suggested the change of cerebellar PC 

output is gradually developed for 2 to 4 hour after the learning phase (Yamazaki et 

al., 2015). In addition, the behavioral reversal test indicates that reversal change of 

excitability might build over a longer time than observed in slice recording

(Boyden and Raymond, 2003). Since intrinsic plasticity may be involved in several 

behavioral consequences, unrevealed features of the intrinsic plasticity in behavior 

should be clarified in further study.
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Chapter 4

Synergies between synaptic depression and 

intrinsic plasticity of the cerebellar Purkinje 

cells determining the Purkinje cell output
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Introduction

Many theories have described that experience and use-dependent modifications of 

intrinsic excitability (intrinsic plasticity) could be the one other side of memory 

engram (Daoudal and Debanne, 2003; Debanne et al., 2018; Shim et al., 2018). 

Given that the sensory information is conveyed to the post-synaptic neurons via 

forms of action potential (AP) firing, the modulation of excitability may shape 

information flow and maximize the memory storage in the brain. The changes in 

synaptic weight is ultimately reflected by postsynaptic spike output in order to 

appropriately transduce the information in the network (Mittmann and Häusser, 

2007). In fact, intrinsic excitability determines the patterns of integrating synaptic 

inputs and net output of the neuron (Hoffman et al., 1997; Lev-Ram et al., 2003; 

Shim et al., 2017; Watanabe et al., 2002). Thus, understanding how neurons 

coordinate neuronal input and output signal in an activity-dependent fashion could 

broaden understanding of how information is processed in the neural local circuits.

There has been accumulating evidence indicating the physiological significance of 

the activity-dependent cerebellar Purkinje cell (PC) intrinsic plasticity on the 

cerebellar function beyond long-term depression at parallel fiber – PC synapses 

(PF-PC LTD) theory, the classical view of cellular basis for cerebellar-dependent 

motor learning (Shim et al., 2017). Together with the study describing that 

repetitive PF activation triggers PF-PC LTP as well as LTP-IE, the intrinsic 

plasticity is bidirectionally modulated corresponding to the polarity of synaptic 

plasticity (Belmeguenai et al., 2010). These results suggest that intrinsic plasticity 

may amplify the changes in synaptic efficacy to determine the PC output. The 

multiple lines of evidence has described that alteration of PF synaptic weight 

influences on the spiking activity such as pause duration of spiking activity 

(Grasselli et al., 2016; Mittmann and Häusser, 2007; Steuber et al., 2007). Those 

literatures propose that the changes in modality of spiking activity would affect to 

the relay neurons of PCs such as deep cerebellar nuclei (DCN) and vestibular 

nuclei (VN) neurons through disinhibitory effects. However, how the cerebellar 
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PCs coordinate the synaptic plasticity and PC output signals to appropriately tune 

the postsynaptic spiking activity is still less understood.

In the present study, I investigated the synergies between synaptic and intrinsic 

plasticity in the floccular PCs. Indeed, the LTD-IE in the floccular PCs followed 

timing rules governing the associative PF-PC LTD matched to behavioral learning 

rule (Suvrathan and Raymond, 2018). As the PF-PC LTD, the LTD-IE also required 

mGluR1-PKC pathway and CaMKII signaling, indicating that the intrinsic 

plasticity shares intracellular signaling for synaptic plasticity. The depression of 

synaptic efficacy in the PCs is reflected by postsynaptic spiking activity when both 

PF-PC LTD and LTD-IE occurred. Furthermore, I compared the PF-evoked spiking 

activity by delivering the PF stimulation in the two different dendritic branches of 

the same neuron. Strikingly, synaptically evoked spiking activity was found to be 

decreased when conditioned PF was activated, indicating that the synergistic 

plasticity may be formed in an activated branch-specific manner. Thus, synaptic 

plasticity at the PF-PC synapses may affect to PC spiking output in a supralinear 

manner.
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Material and Methods

1. Animals and Slice preparation

All animal use was in accordance with protocols approved by the Institution’s 

Animal Care and Use Committee of Seoul National University College of 

Medicine. Cerebellar coronal slices were dissected into 250 μm by vibratome 

(Leica, VT1200) from anaesthetized 4- 6 weeks old male C57BL/6 mice in ice-

cold standard artificial cerebrospinal fluid (aCSF) contained with the following (in 

mM): 125 NaCl, 2.5 KCl, 1 MgCl2, 2 CaCl2, 1.25 NaH2PO4, 26 NaHCO3, 10 

glucose bubbled with 95% O2 and 5% CO2. For recovery, slices were incubated at 

32 ˚C for 30 minutes and further 1 hour at room temperature. 

2. Electrophysiology

Slices were put onto a submerged recording chamber on the stage of Olympus 

microscope (BX50WI, Japan) and perfused with aCSF, and kept in place with a 

nylon-strung platinum anchor. All recordings were performed using multiclamp 

700B patch-clamp amplifier (Axon Instruments) with a sampling frequency of 20 

kHz and signals were filtered at 2 kHz. In all recordings, inhibitory synaptic inputs 

were totally blocked by 100 μM picrotoxin to monitor only the excitatory synaptic 

transmission. Patch pipettes (3-4 MΩ) were borosilicate glass and filled with 

internal solution. Composition of the internal solution is described in the Material 

and Method of Part 1. The membrane potential was held on -70 mV in voltage-

clamp (VC) and current-clamp mode (CC). Recordings were discarded if the series 

resistance (Rs) varied by > 15% and the injection current for the holding potential 

exceeded 600 pA. PFs in the molecular layer and CF in the granule cell layer were 

stimulated by an ACSF-filled electrode (fig. 13A). I used three different protocols 

to induce the PF-PC LTD in CC mode for 5 min: 1) tetanizing of PF and CF 

simultaneously (1 Hz, 300 times for 5 min) tetanizing of PF followed by single CF 

stimulation with the stimulus interval of 120 ms (1Hz, 300 times for 5 min), 3) 7 

times of burst stimulation of PF with 100 Hz followed by single CF stimulation 

with the stimulus interval of 150 ms (30 times and sweep interval 10 s for 5 min). 



88

To evaluate the PCs excitability, a series of current steps of 500 ms duration 

ranging from +100 pA to +500 pA with increments of 100 pA with a step interval 

of 4.5 s from a membrane potential of -70 mV was injected in CC mode.

3. Data acquisition and analysis

All data were acquired by Clampex software (Molecular Devices) and analyzed by 

IgorPro 8.1 (Wavemetrics). I evaluated the LTD by normalizing to the average of 

baseline PF-EPSC, and recording was excluded if the baseline current or the 

number of evoked spikes varied by > 20 %. RS was calculated by fitting a single 

exponentials to the voltage responses of the test pulse (-5 mV). 

Data were presented as mean ± SEM and statistical evaluations were performed 

using normality test, equal variant test, independent t-test, One-way repetitive 

measured (RM) ANOVA and Two-way RM ANOVA with post hoc tukey test by 

Origin 8.5 and SigmaPlot 12.0 software. Sample size was approved by power 

analysis using the G*power 3.1.9.2.
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Results

4.1 Timing rules of intrinsic plasticity of floccular PCs

Since the PF-PC LTD of the flocculus, sub-region of the cerebellum taking part in 

motor learning, has been found to be matched to behavioral function (Suvrathan et 

al., 2016), I firstly verified whether intrinsic plasticity would also follow the 

distinctive timing rule for plasticity induction by using whole-cell patch clamp 

recordings in the acute floccular slices from young adult mice (4 – 6 weeks old). 

All recordings were performed in the presence of inhibitor for inhibitory synaptic 

transmission (100µM picrotoxin) (fig. 13A). To confirm this, three different 

protocols for LTD induction were tested in the floccular slices: 1) tetanizing of PF 

and CF simultaneously (PF-LTDISI=0, 1 Hz, 300 times for 5 min; fig. 13B left), 2) 

tetanizing of PF followed by single CF stimulation with the stimulus interval of 

120 ms (PF-LTDISI=120, 1Hz, 300 times for 5 min; fig. 13B middle), 3) 7 times of 

burst stimulation of PF with 100 Hz followed by single CF stimulation with the 

stimulus interval of 150 ms (30 times and sweep interval 10 s for 5 min; PF-

LTDISI=150Burst; fig. 13B right) (Shim et al., 2017; Suvrathan et al., 2016). Consistent 

with the previous study, the associative PF-PC LTD was exerted by the delayed 

pairing of PF and CF stimulation but not by simultaneous stimulation [fig. 13C; % 

of baseline: PF-LTDISI=0 = 120.00 ± 17.33%, n = 7; PF-LTDISI=120 = 59.23 ± 6.46%, 

n = 7; PF-LTDISI=150bust = 65.13 ± 6.61% of baseline, n = 7; F = 6.99, p = 0.005, 

One-way ANOVA]. During the recordings, the access resistance, paired-pulse ratio 

(PPR) and input resistance were monitored, and the data was discared if the 

changes in access resistance exceed 20% compared to baseline (fig. 13D – F). The 

PF-LTDISI=0 protocol did not alter the PPR, implying postsynaptic formation of 

synaptic plasticity (fig. 13E). Interestingly, the LTD-IE was exhibited by only the 

LTD-inducing protocols (PF-LTDISI=120 and PF-LTDISI=150bust) whereas simultaneous 

stimulation of PF and CF failed to induce LTD-IE as well as PF-PC LTD (fig. 14A 
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– C; ∆firing frequency: PF-LTDISI=0 = -12.06 ± 6.95 Hz, n = 5; ISI120 = -43.87 ± 

9.98 Hz, n = 5, p = 0.028, Mann-whitney). The temporal summation of the EPSP 

was comparable between the protocols, indicating that the induction of LTD may 

give rise to reduction of input and output signals without integration patterns of 

synaptic inputs (fig. 14D). Reduced intrinsic excitability of PCs after LTD 

induction may lead to attenuation of PF impact on the postsynaptic spiking output. 

Thus, I furthermore investigated whether the spike output of the PCs would reflect 

the PF-PC LTD. The readout of the spiking output of the PCs after LTD induction 

was the number of spikes evoked by 20 of PF stimulation with 20Hz (fig. 14E and 

F). The PF-evoked spiking output was robustly decreased after LTD induction

(spike count: baseline = 25.83 ± 2.96; t=40 = 9.50 ± 1.36, n = 6, p = 0.0312, 

Wilcoxon test), on the other hand, the simultaneous stimulation of PF and CF 

failed to affect to PC spiking activity (fig. 14E and F; ∆spike count: ISI0 = 0.30 ± 

12.02%, n = 6; ISI120 = -60.52 ± 6.65%, n = 6, p = 0.002, Mann-Whitney test). 

Altogether, I concluded that the activity-dependent modulation of the PC 

excitability in the flocculus matches to behavioral learning rules in align with the 

timing rule governing synaptic LTD. In addition, the PF-PC LTD influences on the 

postsynaptic spiking output, supporting the assumption that the cerebellar LTD 

would decrease the cerebellar cortical output on to the downstream neurons of the 

cerebellar PCs.
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Figure 13.  Timing rules for induction of PF-PC LTD. (A) Illustration of the cerebellar flocculus 

(upper) and the recording site for synaptic plasticity (bottom). (B) Three protocols were used for 

induction of LTD and LTD-IE. Tetanizing of PF with 1 Hz for 5 min was delivered and single CF was 

stimulated simultaneously or  following tetanizing with interval of 120 ms [PF-LTDISI=0, top (grey) 

vs. PF-LTDISI=120, middle (blue)], or the PF-burst protocol consisted of 7 times of burst stimulation 

into PF with 100 Hz followed by CF activation with interval of 150 ms in every 10 s for 5 min [PF-

LTDISI=150burst ms), bottom (dark blue)]. (C) Plots and summarizing box and whisker plots (right) of 

changes in eEPSC from PF-LTDISI=0 (grey, n = 7), PF-LTDISI=120 (blue, n = 7) and PF-LTDISI=150burst

(dark blue, n = 9). Consistent to previous observation, delayed activation of CF with 120 ms and 150 

ms of delay from PF activation induced PF-PTD LTD (F = 9.256, p = 0.001, One-way ANOVA).

Insets (left) show the representative trace of eEPSC before and after induction. Scale bar: 25 ms 

(horizontal) and 50 ms (vertical). (D) Plots showing the changes in access resistance before and after 

induction. The data showing the changes in access resistance was over 20% compared to baseline was 

discarded. (E) Plots showing the changes in paired-pulse ratio before and after induction. All 

protocols did not significantly affect to PPR. (F) Box and whisker plots showing the changes in input 

resistance before and after induction. There were no significant changes in input resistance after 

induction compared to baseline. 

For statistics, one-way ANOVA was used for C and post hoc Tukey’s test was used for different group 

comparison. Asterisks in the panel C (right) denote statistical significances by post hoc Tukey’s test 

after One-way ANOVA. 

Error bar indicates SEM. **p < 0.01.
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Figure 14. Timing rules for induction of LTD-IE. (A – B) Plots showing frequency – current (F/I) 

curve of PF-LTDISI=0 (A: grey; n = 5) and PF-LTDISI=120 (B: blue; n = 5). Insets show representative 

traces of depolarization-induced AP train. Intrinsic excitability was significantly decreased after LTD 

induction with PF-LTDISI=120. Scale: 200 ms (horizontal) and 20 mV (vertical). (C) Summarizing box 

and whisker plots showing comparison of ∆ firing frequency between groups (∆firing frequency: PF-

LTDISI=0 = -12.06±6.95%, n = 5; PF-LTDISI=120 = -43.87 ± 9.98%, n = 5, p = 0.03, Mann-whitney). (D) 

Bar graph showing the changes in temporal summation of the EPSP from two protocols (black: PF-

LTDISI=0; blue: PF-LTDISI=120). Summation was determined by calculating the ratio of 5th EPSP 

amplitude to 1st EPSP amplitude (PF-LTDISI=0: p = 0.71, n = 6; PF-LTDISI=120: p = 0.36, n = 6). Insets

(right) show a representative trace and protocol. EPSP summation was not changed after LTD 

induction. Scale: 100 ms (horizontal) and 5 mV (vertical). (E) Bar graphs showing the changes in PF-

evoked spike count between before and after induction from the groups (grey: PF-LTDISI=0 before 

induction; black: PF-LTDISI=0 after induction, n = 6; light blue: PF-LTDISI=120 before induction; blue: 

PF-LTDISI=120 after induction, n = 7). Only in PF-LTDISI=120 showed the significant reduction of the 

PF-evoked spike count (PF-evoked spike count: baseline = 25.83 ± 2.96 vs. t = 40 = 9.50 ± 1.36, p = 

0.03, Wilcoxon test) compared to PF-LTDISI=0 (PF-evoked spike count: baseline = 17.67 ± 1.23 vs. t = 

40 = 17.17 ± 1.60, p = 0.81, Wilcoxon test). Insets show representative traces of PF-evoked spikes, 

elicited by stimulating 20 times of PF with 20 Hz. Scale: 250 ms (horizontal) and 20 mV (vertical). (F) 

Box and whisker plots showing the PF-evoked spike count from PF-LTDISI=0 (grey) and PF-LTDISI=120

(blue). LTD-inducing protocol robustly decreased the PF-evoked spiking activity (∆spike count: PF-

LTDISI=0 = 0.30 ± 12.02% vs. PF-LTDISI=120 = -60.52 ± 6.65%, p = 0.002, Mann-whitney test).

For statistics, one-way RM ANOVA was used for A and B and post hoc Tukey’s test was used for 

different time group comparison. Mann-Whitney test was used for C and F and Wilcoxon test was 

used for comparison of paired data set in D and E (middle). Error bar indicates SEM. n.s. denotes ‘not 

significant’; *P < 0.05, **p < 0.01, ***p < 0.001.



93

4.2 Intrinsic plasticity shares intracellular signaling for PF-PC LTD 

I previously reported that synaptic LTD and LTD-IE were dependent on the 

intracellular Ca2+ elevation and PKC signaling (Shim et al., 2017). Also, the 

intrinsic plasticity of the floccular PCs was found to be exerted when PF-PC LTD 

occurred (fig. 14B), indicating that the LTD-IE in PCs may share signaling 

pathway for PF-PC LTD. Thus, I investigated whether the LTD-IE would share 

underlying mechanisms governing synaptic LTD. To address this, the competitive 

antagonist of mGluR1, (S)-(+)-α-Amino-4-carboxy-2-methylbenzeneaceticacid 

(LY 367385, 100µM) was applied in the recording chamber in order to inhibit 

mGluR1 activation during the induction of PF-PC LTD. In the light of the previous 

studies, inhibition of mGluR1 prevented the forming PF-PC LTD in the floccular 

PCs (Fiala et al., 1996). In addition to the synaptic plasticity, the LTD-IE was not 

shown in the presence of LY 367385 [fig. 15A and B; % of baseline (A): 

LY367385-treated = 96.04 ± 7.41%, n = 5, p = 0.02, compared to the value shown 

in fig. 14B; Firing frequency: F(2, 8) = 3.12, p = 0.10, Two-way RM ANOVA]. 

Interestingly, the excitability of PCs was decreased 20 min after induction, 

however, the changes in excitability was totally abolished 40 min after induction, 

indicating that the intrinsic plasticity accompanied by synaptic depression required 

mGluR1-PKC signaling pathway (firing frequency at 500 pA injection : baseline = 

68.37 ± 2.37 Hz; t=20 = 49.64 ± 4.59 Hz; t=40 = 62.75 ± 6.89 Hz, n = 5, baseline 

vs. t=20: p = 0.0001; baseline vs. t=40: p = 0.18, post-hoc tukey test). PF-evoked 

spike output also showed no significant changes after LTD-induction with mGluR1 

antagonist compared to the baseline (fig. 15C and D; ∆spike count: -4.06 ±5.81%, 

n = 5, p = 0.002, Mann-Whitney test, compared to the value shown in fig. 14H

after LTD induction). 

Given that mGluR-PKC signaling-dependent cerebellar LTD has been found to 

be supported by Ca2+-dependent kinase activity such as Ca2+/calmodulin-

dependent protein kinase II (CaMKII) (Kawaguchi and Hirano, 2013), I tested if 
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CaMKII signaling would be also involved in LTD and LTD-IE in the floccular PCs. 

To inhibit the CaMKII signaling during the LTD induction, 4-[(2S)-2-[(5-

isoquinolinylsulfonyl)methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl] 

phenyl isoquinolinesulfonic acid ester (KN-62, 3 µM) was applied into the slices 

throughout recordings (n = 7). In presence of CaMKII inhibitor, KN-62, neither 

PF-PC LTD, LTD-IE nor PF-evoked spike count was not elicited (fig. 15E – H), 

indicating that the mGluR1 signaling may play a critical role in synaptic and 

intrinsic plasticity of the cerebellar PCs. 
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Figure 15. The LTD-IE is dependent of mGluR1 signaling. (A) Plots (left) showing the normalized eEPSC 
before and after LTD induction in a presence of mGluR1 inhibitor, LY367385 (100 µM) and summarizing box and 
whisker plots (right) of changes in eEPSC corresponding to ISI120 (blue, value shown in fig. 14B, n = 7) and 
LY36738-treated group (black, n = 5). Compared to ISI120, LY367385 prevented induction of PF-LTD (p = 0.02, 
Mann-whitney test). (B) Plots showing frequency – current (F/I) curve of LY367385-treated group corresponding 
to time after induction (grey: baseline; black open: t = 20; black closed: t = 40, n = 4, p = 0.10, Two-way RM 
ANOVA). The statistical difference was shown only at t = 20 compared to baseline and there was no significance 
between baseline and t = 40 (baseline vs. t = 20: p = 0.001; baseline vs. t = 40: p = 0.18, post-hoc tukey test). 
Insets show representative traces of depolarization-induced AP train. Scale: 200 ms (horizontal) and 20 mV 
(vertical). (C) Bar graphs showing the changes in PF-evoked spike count between before and after induction in a 
presence of LY367385 (grey: baseline; black: t = 40). There was no significant changes in PF-evoked spike count 
before and after LTD induction (PF-evoked spike count: baseline = 19 ± 1.98 vs. t = 40 = 17.8 ± 0.97, p = 0.63, 
Wilcoxon test). Insets show representative traces of PF-evoked spikes, elicited by stimulating 20 times of PF with 
20 Hz. Scale: 250 ms (horizontal) and 20 mV (vertical). (D) Box and whisker plots showing the PF-evoked spike 
count from ISI120 (blue) and LY367385-treated group (grey). Inhibition of mGluR1 prevented the changes in PF-
evoked spike output (∆spike count in LY367385- treated group = -4.06 ±5.81%, comparison with the value of 
ISI120, p = 0.01, Mann-whitney test). (E) Plots (left) showing the normalized eEPSC before and after LTD 
induction in a presence of CaMKII inhibitor, KN62 (3 µM) and summarizing box and whisker plots (right) of 
changes in eEPSC corresponding to ISI120 (blue, value shown in fig. 14B, n = 7) and KN62-treated group (black, n 
= 7). Compared to ISI120, KN62 prevented induction of PF-LTD (p = 0.0003, Mann-whitney test). (F) Plots 
showing frequency – current (F/I) curve of LY367385-treated group corresponding to time after induction (grey: 
pre-induction; black: post-induction, n = 5). Insets show representative traces of depolarization-induced AP train. 
Scale: 200 ms (horizontal) and 20 mV (vertical). (G) Bar graphs showing the changes in PF-evoked spike count 
between before and after induction in a presence of KN62 (grey: pre-induction; black: post-induction). There was 
no significant changes in PF-evoked spike count before and after LTD induction (PF-evoked spike count: pre-
induction = 17.43 ± 0.10 vs. post-induction = 18.43 ± 2.47, p = 0.63, Wilcoxon test). Insets show representative 
traces of PF-evoked spikes, elicited by stimulating 20 times of PF with 20 Hz. Scale: 250 ms (horizontal) and 20 
mV (vertical). (H) Box and whisker plots showing the PF-evoked spike count from ISI120 (blue) and KN62-treated 
group (grey). Inhibition of CaMKII prevented the changes in PF-evoked spike output (∆spike count in KN62-
treated group = 7.17 ± 17.71%, comparison with the value of ISI120, p = 0.02, Mann-whitney test).

For statistics, Mann-whitney test was used for A (right), D, E (right) and H and Wilcoxon test was used for 
comparison of paired data set in C and G. Two-way RM ANOVA was used for B and post hoc Tukey’s test was 
used for different time group comparison. Error bar indicates SEM. n.s. denotes ‘not significant’; *P < 0.05, **p < 
0.01, ***p < 0.001. * in panel B indicated statistical difference between each time point and significances was 
tested by post-hoc tukey test of Two-way RM ANOVA. 
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4.3 Conditioned PF branches contributing to robust reduction of spike output
of the PCs.

Synaptic plasticity is thought to be highly localized whereas intrinsic plasticity 

could lead to global changes in neuronal activity. This assumption seems as if the 

intrinsic plasticity distorts the input specificity from the localized alteration of 

synaptic gain. Several lines of evidence have described that each individual 

dendritic branches of a neuron could be an information processing unit, 

(Govindarajan et al., 2006; Ohtsuki et al., 2012; Wilms and Häusser, 2015; Zang et 

al., 2018). I asked if the cerebellar PCs would associate the PF-PC LTD with the 

LTD-IE reflecting postsynaptic spiking output in an activated-branch specific 

manner. To answer this, electrical stimuli were delivered into the two different 

branches of PFs beams (fig. 16A and B). During the induction period, PF-PC LTD 

protocol was delivered at the conditioning site (conditioned PF) whereas the PF 

tetanizing was omitted at the other site of the branch (unconditioned PF). PF-PC 

LTD and LTD-IE were exhibited as shown in fig. 14B and D [% of baseline (C): 

conditioned PF = 67.16 ± 3.51% vs. unconditioned PF = 110.10 ± 5.05%, n = 8, p 

= 0.0002; Firing frequency (D): pre-induction = 71.41 ± 5.83 Hz vs. post-induction 

= 47.41 ± 4.75, F (1, 7) = 35.09, p = 0.0006, Two-way RM ANOVA, p < 0.0001, 

post-hoc tukey test]. However, there was no change in synaptic weight at the non-

conditioned branch (% of baseline: conditioned PF = 67.16 ± 3.51% vs.

unconditioned PF = 110.10 ± 5.051%, p = 0.0002, Mann-whitney test). Notably, 

the PF-evoked spike count was robustly decreased when conditioned PF was 

stimulated whereas unconditioned PF-evoked spike count showed slight but not 

significant reduction compared to baseline (fig. 16E and F; ∆spike count: 

conditioned PF = -52.28 ± 4.35%; unconditioned PF = -11.71 ± 5.97%, n = 8, p = 

0.0006, Mann-whitney test). Thus, synaptic LTD and LTD-IE may synergistically 

coordinate input-output signals. Moreover, these results implicate the highly 

localized occurrence of synaptic and intrinsic plasticity, supporting the idea that 

synergistic cooperation of spiking output during the learning. 
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Figure 16. Synergistic plasticity of the PC spike output. (A – B) DIC image and illustration of experimental 

strategy. Two sites of PF branches of the one neuron were stimulated. (B) LTD-inducing protocol was delivered 

into the one site of PF branch (conditioned PF, blue) and tetanizing was omitted in the other side of PF branch 

(unconditioned PF, purple). (C) Plots (left) showing the normalized eEPSC before and after LTD induction in the 
two different branches and summarizing box and whisker plots (right) of changes in eEPSC of conditioned PF 
(blue, n = 8) and unconditioned PF (purple, n = 8). PF-PC LTD occurred only in the conditioned PF (% of baseline: 
conditioned PF = 67.16 ± 3.51% vs. unconditioned PF = 110.10 ± 5.05%, Mann-whitney test). (D) Plots showing 
frequency – current (F/I) curve pre and post induction of LTD (black open: pre-induction; blue closed: post-
induction; n = 8, p = 0.0006, Two-way RM ANOVA). Insets show representative traces of depolarization-induced 
AP train. Scale: 200 ms (horizontal) and 20 mV (vertical). (E) Bar graphs showing the changes in PF-evoked spike 
count between conditioned PF and unconditioned PF (grey upper: pre-induction at conditioned PF; blue: post-
induction at conditioned PF; grey lower: pre-induction at unconditioned PF; purple: post-induction at 
unconditioned PF). There was significant changes in PF-evoked spike count when conditioned PF was stimulated 
(spike count: pre-induction = 15.38 ± 1.34; post-induction = 7.13 ± 0.64, n = 8, p = 0.008) while spike count was 
not changed when unconditioned PF was stimulated (spike count: pre-induction = 18.13 ± 3.00; post-induction = 
15 ± 1.43, n = 8, p = 0.13). Insets show representative traces of PF-evoked spikes, elicited by stimulating 20 times 
of PF with 20 Hz. Scale: 250 ms (horizontal) and 20 mV (vertical). (F) Box and whisker plots showing the PF-
evoked spike count from conditioned PF (blue) and unconditioned PF (black). Changes in PF-evoked spike output 
was prominent at the conditioned PF compared to unconditioned PF (∆spike count in conditioned PF = -52.28 ± 
4.35% vs. unconditioned PF = -11.71 ± 5.97, p = 0.0006, Mann-whitney test).

For statistics, Mann-whitney test was used for C (right) and F and Wilcoxon test was used for comparison of 
paired data set in E. Two-way RM ANOVA was used for D and post hoc Tukey’s test was used for different time 
group comparison. Error bar indicates SEM. n.s. denotes ‘not significant’, **p < 0.01, ***p < 0.001. * in panel D 
indicated statistical difference between each time point and significances was tested by post-hoc tukey test of Two-
way RM ANOVA. 
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4.4 Sufficient changes in spiking output requires both of plasticity, synaptic 

and intrinsic plasticity . 

Would the spiking output of PCs reflect either PF-PC LTD or LTD-IE? To clarify 

this, I pharmacologically inhibited PF-PC LTD without excitability changes by 

applying the first small-molecule inhibitor (FSC231, 50 µM) which prevents 

internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)

receptors (Ho et al., 2009; Schonewille et al., 2011; Thorsen et al., 2010). As a 

control, DMSO was applied to recording chamber, instead of FSC231. The 

FSC231 effectively inhibited PF-PC LTD compared to the data shown in fig 14B 

(PF-tetanus ISI0) and DMSO control (fig. 17A; % of baseline: DMSO = 63.33 ± 

3.33%, n = 5; FSC231 = 93.60 ± 4.61%, n = 5, p = 0.0014, One-way ANOVA 

post-hoc tuckey test, comparing to data of ISI0). In contrary to effect on the 

synaptic plasticity, FSC231 did not affect to the LTD-IE [fig. 17B - D; (B) Firing 

frequency: DMSO: F(5, 20) = 4.64, p = 0.0057, Two-way RM ANOVA; FSC231 = 

F (1, 4) = 8.88, p = 0.04]. The PF-evoked spiking activity was found to be 

decreased in both DMSO-treated control and FSC231-treated slices after induction 

of PF-PC LTD (fig. 17E). However, the extent of changes in PF-evoked spike 

count was indeed more robust in the FSC231-treated group compared to DMSO-

control (fig. 17F; ∆spike count: DMSO = -65.15 ± 5.70%, FSC231 = -31.76 ± 

11.85%, p = 0.039, t-test).

Next, I further tested if excitability changes per se would enable to be reflected 

in spiking output. To prove this, I used a transgenic mice model, the PC-specific 

stromal interaction molecule 1 knockout mice (STIM1PKO), previously confirmed 

the impairment of intrinsic plasticity without deficit of synaptic plasticity (Ryu et 

al., 2017). Consistent with the previous study, the synaptic plasticity was 

comparable between genotypes, however, the STIM1PKO exhibited deficit of the 

LTD-IE compared to wildtype littermates (STIM1WT) (fig. 18A – D; synaptic 

plasticity: STIM1WT n = 6, STIM1PKO n = 6, synaptic plasticity: p = 0.81, Mann-
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whitney test; intrinsic plasticity: STIM1WT: F (5, 25) = 78, p < 0.001; STIM1PKO: 

F(1, 5) = 1.42, p = 0.29, Two-way RM ANOVA). Notably, the PF-spike output 

was significantly decreased in STIM1WT compared to STIM1PKO, however, % of 

changes in the spike count was found to be obvious in STIM1WT, as the results 

from inhibition of PICK1 (fig. 18E and F; ∆spike count: STIM1WT = -64.17 ± 6.48, 

n = 6; STIM1KO = -26.17 ± 4.18, n = 6, p = 0.004, Mann-whitney test). Altogether, 

the activity-dependent modulation of neuronal output requires synergistic 

coordination of synaptic input and neuronal excitability change. 
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Figure 17. Activity-dependent modulation of PC spike output required synergies between synaptic and 

intrinsic plasticity: effect of synaptic plasticity on the spiking output. (A) Plots (left) showing the normalized 
eEPSC before and after LTD induction in a presence of PICK1 inhibitor, FSC231 (50 µM, orange, n = 5) and 
DMSO control (1:1000, black, n = 5) and summarizing box and whisker plots (right) of changes in eEPSC. 
Compared to ISI120, FSC231 prevented induction of PF-LTD (% of baseline: DMSO control = 63.33 ± 3.33%, p = 
0.86; FSC231 = 93.60 ± 4.61%, p = 0.001, One-way ANOVA post-hoc tukey test compared to ISI120). (B) Plots 
showing frequency – current (F/I) curve of DMSO control and FSC231-treated group corresponding to time after
induction (grey open: DMSO pre-induction; black closed: DMSO post-induction, n =5, F(5, 20) = 4.64, p = 0.006;
orange open: FSC231 pre-induction; orange: FSC231 post-inuction, n = 5, F(1, 4) = 8.88, p = 0.04, Two-way RM 
ANOVA). LTD-IE was exhibited in both DMSO- and FSC231-treated groups. Insets show representative traces of 
depolarization-induced AP train. Scale: 200 ms (horizontal) and 20 mV (vertical). (C – D) Box and whisker plots 
showing the changes in excitability after LTD induction throughout the groups including ISI120 (blue), DMSO-
(black) and FSC231-treated groups (orange). There were no significant differences of excitability change between 
groups [(C): F(2, 12) = 0.61, p = 0.56; (D): F(2, 12) = 0.61, p = 0.56, One-way ANOVA]. (E) Bar graphs showing 
the changes in PF-evoked spike count between before and after induction in a presence of FSC231 (light orange: 
pre-induction; orange: post-induction) and DMSO (grey: pre-induction; black: post-induction). The PF-evoked 
spike count before and after LTD induction was significantly reduced in both groups (spike count: DMSO pre-
induction = 19.00 ± 1.00; post-induction = 6.80 ± 1.07, n = 5, p = 0.0006, FSC231 pre-induction = 17.4 ± 1.86; 
post-induction = 12.2 ± 2.538, n = 5, p = 0.039, paired t-test). Insets show representative traces of PF-evoked 
spikes, elicited by stimulating 20 times of PF with 20 Hz. Scale: 250 ms (horizontal) and 20 mV (vertical). (F) 
Box and whisker plots showing the PF-evoked spike count from DMSO (black) and FSC231-treated group 
(orange). The PF-evoked spike count shored less decrease in the FSC231 treated group compared to DMSO 
control (∆spike count: DMSO = -65.15 ± 5.70% vs. FSC231 = -31.76 ± 11.85%, p = 0.04, t-test). 

For statistics, One-way ANOVA test was used for A, C and D and post-hoc tukey test was used for different 
individual group comparison. And Two-way RM ANOVA was used for B and post hoc Tukey’s test was used for 
different time group comparison and paired t-test was used for E and t-test was used for F. Error bar indicates 
SEM. n.s. denotes ‘not significant’; *P < 0.05, **p < 0.01, ***p < 0.001. * in panel A indicated statistical 
difference between subgroups and significances was tested by post-hoc tukey test of Owo-way RM ANOVA. * in 
panel B indicated statistical difference between each time point and significances was tested by post-hoc tukey test 
of Two-way RM ANOVA and 
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Figure 18. Activity-dependent modulation of PC spike output required synergies between synaptic and 

intrinsic plasticity: effect of intrinsic plasticity on the spiking output. (A) Plots (left) showing the normalized 
eEPSC before and after LTD induction from STIM1WT (blue, n = 6) and STIM1PKO (red, n = 6) and summarizing 
box and whisker plots (right) of changes in eEPSC. The changes in eEPSC was comparable between genotypes (% 
of baseline: STIM1WT = 56.71 ± 3.68% vs. STIM1PKO = 62.92 ± 6.47%, p = 0.82, Mann-whitney test). (B) Plots 
showing frequency – current (F/I) curve of STIM1WT (left) and STIM1PKO (right) corresponding to time after
induction. LTD-IE was impaired in STIM1PKO while LTD-IE was intact in wildtype littermates [STIM1WT : black 
= pre-induction; blue = post-induction, n = 6, F (5, 25) = 78, p < 0.001; STIM1PKO: black = pre-induction; red = 
post-induction, n = 6, F(1, 5) = 1.42, p = 0.29, Two-way RM ANOVA]. Insets show representative traces of 
depolarization-induced AP train. Scale: 200 ms (horizontal) and 20 mV (vertical). (C – D) Box and whisker plots 
showing the changes in excitability after LTD induction throughout the groups between genotypes. There were 
significant differences of excitability change between genotypes [(C): p = 0.03; (D): p = 0.03]. (E) Bar graphs 
showing the changes in PF-evoked spike count between before and after induction from STIM1WT (light blue: pre-
induction; blue: post-induction) and STIM1PKO (light red: pre-induction; red: post-induction). The PF-evoked 
spike count before and after LTD induction was significantly reduced in both groups (spike count: STIM1WT pre-
induction = 17.00 ± 0.77; post-induction = 6.25 ± 1.13, n = 6, p = 0.03, STIM1PKO pre-induction = 16.5 ± 1.84; 
post-induction = 12.33 ± 1.76, n = 6, p = 0.03, Wilcoxon test). Insets show representative traces of PF-evoked 
spikes, elicited by stimulating 20 times of PF with 20 Hz. Scale: 250 ms (horizontal) and 20 mV (vertical). (F) 
Box and whisker plots showing the PF-evoked spike count from STIM1WT (blue) and STIM1PKO (red). The PF-
evoked spike count shored less decrease in the STIM1PKO compared to STIM1WT (∆spike count: STIM1WT = -

64.17 ± 6.477% vs. STIM1PKO = -26.17 ± 4.18%, p = 0.004, Mann-whitney test). 

For statistics, Mann-whitney test was used for A, C, D and F and Wilcoxon test was used for paired data set of E. 
And Two-way RM ANOVA was used for B and post hoc Tukey’s test was used for different time group 
comparison. Error bar indicates SEM. n.s. denotes ‘not significant’; *P < 0.05, **p < 0.01, ***p < 0.001. * in 
panel B indicated statistical difference between each time point and significances was tested by post-hoc tukey test 
of Two-way RM ANOVA.
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4.5 Supralinearity of spiking output coordination after induction of PC

plasticity

The significant changes in spike output after the synaptic plasticity was shown 

when the intrinsic plasticity was accompanied in the conditioned dendritic branch-

specific manner. Thus, the relationship of synaptic plasticity or intrinsic plasticity 

with the spiking output would not be assumed to be correlated. However, the 

whole data of changes in synaptic weight or intrinsic excitability was found to be 

correlated with postsynaptic spike output (fig. 19A and B; spike output – synaptic 

plasticity: R2 = 0.47, p < 0.0001, n = 65; spike output – intrinsic plasticity: R2 = 

0.18, p = 0.001, n = 59). These data might result from the bias because the whole 

data set includes various outcomes corresponding to the experimental condition.

Activity-dependent alteration of synaptic weight, excitability and PF-evoke spike 

count were indeed divergent depending on the experimental condition such as 

pharmacology or induction protocol I used (fig. 20A – C). Based on the 

experimental group, the whole data set was categorized by following four groups: 

1) PF-LTDISI=0, LY367385 and KN62-treated group showed changes in neither 

synaptic weight nor excitability (group-A), 2) FSC231-treated, unconditioned PF 

and STIM1PKO groups showed either changes in synaptic weight (Group-B) or 3)

intrinsic excitability (Group-C) and 4) PF-LTDISI=120, DMSO, conditioned PF and 

STIM1WT group displayed cooccurrence of both plasticity (group-D). Interestingly, 

the changes in spike output were distinct between groups and there was no 

correlative relationship between spike output and changes in neuronal activity (fig. 

19D and E). Rather, the spiking output of the cerebellar PCs after LTD induction 

was shown to be supralinear manner. Notably, the cumulative fraction revealed

that modulation of spike output was robustly classified and moreover, the synaptic 

plasticity sufficiently was reflected by postsynaptic spiking output when the 

intrinsic plasticity is accompanied (fig. 19F and G). 

Furthermore, to avoid the bias of classification, I re-categorized the whole data 
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set with unsupervised way based on the data. Criteria for classification was 20 % 

of changes compared to their baseline. In parallel with supervised categorization, 

spike output was also modulated by a supralinear manner (fig. 19H and I). 

Although the changes in spiking output in the Group-C and Group-D groups were 

comparable, the impact of the synaptic plasticity on the PC output signals was 

more prominent in the Group-D group (fig. 19J and K). In conclusion, the 

synergies between synaptic and intrinsic plasticity of the cerebellar PCs may 

control the PC output in order to sufficiently convey an information to cerebellar-

targeted neurons. Moreover, the input-output signal coordination is modulated in a 

supralinear fashion. 
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Figure 19. Linearity of spiking output between changes in synaptic weight and excitability. Extent of 

alteration of synaptic weight and excitability were found to be correlated with spike output of the PCs when 

whether neuronal activity changed was not regarded. 
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Figure 20. Supralinearity of spiking output coordination after induction of PC plasticity. 

(A – C) Bar graph and scatter plots showing changes in synaptic weight (A), excitability (B) 

and PF-evoked spike output (C). Changes in neuronal activity over -20 % was criterion for 

depression which colored in orange; Changes in neuronal activity exceeding 20% was 

criterion potentiation which colored in blue; Otherwise was ‘not changed’ which colored in 

grey. (D) Categorization standard following four sub-groups based on experimental 

condition (Supervised) or data (Unsupervised): 1) without changes in synaptic weight and 

intrinsic excitability (No LTD / No LTD-IE; Group-A, black), 2) occurrence of LTD-IE 

without changes in synaptic weight (No LTD / LTD-IE; Group B, blue), 3) Occurrence of PF-

PC LTD without LTD-IE (LTD / No LTD-IE; Group-C, green), 4) cooccurrence of PF-PC LTD 



107

and LTD-IE; LTD / LTD-IE, red). (E – F) Scatter plots showing relationship between spike 

output and synaptic plasticity (E), spike output and intrinsic plasticity (F). Each sub-groups 

were categorized by experimental condition (supervised). Distribution of data was 

distinguishable between subgroups. (G) Cumulative fractions showing distribution of spike 

output corresponding sub-groups. Group-D was shown to be distinctive outcomes of 

plasticity induction from other sub-groups (Each colors of asterisks indicated statistical 

differences compared to Group-D with other subgroups: green = difference between Group-

C (p = 0.0001) and D; blue = between Group-B and D (p = 0.0001); black = between Group-A 

and D (p = 0.0003, Kolmogorov-Smirnov test). (H) Summarizing bar graphs showing 

differences of spike output between sub-groups. Compared to Group-A (∆spike output = 

1.57 ± 6.88%, n = 18), Group-D showed prominent reduction of spike output (∆spike output 

= -59.48 ± 2.88%, n = 25, p < 0.0001, One-way ANOVA post-hoc tukey test). Spike output was 

Sub-groups showing changes in either synaptic weight or excitability were relatively less 

than the data shown in Group-D (∆spike output: Group-B = -19.42 ±6.22%, n = 13; Group-C = 

-26.17 ± 4.18%, n = 6, between Group-B and D: p < 0.0001; between Group-C and D: p = 0.021,

One-way ANOVA post-hoc tukey test). (I – J) Scatter plots showing relationship between 

spike output and synaptic plasticity (I), spike output and intrinsic plasticity (J). Each sub-

groups were categorized by data (unsupervised). Depression of synaptic weight or 

excitability was determined by changed value below -20% compared to baseline of each data. 

Similar to scatter plots shown in panel E and F, distribution of data was also distinguishable 

between subgroups. (K) Cumulative fractions showing distribution of spike output 

corresponding sub-groups. Group-D was shown to be distinctive outcomes of plasticity 

induction from other sub-groups (Each colors of asterisks indicated statistical differences 

compared to Group-D with other subgroups: blue = difference between Group-B and D (p <

0.0003); black = between Group-A and D (p < 0.0001, Kolmogorov-Smirnov test). There was 

also significant difference between Group-C and D (p = 0.02). (L) Summarizing bar graphs 

showing differences of spike output between sub-groups. Compared to Group-A (∆spike 

output = 3.67 ± 8.41%, n = 14), Group-D also showed prominent reduction of spike output 

(∆spike output = -56.82 ± 3.92%, n = 23, p < 0.0001, One-way ANOVA post-hoc tukey test). 

Spike output was Sub-groups showing changes in either synaptic weight or excitability were 

relatively less than the data shown in Group-D (∆spike output: Group-B = -17.10 ± 6.27%, n = 

17; Group-C = -38.71 ± 6.74, n = 8, between Group-B and D: p < 0.0001; between Group-C and 

D: p = 0.25; between group-B and C: p = 0.15, One-way ANOVA post-hoc tukey test). The 

aspects of spike output changes after LTD induction of the Supervised categorization were 

similar to the Unsupervised categorization of sub-groups of whole data. Altogether, the 

activity-dependent modulation of spike output may require the synergies between synaptic 

and intrinsic plasticity, implying supralinearity of input-output coordination. 
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Discussion

Modern theories of neuroscience have assumed that synaptic plasticity may control 

neuronal output in an activity-dependent manner. Colleagues and I previously 

suggested that the intrinsic plasticity of the cerebellar PCs accompanying the 

synaptic plasticity may play a role in shaping the neuronal net output during 

learning (Shim et al., 2017; 2018). This work broadens the previous 

understanding of the role of intrinsic plasticity in the information processing. 

Dendritic branch-specific formation of LTD-IE as well as PF-PC LTD may control 

the neuronal net output in an activity-dependent manner. 

In the present study, elucidate several features of intrinsic plasticity of the 

cerebellar PCs in the flocculus. First of all, formation of LTD-IE in PCs is 

dependent on the precise timing rules and intracellular signaling cascade for 

governing the PF-PC LTD. In addition, the intrinsic plasticity may be formed at the 

conditioned dendritic branches where the synaptic plasticity is induced. This 

branch-specificity of synaptic and intrinsic plasticity in PCs enables the synaptic 

inputs to robustly affect to neuronal net output. Notably, the synaptic input-driven 

spiking activity of PCs is shown to be significantly decreased when the conditioned 

dendritic branch is stimulated whereas the synaptic inputs from the unconditioned 

branches may be neglected. Altogether, the neuronal output is determined by 

synergistic coordination of input-output signals in the dendrosomatic axis. 

Synaptic plasticity is thought to be formed at the specific synaptic area. On the 

other hand, intrinsic plasticity may seem to be a global change of the neurons,

hence the intrinsic plasticity would distort the synapse-specificity of the synaptic 

plasticity. If the intrinsic plasticity controls the neuronal output signals per se, the 

neurons unable to distinguish the spatiotemporal patterns of synaptic inputs from

insignificant inputs. Given the morphological features of the cerebellar PC dendrite, 

this scenario would not be efficient to process the sensory information. There is 
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accumulating evidence showing that information processing in the dendrites is 

compartmentalized (Fu et al., 2012; Legenstein and Maass, 2011; Ohtsuki et al., 

2012; Zang et al., 2018). Interestingly, the membrane potential and responsiveness 

to synaptic inputs are found to be heterogeneity in individual dendritic branches of 

the cerebellar PCs, implicating that the not only the synaptic plasticity but also the 

intrinsic plasticity in PCs could be formed in a spatially restricted area of the 

dendritic branches. In fact, the branch specificity has been also implicated in 

clustered plasticity model, describing that the neighboring synaptic sites form 

functional clustering along dendritic branches in that the similar information is 

preferentially processed in the clustered synapses (Fu et al., 2012; Govindarajan et 

al., 2011). Notably, the clustered dendritic activation has been found to process the 

spatiotemporal patterns of synaptic inputs encoding a similar sensory information 

(Wilms and Häusser, 2015), suggesting that the computational units for 

information processing may be individual dendritic branches. In this scenario, the 

learned pattern of the PC output in response to the familiar sensory stimuli would 

be elicited by functional clusters of dendrosomatic occurrence of synaptic and 

intrinsic plasticity of PCs. Consequently, the branch-specificity of the synaptic and 

intrinsic plasticity may enable the PCs to separate the learned pattern from novel 

information. Taken together, the way to process the information in the cerebellar 

cortex is highly structured and clustered, therefore, localized induction of synaptic 

and intrinsic plasticity may play a significant role in information storage and 

furthermore modifying the behavioral outcomes. Furthermore, the branch-specific 

formation of synaptic and intrinsic plasticity may not only contribute to synergistic 

modulation of spike output in an activity-dependent manner but also expand the 

dendritic capacity for effective information processing in the cerebellar PCs.

Linking synaptic plasticity and spike output, several observations have revealed 

that synaptic plasticity alters spike pause duration, delay to fire the AP spike after 

PF or CF activation (Grassi and Pettorossi, 2001; Steuber et al., 2007). The altered 

duration of spike pause of PCs is assumed to relieve tonic inhibition onto their 
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relay neurons, such as DCN thereby depression of the PC-DCN synaptic strength.

Consequently, the altered responsiveness against the synaptic gain would affect to 

postsynaptic spiking activity. Given that the pattern of the spiking activity in the 

cerebellar PCs indeed plays a pivotal role in information storage of the cerebellar 

learning (De Zeeuw et al., 2011; Wulff et al., 2009), the functional role of the spike 

pause might contribute to information processing in the cerebellum. Alternatively, I 

demonstrated the unrevealed feature of the intrinsic plasticity contributing to the 

integration of synaptic inputs thereby prominent depression of the PC output. 

Taken together, synaptic plasticity at the PF-PC synapses may modify the way to 

process the information quantitatively (the PF-evoked spike generation) as well as 

qualitatively (duration of spike pause). 

What would be consequences of supralinearity of the PC output modulation? 

Given the anatomical feature of the cerebellar PCs, understanding of how the PC 

output is coordinated in an activity-dependent manner is essential. In the cerebellar 

motor learning circuits, several implications have assumed that the memory should 

be transferred from the cerebellar cortex to sub-cortical area such as VN (Anzai et 

al., 2010; Boyden et al., 2004; 2006; Johansson et al., 2014; Nagao et al., 2013; 

Okamoto et al., 2011a; Shutoh et al., 2006). Inactivation of the cerebellar cortex 

within a few hours after motor learning causes the impairment of memory storage 

whereas blockade of cerebellar activity over a day after learning exhibits no 

significant effects on the memory formation. Those results suggests that the 

plasticity in the cerebellar cortex may contribute to the memory acquisition and the 

plasticity in the VN may be involved in the long-term memory storage. Given the 

note that the plasticity in the VN neurons is dependent on the PC activity, the 

activity-dependent changes in the cerebellar output would provide the instructive 

signals for plasticity induction in the VN. Interestingly, (Ryu et al., 2017) have 

recently demonstrated that the memory consolidation deficit mice model 

(STIM1PKO) shows impairment of intrinsic plasticity while synaptic plasticity is 

intact. The authors suggest that the improper modulation of cerebellar output might 
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underlie the memory consolidation deficit. Notably, I found that the PC spike 

output after LTD induction in the mice line (STIM1PKO) showed no prominent 

changes in the PF-evoked spike count compared to wildtype littermate (fig. 18). 

Therefore, the appropriate input-output coordination requires synergies between 

PF-PC synaptic plasticity and intrinsic plasticity. In conclusion, supralinearity of 

the input-output coordination after induction of PC plasticity may contribute to 

memory transfer to the sub-cortical area through tuning the cerebellar output 

signals. 
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국문초록

소뇌 퍼킨지 세포 내재적 흥분성의

활동-의존적 조절

심 현 근

서울대학교 대학원

의과대학 의과학과 (생리학전공)

생명체는 끊임없이 주변환경에 반응하여 행동을 수정하며 이러한

적응은 변화하는 환경에서 생존에 필수적이다. 소뇌-운동 학습은

대표적인 적응 행동의 예이다. 다양한 감각 신호들이 소뇌로 전달되어

처리된 후 소뇌 출력을 통해 운동 협응이 이루어진다. 이러한 소뇌-운동

학습 및 소뇌 기능 조절의 세포 생리학적 기전으로 소뇌 퍼킨지 세포의

시냅스 장기저하가 오랫동안 주목받았다. 퍼킨지 세포의 시냅스

장기저하가 나타나지 않는 유전자 변형 동물 모델들에서 소뇌-운동

학습이 정상적으로 일어나지 않는 현상이 관찰되었기 때문에 시냅스

장기저하 이론은 오랜 시간 소뇌-운동 학습의 기전으로 지지 받았다.

하지만 최근 10 년 동안의 연구결과는 시냅스 장기저하만으로 소뇌-

운동 학습 및 기능 조절을 설명할 수 없다고 반박한다. 특히 소뇌

퍼킨지 세포는 소뇌 피질로 전달된 감각신호를 처리하여 출력을

담당하는 유일한 신경세포이므로 운동 학습 상황에서 소뇌의 출력이

어떻게 조절되는지를 이해하는 것이 중요하게 인식되었다. 감각 신호가

신경 회로 내에서 전달될 때 활동 전압의 형태로 전달되기 때문에 활동
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전압의 발생 빈도 및 패턴 조절 양상에 대한 이해는 소뇌 운동 학습의

기전을 밝히는 데에 중요하다. 본 박사학위 논문에서는 먼저 소뇌

퍼킨지 세포의 내재적 흥분성을 조절하는 여러가지 이온 통로들의

특성에 대해 정리하고 더 나아가 내재적 흥분성 가소성의 기전 및

생리학적 의의를 제시하였다. 소뇌 퍼킨지 세포의 흥분성은 활동-의존적

가소성을 보이는데, 시냅스의 활동이 아닌 소뇌 회로 활동성의 장기적인

변화에 대응하여 나타날 수 있다. 소뇌 회로의 활동을 2 일 간의

tetrodotoxin (TTX, 1µM) 처리를 통해 저해하였을 때 과분극에 의해

발생하는 내향전류 (Ih) 증가를 통한 소뇌 퍼킨지 세포의 흥분성이

감소되는 것을 전기생리학적 기록을 통해 관찰하였다. 이러한 장기적인

소뇌 회로의 활동성 변화에 의한 퍼킨지 세포의 내재적 흥분성 감소의

세포생리학적 기전으로서 대사성 글루타메이트 수용체의 길항제-

비의존적인 활동성 증가 및 그로 인한 PKA 의 증가에 의해 발생함을

생화학 및 전기생리학적 방법을 통해 규명하였다. 이처럼 소뇌 퍼킨지

세포의 내재적 흥분성은 소뇌 회로 내에서 역동적으로 조절되어 소뇌

기능을 조절한다. 더 나아가 퍼킨지 세포의 흥분성 조절과 소뇌-

기억형성과의 관계성을 검증하기 위해 소뇌-학습의 세포생리학적

기전으로 알려져있는 퍼킨지 세포 시냅스 장기저하 유도 후 흥분성의

변화를 관찰하였다. 흥미롭게도 퍼킨지 세포의 내재적 흥분성 역시

시냅스 가소성과 마찬가지로 평행섬유와 등반섬유의 활성을 통해

가소성을 보이는데 이 흥분성의 가소성은 대사성 글루타메이트 수용체,

PKC 그리고 CaMKII 와 같은 시냅스 장기 저하를 야기하는 세포 내

신호전달기전을 필요로 한다. 이러한 실험결과를 통해 시냅스

장기저하가 발생할 때 소뇌 퍼킨지 세포의 내재적 흥분성 역시 같이

감소하여 소뇌 운동 시 소뇌 피질의 출력이 크게 감소함을 예상할 수

있다. 실제로 소뇌 퍼킨지 세포의 신경가소성을 유도한 후 평행섬유를
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자극하여 나타나는 퍼킨지 세포의 활동 전압 발생 빈도를 측정해 본

결과, 시냅스 장기저하와 흥분성의 장기저하가 함께 발생했을 때에만

소뇌 퍼킨지 세포의 출력이 유의미하게 감소하는 것을 관찰하였다. 특히

퍼킨지 세포의 활동-의존적 흥분성의 가소성은 시냅스 가소성과

마찬가지로 특정 수상돌기 가지 특이적으로 발생함을 관찰하였다. 이를

통해 퍼킨지 세포의 시냅스 가소성과 흥분성 가소성의 유기적인 연합을

통해 소뇌 퍼킨지 세포의 출력신호가 조절되어 소뇌-운동학습을

조절함을 알 수 있다. 결론적으로 본 박사학위 논문의 연구결과들은

소뇌 퍼킨지 세포의 출력은 퍼킨지 세포의 시냅스 가소성 혹은

흥분성의 조절과 비선형관계를 보이며 이러한 시냅스 가소성과 내재적

가소성의 시너지는 소뇌 정보 저장 능력을 극대화하여 소뇌 기능 조절

및 정보저장에 중요한 역할을 담당하고 있음을 제시한다.

핵심어: 시냅스 가소성, 시냅스 장기저하, 내재적 흥분성, 소뇌 운동

학습

학번: 2012-23669
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교수님과 이용석 교수님께도 감사의 말씀을 드립니다.

이 학위 논문이 보다 더 발전할 수 있도록 바쁘신 시간 중에 이 논문을

심사해주시고 조언해 주신 서울의대 생리학교실 서인석, 김성준 교수님,

을지의대 생리학교실 장원석 교수님께 감사의 말씀을 드립니다.

학위 기간 동안 함께 고생해 준 신경생리학 실험실 일원에게도 감사를

전합니다. 특히 실험실 사수였던 장성수 선생님, 바쁘신 중에도 늘 좋은

코멘트를 준 정지훈 박사님, 과학자로서 생각하는 법을 알려주신 이석찬 박사님,

전기생리학의 기초를 알려준 유창현 박사님, 공동 저자로 고생해준 장동철

박사님에게 다시 한번 감사의 말씀을 전합니다. 아울러 제 연구에 도움을

주었던 김용규 선생님, 김수용 선생님, 김승하 선생님, 이재건 선생님께도

감사의 인사를 드립니다.

학부 때부터 힘이 되어주시고 과학자로서의 길을 포기하지 않도록 아낌없이

지지해주시고 필요한 조언을 주셨던 중앙대학교 심리학과 정태연 교수님,

신맹식 교수님, 그리고 태성고등학교 조영준 선생님께 감사의 말씀을 드립니다.

세 분의 선생님이 아니었다면 저는 아마 지금 이 자리에 있지 못했을 것입니다.

마지막으로 그리고 무엇보다도, 사랑하는 아내 미선에게 큰 감사를 표합니다.

아내의 헌신적인 도움 덕분에 고된 학위 과정 기간이 고되지 않았고 언제나

즐겁게 생활할 수 있었습니다. 성공보다 실패가 많은 연구실 생활에서 아내의

응원은 언제나 저에게 큰 힘이 되었습니다. 좋은 동료로, 좋은 친구로, 좋은

아내로 늘 옆에 있어준 아내에게 다시 한번 큰 감사와 사랑을 전합니다.
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